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In biological systems, evolutionary innovations can spread not only from parent

to offspring (i.e. vertical transmission), but also ‘horizontally’ between individ-

uals, who may or may not be related. Nowhere is this more apparent than in

bacteria, where novel ecological traits can spread rapidly within and between

species through horizontal gene transfer (HGT). This important evolutionary

process is predominantly a by-product of the infectious spread of mobile genetic

elements (MGEs). We will discuss the ecological conditions that favour the

spread of traits by HGT, the evolutionary and social consequences of sharing

traits, and how HGT is shaped by inherent conflicts between bacteria and MGEs.

This article is part of the themed issue ‘Process and pattern in inno-

vations from cells to societies’.
1. Introduction
The process of evolution by natural selection has generated diverse, elegant and

efficacious innovations. Where such innovations have a genetic basis, they can

be transmitted ‘vertically’ from parent to offspring, giving rise to a model of evol-

ution represented as a bifurcating tree. However, it has long been recognized that

genetic information can also be transferred between individuals not connected by

inheritance, a process referred to as ‘horizontal gene transfer’ (HGT) [1,2]. Here, we

define HGT as the movement of heritable genetic information that cannot be

explained by vertical parent–offspring transmission [3] (thus explicitly excluding

processes such as introgression, which is covered elsewhere [4]). Like single nucleo-

tide mutations and gene duplications, HGT is essentially a process that introduces

variation, which is then subject to natural selection. Such variation can be dramatic,

such as the single-step acquisition of complex metabolic pathways [5,6], and can

stand in contrast with historical formulations of evolution that imply gradual

change [7]. Innovation, in the context of HGT, primarily implies the acquisition

of novelties by a recipient lineage, though these traits may have existed for a

long time in the donor lineage. Nevertheless, this can have profound consequences

for how organisms evolve, making possible substantial shifts in their biology. Fur-

thermore, HGT provides potent opportunities for the rapid spread of genetic

innovations into new backgrounds: rare mutational events need occur only once

before spreading broadly into various new lineages. However, HGT is not just a

process for organisms to acquire novelties. As with mutations, transferred genes

can be neutral or deleterious, and many of the agents that facilitate HGT are entities

evolving in their own right. Their interactions with the donors and recipients of

HGT can set the scene for evolutionary conflicts.

HGT can occur across vast phylogenetic distances, and these events may have

important ecological consequences. For example, Hypothenemus hampei, a species of

beetle, appears to have acquired a gene for mannanase degradation from Bacillus,
enabling it to become an economically important pest of coffee plantations [8]. In
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other cases, HGT appears more opportunistic, and the adaptive

consequences are less clear. For example, some strains of the

human pathogen Neisseria gonorrhoeae have acquired a 685 bp

region of the Long Interspersed Nuclear Element (LINE1), a

fragment of a retroelement gene found in the human genome

that has no clear function in the recipient bacterium [9]. Inter-

kingdom gene transfer can occur surprisingly often given the

right ecological conditions, as is shown by the independent

acquisition of the bacterial gene acdS by 15 different lineages

of fungi and other eukaryotes [10]. The amount of DNA trans-

ferred can be considerable—in one case, almost an entire

bacterial genome was found to have transferred into the nuclear

genome of a Drosophila [11]. Events like these demonstrate that

species boundaries can be more permeable than is often

assumed, and that genetic information can in principle move

between even highly divergent lineages. It has even been pro-

posed that no insurmountable barrier to HGT exists [12]. HGT

into metazoan genomes is striking, the more so because it

has disrupted long-held assumptions about the nature of inheri-

tance and evolution in complex organisms. However, while

metazoan HGT clearly occurs, the complexity of eukaryotic gen-

omes, and the ease by which samples can become contaminated

with bacterial DNA creating false positives, have thrown some

of the more extreme claims into doubt [13]. The consensus,

therefore, is that successful HGT into metazoan taxa is relatively

rare, albeit with potentially huge impact for phenotype and

fitness where it does occur [14].

By contrast, in the microbial world, HGT is a fact of life.

