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Neutral evolution assumes that there are no selective forces distinguishing

different variants in a population. Despite this striking assumption, many

recent studies have sought to assess whether neutrality can provide a good

description of different episodes of cultural change. One approach has been

to test whether neutral predictions are consistent with observed progeny dis-

tributions, recording the number of variants that have produced a given

number of new instances within a specified time interval: a classic example

is the distribution of baby names. Using an overlapping generations model,

we show that these distributions consist of two phases: a power-law phase

with a constant exponent of �3=2, followed by an exponential cut-off for var-

iants with very large numbers of progeny. Maximum-likelihood estimations of

the model parameters provide a direct way to establish whether observed

empirical patterns are consistent with neutral evolution. We apply our

approach to a complete dataset of baby names from Australia. Crucially, we

show that analyses based on only the most popular variants, as is often the

case in studies of cultural evolution, can provide misleading evidence for

underlying transmission hypotheses. While neutrality provides a plausible

description of progeny distributions of abundant variants, rare variants devi-

ate from neutrality. Further, we develop a simulation framework that allows

the detection of alternative cultural transmission processes. We show that

anti-novelty bias is able to replicate the complete progeny distribution of the

Australian dataset.

This article is part of the themed issue ‘Process and pattern in

innovations from cells to societies’.
1. Introduction
Most theoretical modelling frameworks to cultural evolution make the simplifying

assumption that innovations are the product of erroneous cultural transmission

resulting in the introduction of cultural variants not previously seen in the popu-

lation at low abundances (e.g. [1,2]). But regardless of the mechanisms underlying

the occurrence of any particular innovation, its subsequent fate (i.e. whether it goes

extinct immediately or is able to spread through the population and reach a certain

degree of visibility) provides a window into the processes of cultural transmis-

sion present in the population. For example, the ‘persistence’ of a large number

of innovations might point to population-level preferences for novel or rare var-

iants. As a large number of such cultural transmission hypotheses have been

proposed in the literature (see [3]), the question whether we can develop systema-

tic approaches to distinguish between different transmission hypotheses using

aggregated population-level data has gained importance.

Seminal work by Bentley and colleagues (e.g. [4–6]) on this topic has focused on

distinguishing broadly between neutral and non-neutral cultural transmission
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processes. Neutral models of cultural transmission make the

assumption that there are no selective differences between var-

iants, so that the dynamics of a new variant are not biased

towards either proliferation orextinction. This hypothesis results

in a particular kind of stochastic dynamics, known as drift. In

balancing the utility and availability of cultural data, the studies

mentioned above identified the progeny distribution as a way to

distinguish the neutral hypothesis from others. The progeny dis-

tribution logs the abundances of cultural variant types which

produce k new individuals over a fixed period of time. Bentley

and colleagues have estimated the form of the neutral progeny

distribution through simulation techniques (e.g. [4,5,7]), con-

cluding that the progeny distribution takes the form of a

power law. The exponent of this power law has been fitted as

a function that depends on the innovation rate and the total

population size. The theoretical predictions have been com-

pared against empirical data for the choice of baby names, US

patents and their citations or pottery motifs, and these analyses

provided support for the neutral hypothesis [4,5]. Despite this

progress, an analytical expression for the neutral progeny

distribution has been lacking so far, which has limited further

developments in understanding whether observed distri-

butions are consistent with neutrality, or demand non-neutral

explanations.

In this manuscript, we derive the first analytical represen-

tation of the neutral progeny distribution for large time

intervals, using a neutral model where variants are not con-

strained to reproduce at discrete time points, known as an

overlapping generations model. We show that the neutral pro-

geny distribution consists of two phases. For small numbers of

progeny there is a power-law phase. This is broadly consistent

with the fits to earlier numerical simulations, but here we

find that this power law has a fixed, universally applicable

exponent of �3=2. Following this power-law phase, for large

enough numbers of progeny there is eventually an exponential

drop-off in this distribution. The onset of the exponential

decline depends on the innovation rate: the larger the rate,

the earlier is the onset. The analytical representation of the pro-

geny distribution allows for maximum-likelihood estimations

of the model parameter and therefore provides a direct way

of parametrizing neutral models using cultural data, and of

subsequently evaluating the consistency between observed

data and the neutral hypothesis. Importantly, we establish

that analyses based on only the most popular variants, as is

often the case in studies of cultural evolution, can provide

misleading evidence for neutral evolution.