For bacteria in particular, HGT is a major mode of adapta-

tion, making a significant contribution to genome evolution

and structure [1,15,16]. Bacterial HGT has a central role in

adaptation to environmental challenges, like colonization of

new environments, exploitation of novel carbon sources and

resistance to toxins [17]. The increasing evidence placing

humans in the midst of an essentially microbial world [18–

20], where bacteria have fundamental roles in biogeochemical

cycles, health and disease, and food security, makes it all the

more important to understand their evolution and ecology.

Furthermore, bacteria are increasingly used as model systems

for understanding general evolutionary processes [21]. In this

review, we will focus on HGT between bacteria, although

many of the themes we discuss are likely to apply when

considering the horizontal transfer of traits more generally.
2. Horizontal gene transfer is central to bacterial
evolution

Bacteria have several features that may make them especially

well suited for HGT-mediated evolution. All cells are generally

reproductively proficient, i.e. germ line, meaning that mutations

and acquired genes can be easily passed down to subsequent

generations. Unlike eukaryotes, bacteria lack membrane-

bound nuclei, meaning that their genomes are more accessible

to incoming DNA. This can enhance the acquisition and inte-

gration of new genes [12]. Bacteria can evolve rapidly, owing

to their potential for huge population sizes and short generation

times, which means that infrequent gene transfer events are

more likely to occur and selectively advantageous events less

likely to be lost due to drift. Bacteria have a truly cosmopolitan

distribution, inhabiting and adapting to a vast range of environ-

ments and performing reactions the benefits of which may be

limited spatially, such as degradation of exotic carbon sources.
Migration is thought to occur readily [22,23], and consequently

myriad bacterial species can coexist in a community [24]. This

represents diverse genetic material that can potentially transfer

between, and be of value to, the members of the community.

Comparative analyses have revealed the pervasiveness of

HGT in bacterial evolution and genome dynamics. Even

closely related bacterial strains can vary greatly in genome

content [25], and increased sequencing shows that only a

minority of genes carried by a species might be shared

across all members [25,26]. This set of genes represents a

‘core genome’, and can be contrasted with the ‘variable’ or

‘accessory’ genome which represents genes present only in a

subset of strains [27]. The total of all the unique genes in a

species, termed the ‘pan-genome’, generally increases in size

with each new strain sequenced (though this can vary between

species [28]), a pattern that emerges because different lineages

within a species acquire and lose variable genes from other

species in their local communities. The size of the pan-

genome and its distribution among strains hint therefore at a

large ‘pool’ or ‘library’ of genetic material that is available

for acquisition—a genetic resource on which evolving bacteria

can draw for adaptation. This library is apparently well-used.

Comparative studies show that, in several bacterial lineages,

genes are acquired and lost at rates comparable to or even

greater than nucleotide substitutions [29,30].
3. Machines for spreading genes
In principle, HGT requires two physical processes. First, gen-

etic information must cross biological membranes into the

recipient species. Second, the genes must be linked to a func-

tioning origin of replication in a germ line cell to ensure

subsequent vertical transmission in the recipient. There are

several well-defined mechanisms that facilitate gene transfer

between bacteria by enhancing one or both of these processes

(figure 1), with novel mechanisms still being characterized

and, in all likelihood, more yet to be discovered.

Traditionally, there are three canonical mechanisms of

DNA transfer in bacteria: conjugation, transduction and

transformation. Conjugation occurs when a donor bacterium

expresses a multicomponent macromolecular membrane-

traversing structure—a ‘conjugative pilus’—which provides

a physical link for DNA to move between donor and recipient

[31,32]. Transferred DNA contains an ‘origin of transfer’

(oriT), a sequence of bases that is recognized by the conjuga-

tive machinery [33]. Transduction occurs when bacteriophage

from a donor bacterium package non-phage DNA in viral

particles which then infect other bacteria [34,35]. Both conju-

gation and transduction provide protection for DNA from

environmental damage after it leaves the donor cell. Natural

transformation is the process by which bacteria take up DNA

from their environment. This occurs by the retraction of cell

surface fibres (pili) which pull double-stranded DNA close

to the cell membrane, allowing uptake via a conserved mem-

brane pore. The DNA substrates for transformation may be

actively secreted into the environment by donors [36], or

released by dying bacteria (e.g. following lysis by phage,

[37]). It has been recorded that bacteria can take up genes

released by neighbours they themselves have killed [38].

More recent research has identified other mechanisms by

which DNA can transfer between hosts. Gene transfer

agents (GTAs) are DNA-containing particles that resemble



bacteriophage

gene transfer agents

conjugative pili

nanotubes

vesicles

donor bacterial
chromosome

plasmid recipient
bacteria

environmental DNA

Figure 1. The many routes for horizontal gene transfer. DNA can be transferred between individuals by multiple mechanisms falling broadly into three categories. In
transduction (blue text), DNA is transferred either as part of the phage genome itself or as additional DNA packaged into phage particles or gene transfer agents. In
conjugation (yellow text), donor cells form conjugative pili, typically encoded on plasmids or integrative conjugative elements, through which DNA is transferred.
Finally, transformation (red text) is the process by which DNA in the environment is actively taken up by the donor cell. In addition, recent studies have shown that
bacteria can also transfer DNA fragments in membrane-bound vesicles and via nanotubes.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

372:20160424

3

phage, but are incapable of carrying the genes for particle

production [39]. Genes can also be transferred between bac-

teria that form intercellular connections via nanotubes [40]

or membrane fusion [41]. Some bacteria release DNA-

containing membrane-bound vesicles that can carry genetic

information to new hosts [42]. Mycobacteria undergo an unu-

sual form of conjugation that appears to be regulated in part by

the recipient, does not require oriT and results in transconju-

gants whose genomes are a patchwork of their parents’ [43,44].

Once DNA has entered a recipient, it must replicate to

avoid loss by segregation during cell division. Incoming DNA

can carry its own origin of replication thus replicating separ-

ately from the chromosome of its new host. Such is the case

for plasmids: pieces of DNA, usually circular, that remain

physically distinct from the chromosome [45]. Alternatively,

the incoming DNA must recombine with a resident element to

gain access to an origin of replication, either on the chromo-

some or on an extrachromosomal replicon like a plasmid.

This can happen via general mechanisms of recombination,

but is enhanced by an assortment of enzymes, which catalyse

the integration, excision and recombination of DNA [46].

Although the machineries discussed in this section enable

the horizontal transfer of genetic innovations, it should be

noted that they have not necessarily evolved ‘for’ that pur-

pose. For example, transformation tends to cause the
replacement of longer stretches of DNA with shorter ones,

and hence is more prone to reducing, rather than expanding,

genome content [47]. Various restrictions on assimilating

DNA from unrelated strains suggest that transformation

may tend towards being a more conservative than innovative

process [48,49]. But perhaps more importantly, many of these

mechanisms are not in fact under the control of the bacteria

but are instead controlled by semi-autonomous segments of

DNA which, far from being functional tools for bacterial

gene exchange, have their own self-interest at heart.
4. Mobile genetic elements: perpetrators of
horizontal gene transfer

From the perspective of a gene, HGT represents another

opportunity for reproduction, and thus is subject to natural

selection. The microbial world is teeming with mobile genetic

elements (MGEs), genetic entities that are adapted to transfer-

ring between strands of DNA and between different bacterial

hosts [50]. The bestiary of MGEs is rich, and the elements

involved are dynamic, modular and nested. For example,

transposable elements (TEs), DNA sequences that carry

genes enabling them to hop between DNA strands, can be

found on larger elements such as plasmids which carry an
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origin of replication [51]. Plasmids may carry their own set of

genes for conjugative transfer (i.e. conjugative plasmids), or,

if they have a compatible oriT, may use the conjugative

machinery encoded by a different replicon (i.e. are mobiliz-

able) [33,52]. Plasmid gene content is dynamic, and

plasmids that acquire new genes from their hosts, perhaps

through the activity of TEs, carry these genes onwards

when they conjugate [53,54]. Integrative and conjugative

elements (ICEs) resemble plasmids in many ways, except

that they carry enzymes that catalyse insertion into the host

chromosome and thus do not need to carry their own

origin of replication [55]. Bacteriophage can be either purely

virulent, killing their hosts quickly in order to reproduce, or

‘temperate’ phage that, similarly to ICEs, can insert their gen-

omes into the bacterial chromosome. Both types of phage can

mediate HGT. For temperate phage, there is an opportunity

for bacterial genes or transposons to become integrated into

the phage genome and thus be co-inserted into the bacterial

genome when they integrate, called lysogenic conversion

[56]. However, for all phage, bacterial DNA or other MGEs

can be packaged in phage particles and become transferred

by transduction [57]. Indeed, some integrative elements

specialize in repurposing phage capsids for their own transfer

[58]. Collaborations and conflicts between MGEs can therefore

enhance their ability to spread within and between hosts.