Further, we show that the progeny distribution represents a

statistic that is able to detect alternative cultural transmission

hypotheses, in particular bias for or against novelty, and there-

fore is potentially capable of distinguishing between different

processes of cultural transmission based on population-level

data. For that we develop a simulation procedure which includes

pro- and anti-novelty bias. Anti-novelty bias is characterized as

the preference for variants that have been present in the popu-

lation for a long time (i.e. innovations possess an intrinsic

disadvantage), while pro-novelty bias describes the preference

for ‘young’ variant types that have only recently been introduced

into the cultural system (i.e. innovations possess an intrinsic

advantage). In general, we find that the progeny distribution

reacts sensitively to those changes in the transmission process.

Related results have been found by Mesoudi & Lycett [8], who

concluded that strong frequency-dependent biases alter the

shape of the progeny distribution. They also note that some
transmission biases will generate population-level predictions

indistinguishable from neutral predictions.

Following [5], we apply our framework to an Australian

dataset recording the first names of newborns (The code of

the simulation framework can be downloaded from https://

github.com/odwyer-lab/neutral_progeny_distribution.). We

demonstrate the importance of rare variants for reliable infer-

ence of processes of cultural evolution from aggregated

population-level data in the form of progeny distributions.

While the temporal dynamics of abundant names are consistent

with neutrality, the analysis based on the complete distribution,

including popular and rare names, provides evidence against

neutral evolution. This means that progeny distributions gener-

ate reliable inferences only in situations where the complete

dataset is available. We find that anti-novelty bias is able to

replicate the complete progeny distribution of the considered

Australian baby name data.
2. Neutral theory and innovation
Neutral models have provided basic null models in fields stretch-

ing from population genetics [9] and ecology [10–14], to cultural

evolution and the social sciences (e.g. [4,15–17]). At the core of

all varieties of neutral theory is a group of competing variants,

and the assumption that selective differences between these var-

iants are absent. In addition, most neutral models contain the

possibility for innovation, i.e. the introduction of entirely new

variants into the system. The most common approach to model-

ling an innovation event is to assume that with some rate a parent

individual will produce an offspring of a new type instead of

an offspring of the same parental type. This new variant then

undergoes the same dynamics as all extant variants.

The assumptions of neutrality are often at odds with the

vast stores of knowledge biologists and anthropologists have

accumulated for natural and social systems. For example, we

know that even closely related biological species differ in

their phenotype, and we might expect that these differences

are important for predicting and understanding the properties

of ecological communities. And yet despite this obvious road-

block, neutral models in ecology have had some considerable

success in predicting patterns of biodiversity observed at a

single snapshot in time [18–29]. The same is true for cultural

evolution, where humans are generally not thought of as

making decisions at random. Neutrality would imply that indi-

viduals do not possess any preferences for existing cultural

variants, nor does the adoption of a particular cultural variant

provide an evolutionary advantage over the adoption of a

different variant. While these inherent assumptions are likely

to be violated in the cultural context (for detailed discussions

see e.g. [15,16,30]), population-level patterns of various

observed episodes of cultural change nevertheless resemble

the ones expected under neutrality (e.g. [4,15,31]).

Statistical tests of neutral theory often focus on static patterns

of diversity, observed at one moment in time, such as the balance

of rare and dominant species in a population. It has been shown

that neutral steady-state predictions for the distribution of species

abundances often closely match observed distributions. By con-

trast, neutral theories in ecology have had less success in

predicting the dynamics of diversity, from decadal-scale species

abundance fluctuations to geological ages of species [32–36].

Similarly, recent work in cultural evolution has pointed to the

importance of analysing temporal patterns of change as opposed

http://https://github.com/odwyer-lab/neutral_progeny_distribution
http://https://github.com/odwyer-lab/neutral_progeny_distribution
http://https://github.com/odwyer-lab/neutral_progeny_distribution
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Figure 1. Schematic of the birth – death dynamic described in equation (2.1), where the variables b and d stand for birth and death rates, respectively.
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to static measures of cultural diversity (e.g. [37–40]) and to the

influence of aggregation processes particularly in archaeological

case studies [7] when testing for departures from neutrality. At

the very least, these discrepancies bring to light the importance

of what statistics are chosen to test a hypothesis like neutral evol-

ution. In this context, a recent study [41] analysed the patterns of

frequency change, in particular, the kurtosis of the distribution of

changes over time, of stable words in the Google Ngram database.