MGEs can carry genes other than those necessary for

transfer and replication. These genes—or where they can be

functionally grouped, ‘modules’ [59]—may help the selfish

vertical transmission of the element. For example, partition-

ing systems segregate plasmids between daughter cells,

reducing the frequency of plasmid-free offspring, and

toxin–antitoxin systems impose a large (usually lethal) cost

on daughter cells that have lost the MGE, favouring MGE car-

riers by removing such competitors from the population [60].

The evolutionary benefits of such modules are easy to

appreciate. Many MGEs also carry ‘accessory genes’, which

do not play a direct role in their vertical or horizontal trans-

mission. Instead, accessory genes may have effects at higher

organizational levels, boosting the success of the element

indirectly. For example, the spread of antimicrobial resistance

(AMR) genes is facilitated by the carriage of these genes on

elements such as transposons, ICEs and plasmids [61].

Acquiring these accessory genes can allow a bacterial host

to flourish in otherwise deadly environments, with concomi-

tant positive effects on the elements that it carries. The

benefits of accessory gene carriage can be seen in the success

of integrons, elements first identified on MGEs that appear

adapted for the acquisition, assembly, and expression of

accessory genes [62,63]. Yet, the function of many accessory

genes is not known [64], and the selective factors that

favour their mobility and co-occurrence are similarly unclear.

Nevertheless, MGEs probably constitute the means by which

most genes travel through bacterial communities, and are

therefore potent agents of HGT [65,66].

Thus, there exist many potential routes by which genes

can transfer between bacteria, and although rates for pro-

cesses have been measured experimentally (e.g. [67–69]),

understanding the relative importance of these mechanisms

in situ is complicated by the fact that efficacies are likely to

vary between species and environments [45,70]. This can

stem from physical limitations, for example, mechanical agi-

tation can inhibit conjugative transfer [71] and different

environments are more or less harsh to extracellular DNA,
affecting opportunities for transformation [72]. It is also

likely to be driven by the ecology of both bacteria and

MGEs, for example, lysogenic conversion is more common

among bacteria with fast growth rates [73], which probably

reflects the conditions that favour the life-history strategy of

temperate phage. Genome analyses suggest that plasmids

are better-connected ‘hubs’ in networks of gene exchange

than phage, for example [66], but it can be difficult to identify

how genes have moved by analysing their sequences [74]. A

clear priority for future research is to quantify the relative

importance of HGT mechanisms and how such rates vary

with taxonomy and ecology.
5. Costs, benefits and conflicts in horizontal gene
transfer

Horizontally transferred genes have the potential to provide

their recipients with striking benefits. However, HGT is not

a benign process, and gene exchange can impose significant

fitness costs on both donor and recipient. Indeed, the distri-

bution of fitness effects of HGT has been proposed to be

more dispersed than that of nucleotide mutations [29], with

potential costs, as well as potential benefits, likely to be

more extreme. Costs emerge in the short term from a variety

of mechanisms [75]. Incoming genes represent additional

DNA that draws on cellular resources for replication, tran-

scription, and translation. The sequence composition of

acquired DNA may be poorly optimized for the host’s

expression machinery, resulting in stalled ribosomes, mis-

folded proteins, and triggering of stress responses, while

expressed genes may interfere with cellular homeostasis by

disrupting metabolic or signalling processes. Acquired TEs

can proliferate in the chromosome, damaging the genes into

which they insert and causing gene loss through recombina-

tion. Donors are also affected. The production of conjugative

machinery is metabolically expensive, and exposes its bearers

to ‘male-specific’ bacteriophage which recognize and use the

conjugative pilus as a receptor [76]. The release of capsids to

secrete genetic material, through generalized transduction or

GTAs, can require lysis [39]. Unlike the metaphors that refer

to transferred genes as swappable ‘smartphone apps’ [77],

HGT may in reality be a more traumatic experience.

Several mechanisms have evolved that can inhibit HGT,

allowing cells to escape this disruption [45]. For example,

DNA restriction–modification systems and CRISPR-Cas

(CRISPR, clustered regularly interspaced short palindromic

repeats; Cas, CRISPR-associated) loci represent ‘immunity’

systems which recognize and selectively degrade foreign

DNA. Though they probably evolved as a means of resisting

highly antagonistic agents, such as bacteriophage, these sys-

tems may also impact potentially beneficial MGEs [78,79].

They, therefore, have the potential to cut lineages off from

the flow of adaptive innovations. Experimental studies explor-

ing this tension show that where pressure to acquire plasmid-

borne genes is strong enough, bacteria tend to jettison their

CRISPR-Cas immunity loci completely [80], enabling gene

acquisition. However, immunity loci are also horizontally

transferred, so it is possible to reacquire them. Indeed, com-

parative studies show no correlation between the degree of

CRISPR-Cas immunity and recent HGT acquisitions [81],

suggesting that immunity to HGT is likely to be dynamic,

with transient periods of susceptibility and resistance. Besides
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physically degrading foreign DNA, bacteria can also exert

some control over the expression of recent acquisitions.

Newly arrived DNA tends to be relatively AT-rich in compari-

son with the resident chromosome, possibly reflective of an

itinerant lifestyle [82]. The histone-like nucleoid-structuring

protein (H-NS), a regulator encoded by bacteria, binds to and

silences AT-rich DNA, preventing costly and maladapted

expression of foreign genes [83,84], and representing a form

of ‘censorship’ by the established genome.

An important aspect of the MGEs that facilitate gene

exchange is that they themselves reproduce and mutate,

and are subject to natural selection. They therefore have

their own fitness ‘interests’, which may not necessarily be

aligned with those of their hosts. For example, plasmids are

under selection to increase copy number within a cell, but

high copy number imposes a high cost on that cell [85].

This can generate significant evolutionary conflict between

hosts and MGEs. Plasmid carriage, for example, can exert a

considerable toll on host fitness, and selection might favour

hosts that have managed to shed their plasmid burden [86].

Meanwhile, to prevent their loss, MGEs acquire modules to

ensure their maintenance, such as those involved in plasmid

partitioning, or genes that disable the host’s CRISPR-Cas

immunity loci [87]. Vertical and horizontal modes of MGE

transmission are likely to trade-off against one another: adap-

tations that improve the ability of an MGE to move across

lineages are likely to make that MGE costlier to the host it

is in, while decreases in cost are likely to come from repres-

sing horizontal transfer [88]. Hosts are under pressure to

‘domesticate’ or shed fractious MGEs, while MGEs are

under pressure to maintain autonomy. In this context, it is

interesting that of the three canonical mechanisms of DNA

transfer, only one (natural transformation) is under the

direct control of bacteria; the others are encoded by the

semi-autonomous MGEs that inhabit them. The mobile

gene pool may be akin to a library, but the books are alive.

Considering the potential for conflict between MGEs and

their hosts, carriage by MGEs of potentially useful accessory

genes, such as those involved in AMR or virulence, is difficult

to explain. The benefits of accessory genes are likely to be

highly context-dependent, varying with the chemical, physical

and social environment [89–91]. Plasmids, for example, carry

genes for resistance to environmental pollutants even in pristine

habitats [92]. Under such conditions, where accessory genes are

not beneficial, plasmids persist as parasitic entities, and would

be expected to become more efficient parasites, streamlining

their genomes through accessory gene excision and an increased

transfer rate. Positive selection for accessory genes could offset

the costs of plasmid carriage, but under such conditions selec-

tion would favour integration of the beneficial traits into the

host chromosome and loss of the plasmid backbone. Regardless

of selective conditions, accessory gene carriage by MGEs,

though widespread, appears problematic. This puzzle has

been termed the ‘plasmid paradox’ [93], but it can be general-

ized to include other MGEs such as transposons and

integrative elements which maintain accessory gene mobility.
6. Keeping genes moving: resolving the plasmid
paradox