Interestingly, this approach identified words under selection:

kurtosis values close to zero signalled neutrality while

deviations from zero were indicative of selection.

In this paper, we apply ecological neutral theory to cultural

data. We use a model that allows for overlapping generations,

an appropriate assumption when analysing distributions of

cultural variants, and for an analytical representation of the

progeny distribution. In the following, we provide a brief

review of the characteristics of this model.

(a) Neutral theory in ecology
It is assumed that the temporal dynamics of species are governed

by reproduction and competition, occurring in continuous time

with a given set of rates. The full, interacting version of this

model can be described by stochastic Lotka–Volterra systems

(with either symmetric, pairwise competition between species

where the strength of the competition is controlled by the con-

stant a, or any related constraint on population size). Solving

for the dynamics of these systems is, however, analytically

intractable but a solvable mean field approximation has been

found. This approximation is based on treating each species as

interacting with the average state of all other species, rather

than the specific configuration of abundances at any given

moment in time [18,21,42]. In the limit of a large number of

species this approach states that the correlation between the abun-

dances of any two species is assumed to be small. In other words,

the abundances of extant species are assumed to evolve indepen-

dently of each other. Importantly, the resulting mean field

description collapses nonlinear rates of competitive interaction

into an increased, linear mortality rate for each species. This

approximation of the overlapping generations neutral model is

also known as the ‘non-zero-sum’ or NZS approximation, refer-

ring to the fact that the total population size may fluctuate over

time, i.e. births and deaths do not sum to zero. It has been shown

that this approach provides only a good approximation in popu-

lations with a large number of species, but in a less diverse

population, where a handful of species are dominant, the

mean field approximation is no longer a meaningful description.

In the mean field approximation, each species takes an inde-

pendent, random walk, based on a linear stochastic process.

Mathematically, this is described by a linear master equation for

the probability P(njt) that a species has abundance n conditioned

on its age (i.e. time since introduction into the system)

dP
dt
¼ b(n� 1)P(n� 1jt)� bnP(njt)� dnP(njt)

þ d(nþ 1)P(nþ 1jt): ð2:1Þ
Here, t is the species’ age, and for so-called ‘point’ speciation

(where new species always have an abundance of 1) the initial

condition is P(nj0)¼ dn,1 (see figure 1 for a schematic of the

model dynamic).

The value d, which is always strictly larger than the

birth rate, b, is a combination of intrinsic mortality and

the effect of competition arising from all other species.

For the point speciation process, this linear master equation

has the time-dependent solution

P(njt) ¼ e(b�d)t (b=(d� b))(1� e(b�d)t)n�1

(1þ b=(d� b))(1� e(b�d)t)nþ1
: ð2:2Þ

For a more general initial condition, there is a correspond-

ingly more general solution (see electronic supplementary

material, §S2 for detailed mathematical derivation of these

results).

Equation (2.2) describes the temporal dynamics of a single

species, from its introduction into the system to (guaranteed)

eventual extinction. Under the additional assumption that in

the steady state, the rate of appearance of new species in a popu-

lation of size J is given by nJ, it can be shown that the expected

species abundance distribution (i.e. the number of species with

abundance k) takes the form of a log series distribution

kS(k)l ≃ nJ
ð1

0

P(kjt) dt ≃ u

k
1� u

J

� �k

, ð2:3Þ

where u ¼ (1 2 b/d) J stands for the ‘fundamental biodiversity

number’. Finally, there is a constraint relating speciation rate n

to b and d rooted in the mean field approximation. The par-

ameter d is an effective parameter arising from the influence

of the rest of the population, and therefore the per capita
speciation rate n is constrained to be related to these rates as

n ¼ d� b: ð2:4Þ

Summarizing, equation (2.2) gives a complete description

of the non-spatial, NZS model that provides a good approxi-

mation to various neutral predictions in ecology when

diversity is high [18,21,34,42,43].

To ensure consistent notation across different scientific

disciplines, we will refer in the following to species as

variants, to individuals as instances and to speciation as inno-

vation. Further, birth and death rates describe the rates at

which a cultural variant generates or loses an instance,

respectively (see figure 1).