Experimental evolution studies are providing some answers

to this problem, at least for plasmids. Coevolution between
plasmid and host can rapidly ameliorate the major costs of

plasmid carriage, reducing the effects of purifying selection

and maintaining gene mobility. Compensatory evolution

can occur in the chromosome [94–96] or in the plasmid

[97,98], and may be specific to that host–plasmid pairing or

represent a more general adaptation. Interestingly, in some

cases plasmid cost emerges from conflicts with other horizon-

tally transferred elements. In Pseudomonas aeruginosa PAO1,

cytotoxic gene expression from the small plasmid pNUK73

is induced by two recently acquired chromosomal genes. Dis-

ruption of one or both of these genes alleviates plasmid cost,

resulting in maintenance of the plasmid and the antibiotic

resistance gene it carries [99]. Some plasmids deploy their

own H-NS-like genes, which reduces the burden they place

on their hosts by repressing plasmid gene expression [100].

Evolution of gene regulators may prove to be a general

theme in the accommodation of acquired genes, as compara-

tive analyses show that gene regulatory regions tend to

correlate with the accessory compartment rather than the

core genome [26].

Alternatively, where rates of conjugation outweigh the

costs of carriage and imperfect transmission to daughter

cells, plasmids can be maintained in a population through

infectious transfer [101]. Though there has been considerable

debate over whether they are achieved in nature, high infec-

tion rates have been shown to sustain carriage in several

laboratory experiments, at least over short periods [102–

104]. Persistence through infection leads to a more antagon-

istic relationship between plasmids and their hosts: hosts

are predicted to develop adaptations for actively resisting

(re)-infection, whereas plasmids are likely to lose accessory

genes to become better parasites.

Whether and how conflict with MGEs is resolved varies

between hosts, as differing gene content between strains

offers different opportunities and constraints to conflict resol-

ution. In some species, plasmids are highly unstable owing to

poor vertical transmission, in others they are unstable owing

to a high cost [86], with differing evolutionary outcomes. For

example, the IncP-1 plasmid derivative pMS0506 evolved

increased stability in Shewanella odeidensis through mutations

in trfA, which reduced plasmid cost [105], but in Pseudomonas
moraviensis stability was increased by the acquisition, from

another plasmid, of a transposon carrying a toxin–antitoxin

system, which effectively reduced plasmid loss [106] (an

example of mobile elements interacting to enhance plasmid

maintenance). Moreover, although beneficial accessory

genes can become ‘captured’ by the chromosome under posi-

tive selection, with consequent loss of the plasmid, this

phenomenon varies between species [107].

MGEs are not just the traits they carry, and the relation-

ship between these elements and their hosts may be

multifaceted and more subtle than the effects of their acces-

sory genes. Temperate phage, for instance, can be effective

‘weapons’ in bacterial warfare [108], while plasmid encoded

conjugative pili can help bacterial hosts to form biofilms

[109]. Besides these ecological effects, MGEs can alter bac-

terial evolution and gene regulation in ways beyond gene

acquisition. Integrative elements like temperate phage, trans-

posons and other IS elements can jump into genes and

regulatory regions. This sledge-hammer approach to gene

disruption can lead to rapid adaptation of the host to new

environments [110,111]. Recent advances may also suggest

that integrative elements may actively integrate into and
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drop out of bacterial genes to act as functional ‘switches’ in

turn disrupting and restoring gene function [112]. Further-

more, the multicopy nature of many of these elements

increases the opportunity for mutations in the genes they

carry [113], and, in the case of plasmids, constitutes a respon-

sive platform for altering gene dosage by varying copy

number. During infection, Yersinia requires an increased gene

dose of its type 3 secretion system (T3SS) for efficient coloni-

zation. This is achieved by a transient increase in copy

number of the virulence plasmid pIBX, which carries the

T3SS, from 1 to 3 per cell [114]. Aureimonas species carry plas-

mid-borne ribosomal RNA genes, potentially enabling rapid

change in copy number which might provide selective benefit

under changing environmental conditions [115].

Plasmid maintenance in a species, through amelioration

or infectious transfer, may resonate through a community.