(b) Neutral theory in cultural evolution
Neutral theory in cultural evolution has been mainly mod-

elled using the Wright–Fisher infinitely many allele model

(see e.g. [44] for a review of the mathematical properties,

[15] for its introduction to cultural evolution as well as

e.g. [4,16,17,30] for further applications to cultural case

studies). In general, this framework assumes that the compo-

sition of the population of instances of cultural variants

at time t is derived by sampling with replacement from
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3. The neutral progeny distribution
Datasets describing the accumulated appearances of cultural

variants within a specific time interval, like the choice of

baby names in human populations, have typically been sum-

marized by the progeny distribution. This distribution logs

the frequency of cultural variants with a total of k progeny,

taken over a given, fixed duration, T. In part, this choice of dis-

tribution is pragmatic; data for baby names registered at birth

are often more complete and more readily available than full

censuses of names in a population, which would provide

the analogue of a species abundance distribution given in

equation (2.3). Additionally, the progeny distribution contains

a temporal element, as in general the distribution will change

with the duration, T, that the progeny counts are taken over.

Finally, the progeny distribution is particularly useful for

populations where the effective population size of reproducing

individuals may be much smaller than the total population.

The distribution directly probes the dynamics of transmission

of cultural variants, whereas the species abundance distri-

bution may be much more sensitive to the details of the age

structure in the population.

In this section, we derive an analytical representation of

the progeny distribution based on the overlapping generation

NZS model for large, well-mixed populations. We show,

in agreement with earlier work, that neutral theory genera-

tes a power-law progeny distribution but with a constant

exponent of �3=2 (i.e. the power-law exponent does not
depend on innovation rate or population). The power law is

followed by an exponential cut-off, whereby the onset of

this cut-off depends on the innovation rate. Further, we

provide a method for identifying maximum-likelihood

neutral parameters.
(a) Analytical results
Using the NZS approximation, the progeny distribution at

late times T, i.e. under the assumption that sufficient time

has passed that the distribution has reached stationarity,

can be derived as

q(k) ¼ (�1)k�1
1
2
k

� �
2d

bþ d
4bd

(bþ d)2

� �k�1

, ð3:1Þ

where b and d, respectively, stand for the birth and death

rates of the variants (see electronic supplementary material,

§S3 for a detailed derivation). The term
1
2
k

� �
is defined by

1
2
k

� �
¼ 2k

k

� �
�1kþ1

22k(2k � 1)
:

The function q(k) describes the frequency of cultural variants

which generated exactly k instances, including its innovation

event, within a time interval of length T. Equation (3.1) is

valid only in the large T limit, but in electronic supplemen-

tary material, §S3 we also provide additional results for

moments and generating functions of this distribution for

arbitrary durations, T. The corresponding cumulative
distribution (i.e. the fraction of variants with greater than or

equal to k cultural variants generated within a time interval

of length T ) is given by

P(K � k) ¼ (�1)k�1 bþ d
2b

4bd
(bþ d)2

� �k 1
2

k

 !
2F1

� 1 � 1

2
þ k

� �
1þ k

;
4bd

ðbþ dÞ2

2
4

3
5,

ð3:2Þ

with 2F1½�:�; �� representing the Gaussian hypergeometric

function (see electronic supplementary material, §S3 for a

detailed derivation).

Interestingly, the distribution q(k) fragments into two

parts: one describes a power law and the other an exponential

decay (see dotted and dashed lines in figure 2). For large

enough values of k the first terms of equation (3.1) can be

approximated by

(�1)k�1
1
2
k

� �
≃ (�1)k�1 (�1)k

G(�1=2)k3=2
¼ 1

2
ffiffiffiffi
p
p

k3=2
, ð3:3Þ

which determines a power law with the exponent �3=2.

However, at approximately k ¼ (b/(d 2 b))2 ¼ (b/n)2 the

exponential decay starts dominating the distribution (see

the red line in figure 2). In summary, the neutral progeny dis-

tribution tends towards a power law with a universally

applicable exponent of �3=2 (i.e. the exponent does not, as

previously suggested, depend on the parameters of the neu-

tral model) but shows an exponential cut-off at

approximately k ¼ (b/(d 2 b))2 ¼ (b/n)2. The larger the inno-

vation rate, n/d, the smaller are the values of k for which

exponential decay dominates the progeny distribution.