In species-rich microbial communities, a subset of members

able to maintain plasmids may act as a ‘source’ species for

otherwise unfavourable hosts [107], a pattern that is reflected

in the fact that the ability of a plasmid to invade a microbial

community is correlated with existing plasmid maintenance

[116]. Plasmids can still conjugate from hosts that have com-

pletely ameliorated their cost [96], and the ability of a plasmid

to invade a diverse fraction of a community [117] means that

a few source species could maintain community-wide gene

mobility.
7. The impacts of horizontal gene transfer on
genome evolution

Genes can be rapidly lost as well as gained, and gene loss fre-

quently acts to pare down bacterial genomes [118]. This

balance between acquisition and loss gives rise to the patterns

of HGT that become apparent in large-scale genome analy-

ses. These infer HGT by identifying genes shared between

lineages and thus detect both recent gene transfer events

and those that occurred long ago [30]. Shared genes represent

not only successful transfer, but also maintenance in the

donor and recipient lineages [119]. There is a bias in the

types of gene detected by these studies, leading to theories

about why certain genes are overrepresented among shared

genes (i.e. are more ‘transferable’ than others). The ‘Complex-

ity Hypothesis’ suggests that a gene’s associated biological

process is the main determinant of its transferability, with

‘informational’ genes (involved in transcription, translation

and replication) less likely to be successfully transferred

than ‘operational’ genes (involved in functions such as

metabolism and regulation) [15]. This hypothesis has been

refined to show that the primary factor impacting transfer-

ability is the number of protein–protein interactions the

gene product is involved in [120]: genes highly integrated

with many partners in one cell will be unlikely to provide

benefit in a different cellular environment. Innovations that

perform distinct, specific tasks are thus more likely to be

maintained in a new lineage.

The apparently high rates of gene gain and loss detected

when comparing recently diverged lineages with more

ancient branches [29], suggests that transferred genes ‘live

fast, die young’, undergoing constant turnover [30]. Those

that are beneficial are retained by selection, while others,

excised by the pervasive razor of gene deletion, are lost

[118]. A study of HGT among human-associated microbes
showed that although genes with plasmid-, phage- or trans-

poson-related functions were identified, they comprised

only a small fraction of the transfers detected [121]. This

suggests that while MGEs can enhance HGT, they are not

required for long-term maintenance of transferred genes in

the recipient. Longer timescales are likely to see retention of

beneficial genes and loss of their means of entry [122].

Indeed, the genetic context of transferred genes varies con-

siderably between individuals and between populations

[74] owing to recombination breaking linkage. This is consist-

ent with a model of HGT whereby horizontal gene spread is

lubricated by the activity of MGEs, but over longer periods

the signatures of these elements is gradually erased as the

functional genes become integrated into the physiology of

their new hosts.

Where there is sufficient HGT, selection appears to act on

genes, and sweeps can carry a particular allele to fixation in a

population without purging other loci of their diversity, as

was observed in a marine Vibrio population [123]. However,

if advantageous alleles arise where there is a relatively low

rate of HGT, genetic diversity is lost in a ‘genome-wide’ selec-

tive sweep, resulting in a much more clonal population. A

nine-year study of 30 bacterial populations in a freshwater

lake found gradual purging of genome-wide diversity in

one species of green sulfur bacterium owing to a selective

sweep [124], though these dynamics were not shared by

other species at the same site. Interestingly, propensity to

undergo gene-specific or genome-wide selective sweeps

may be a stable trait, with low-diversity populations with evi-

dence of prior genome-wide sweeps more likely to undergo

future diversity-purging sweeps [125]. This suggests that

the flow of genes varies within and between species, and is

structured by consistent barriers. These barriers are probably

determined in large part by the peculiarities of the elements

involved, for example, carriage and compatibility of MGEs,

or the presence of cognate restriction–modification systems

[45,126].
8. Horizontal gene transfer shapes bacterial
populations

The opportunity for gene transfer can have significant effects

on the genetic structure of bacterial populations. Related bac-

teria end up with fewer genes in common, as lineages acquire

different sets of genes from their local neighbours [127].

Meanwhile, horizontally transferred genes are associated

more with ecological conditions or geographical locations

rather than the phylogenetic lineages in which they are

found [25,74,121]. In some cases, these genes have a clear

relationship to the local environment, encoding, for example,

degradation of locally occurring carbohydrate sources

[74,128], or biofilm formation and host colonization [123].