(b) Maximum-likelihood parameters
To fit the progeny distribution given in equation (3.1) to

empirical data, we derive the maximum-likelihood estimate

of the ratio h ¼ d/b (as we show below that the shape of

the progeny distribution depends only on the ratio of the

death and birth rate).
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The log likelihood of observing a given set of S cultural

variants with abundances fkig at late times is given by

L ¼
XS

i¼1

log
2d

bþ d
4bd

(bþ d)2

� �ki�1

(�1)ki�1
1
2
ki

� �" #
,

which can be rewritten as

L ¼
XS

i¼1

log
2h

1þ h

4

1=hþ 2þ h

� �ki�1

(�1)ki�1
1
2
ki

� �" #
,

by using the relation h ¼ d/b. Maximizing this log likelihood

with respect to parameter h provides the following point

estimate

h ¼ Ktotal

Ktotal � S
, ð3:4Þ

where Ktotal is the total number of instances observed in the

data and S is the total number of variants (a detailed derivation

can be found in electronic supplementary material, §S4).

(c) Comparison of analytical approximations with
simulations

In this section, we ensure the validity of our approxima-

tions (in particular equations (3.1) and (3.2)) by comparing

analytical and numerical results. To do so, we simulate the

full, nonlinear model with overlapping generations. In

detail, we generate the temporal frequency behaviour of a

group of competing variants via the Gillespie algorithm

and compute the resulting progeny distribution after a long

time interval.

We use stochastic Lotka–Volterra systems, where

variant i with current abundance ni will undergo birth

and death processes as well as be involved in competitive

interactions with other variants. New variants are introdu-

ced at a rate nJ (J describes the total population size) with

initial abundance 1, and are considered as an error in the

birth process. Therefore, the effective per capita birth rate is

given by b0 2 n. The rates of these processes for variant i
are as follows:

process description rate

ni ! ni þ 1 birth ðb0 � nÞni

ni ! ni � 1 intrinsic mortality d0ni

ni ! ni � 1 competition ani
P
8j

nj

0! 1 speciation n
P
8j

nj

9>>>>>>>>>=
>>>>>>>>>;
ð3:5Þ

where the labels i and j refer to the extant variants in the

system at any given point in time, and the sums are taken

over all variants, including variant type i. The simulation of

this population is based on the well-known Gillespie

algorithm [45]. We provide a detailed description of

the simulation procedure in electronic supplementary

material, §S5.

Figure 3 illustrates that the simulated cumulative pro-

geny distributions based on competitive Lotka–Volterra

interactions (black lines) coincide with their analytical

counterparts given by equation (3.2) (grey lines) for long

time intervals and various values of n and J. In summary,

equation (3.2) (and consequently equation (3.1)) provides

an accurate description of the neutral predictions for

a model with symmetric, competitive interactions and

overlapping generations.
4. Novelty biases
So far we have assumed that there are no selective differences

between the extant variants in the population. In this section,

we generalize our framework to include selection for and against

novel cultural variants (denoted as pro-novelty bias and anti-

novelty bias, respectively), and explore the consequences of

these selection biases on the shape of the progeny distribution.

In general, pro-novelty selection favours ‘young’ variants,

i.e. variants that have been invented recently. By contrast,

anti-novelty selection disadvantages ‘young’ variants and

therefore favours the persistence of established cultural variants

over a long time period. In cultural evolution, pro-novelty selec-

tion has been associated with fashion trends [40,46], i.e. the

phenomenon where some cultural variants rapidly increase in

frequency but also quickly fade away again after other variants

have become fashionable. An ecological analogue to pro-

novelty bias is the red queen effect which is well explored in

the literature (e.g. [42]). While the red queen effect is typically

thought to arise from the accumulation of selectively advan-

tageous traits over time, the emergent effect is an advantage

for new species.
(a) Pro-novelty bias
We model pro-novelty bias following earlier ecological theory

developed in the context of the red queen hypothesis [42].

The only change relative to the simulation described in §3c

is the form of the competition between older and younger

variants. The rate aij now encodes the competitive effect

of species j on species i, and depends on innovation times

(i.e. the ages of the variants) tj and ti

aij ¼ a(1� 10) for tj . ti,

aii ¼ a,

aij ¼ a(1þ 10) for ti . tj:

9>=
>; ð4:1Þ

This means we assume that new variants have the same com-

petitive advantage over all extant variants and each variant

interacts with three groups: newer, more advantageous variants,

conspecifics and older, less advantageous variants [42]. The

coefficient a characterizes the strength of competition, while 10

is a constant between 0 and 1 that introduces asymmetry in

the competitive interactions.