Where bacteria can migrate, MGEs may be under selection

to maintain mobility of these ‘niche-specific gene pools’

[129], perhaps by transfer to and assembly on a readily

exchangeable plasmid or ICE, because transfer of these

locally beneficial traits to potentially competitive newcomers

benefits the success of the MGE [101,130].

Within communities HGT promotes diversity, rescuing

unrelated species from purifying selection by the spread of

ecologically relevant traits [101]. At the same time, HGT

increases relatedness at specific loci, creating conditions
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conducive to the evolution and success of ‘cooperative’ traits

(which may likewise be niche-specific). Cooperative traits, in

this context, are costly actions that provide a benefit not only

to the individual performing them, but also to their neigh-

bours. Where neighbours do not reciprocate, cooperative

traits are difficult to explain, because cooperators, burdened

by the cost of their actions and sharing the benefits, are

out-competed. Cooperative traits are thus expected to suc-

ceed where the recipients of the cooperative action are

likely to be cooperators too. By spreading the genes involved

in cooperation between otherwise unrelated individuals,

plasmids and other MGEs can favour cooperation. In other

words: from a plasmid’s perspective, inducing cooperative

behaviour in their hosts is beneficial, because it enhances

the success of neighbours that are likely to become plasmid

hosts too, through HGT [131]. Consistent with this, plasmids

and other MGEs are overrepresented in accessory genes that

encode traits regarded as cooperative: secreted functions the

benefits of which are shared as ‘public goods’ among neigh-

bours [132]. Experimental and modelling studies on a

synthetic plasmid system also suggest that HGT can favour

cooperative traits [133].

The acquisition of new traits by HGT can have decisive

effects on the evolutionary trajectory of the recipient lineage

with consequences that extend into human society. Patho-

genic lineages often owe their devastating behaviour to

genes harboured on MGEs. The ymt gene, which provided

the agent of plague, Yersinia pestis, with an arthropod

vector by allowing it to colonize the guts of fleas, was

acquired when a TE transposed into a plasmid sometime in

the Late Bronze Age [134]. The lysogenic phage CTX-phi con-

verts Vibrio cholerae hosts from non-pathogenic to pathogenic

by the expression of the cholera toxin, which was acquired

horizontally by CTX-phi, exemplifying the nested levels of

gene mobility in microbes [135]. Meanwhile the efficiency

and flexibility of HGT, amplified by this nested structure,

can be observed in the spread of AMR genes in hospital-

acquired infections, where resistance genes carried on trans-

posons are able to hop between different resident plasmids

each able to infect multiple host lineages [54]. On a larger

scale, HGT between more divergent participants lies at the

root of key evolutionary transitions—although a matter of
current debate in the literature, it has been suggested that

major phylogenetic transitions in Archaea are associated

with HGT from Eubacteria [136,137]. New acquisitions caus-

ing dramatic shifts in phenotype space offer opportunities to

take up a very different lifestyle.
9. Concluding remarks
HGT among microbes may prove to be a good model for

understanding the spread of innovations at other scales. Cer-

tainly, microbes have various idiosyncrasies that make them

exceptionally susceptible to HGT as an engine of evolution-

ary change, and harbour well-described elements that are

adapted for the job. But though the mechanisms facilitating

it remain unclear (though some candidates have been

described, [4,138]), the occurrence of HGT within and

between multicellular eukaryotes is becoming increasingly

apparent [14]. It will be interesting to see how far the ecologi-

cal drivers of HGT in microbes similarly promote gene

exchange among other life forms. The interaction between

selection and drift in shaping patterns of gene exchange

[127] and the ability for HGT to facilitate rapid adaptation

of migrants [130] may have particular relevance.

Generalizing further, bacterial HGT demonstrates that, for

the spread of innovations, ‘the medium is the message’

[139]—at least in the short term. High impact innovations

are usually carried into cells by selfish MGEs, and though

their signal may eventually be masked by gene loss, recombi-

nation, and domestication, the peculiarities of these strange

semi-autonomous biological entities affect both the ways

that genes flow through communities, and the consequences

of this flux. Understanding the negotiations between MGEs

and their hosts may therefore be as important as understand-

ing the ecological or clinical significance of the genes that

they transfer.
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