Figure 4 shows the progeny distributions generated by

neutral theory (grey line), and pro-novelty selection (green

line) for the parameter constellation J ¼ 300, n ¼ 0.01 and

10 ¼ 1. It is obvious that pro-novelty bias leads to a higher

number of variants with small and intermediate abundances

and a lower number of variants with very high abundances.

As expected, pro-novelty bias reduces the number of single-

tons, i.e. innovations that have never been transmitted and

therefore remained at abundance 1.
(b) Anti-novelty bias
Modelling anti-novelty bias in a plausible way is not as

straightforward as modelling pro-novelty bias. If we take the

competition coefficients given in (4.1) and flip the signs, it is

highly likely that, for realistic population sizes, we will end

up with one, eternal, old variant, and all other variants that

enter the system are driven to extinction over a relatively

short time frame. While we would expect that anti-novelty

bias should promote the persistence of older variants, with a
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strict competitive advantage of all older variants over all newer

variants, these results are too extreme.

We therefore introduce the following rates aij for the com-

petitive effect of variant j on variant i, which again depend

on innovation times tj and ti but contain an additional

exponential decay factor

aij ¼ a(1� 10 e�ltj ) for tj , ti,

aii ¼ a,

aij ¼ a(1þ 10 e�lti ) for ti , tj,

9>>=
>>; ð4:2Þ

where now we consider 10 , 0 and l . 0. The effect of l is

that as a variant ages, competitive differences decrease and

they begin to interact more and more symmetrically. This

approach allows for the persistence of multiple, older

variants, because once a type has survived for a time

larger than 1/l, it interacts almost neutrally with all other

established variants.

Figure 4 shows the progeny distributions generated by

neutral theory (grey line) and anti-novelty selection (light red

and dark red lines) for the parameter constellation J ¼ 300,

n ¼ 0.01, 10 ¼ 21, l ¼ 0.3 (dark red line) and l ¼ 3 (light red

line). Anti-novelty bias leads to a lower number of variants

with small and intermediate abundances and a higher
number of variants with very high abundances. As expected,

anti-novelty bias generates a large number of singletons.

Further, the slower the decay of the bias, i.e the smaller l,
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the more pronounced are the differences between neutral

evolution and anti-novelty selection.
0160426
5. Empirical analysis for baby names
Starting with the work by Hahn & Bentley [5], data on the

choice of baby names have been widely analysed in the litera-

ture using a variety of frameworks. For example, the authors

in [47] analysed the spatial clustering patterns with regard to

choices of baby names between US states (see also [48]) and

those in [49] used turnover rates to detect transmission

biases in US baby names. Further, Kessler et al. [50] aimed

at disentangling stochastic and deterministic influences on

the choice of first names. They suggested that the individual

trajectories of name frequencies can be replicated by a deter-

ministic dynamic governed by memory and delay processes.

Here, we apply our methodology to two datasets drawn

from the state of South Australia, consisting of all boys’ and

girls’ names registered from 1944 to 2013, respectively, and

explore the conclusions about the evolutionary process that

can be drawn from it. These datasets are included in elec-

tronic supplementary material, §S6 together with a general

description and a justification of the application of the

mean field approach.
(a) South Australia baby names, neutrality and novelty
disadvantage

First, we calculate the maximum-likelihood estimate (3.4) of

the neutral innovation rate, i.e. the rate that most closely

explains the observed progeny distributions computed over

the full time span of the datasets. We obtain

n

d

���
girls
¼ 0:05 and

n

d

���
boys
¼ 0:03, ð5:1Þ

indicating a higher tendency for choosing a unique name for

newborn girls than for newborn boys.

For both groups of names, we then plot the neutral

progeny distribution with maximum-likelihood parameters

alongside the empirical progeny distribution in figure 5. It

is obvious that the neutral distribution (grey lines) produces

too many names with intermediate numbers of progeny rela-

tive to singletons (i.e. names that have never been transmitted

and therefore have an abundance of 1), and too few variants

with very large numbers of progeny.
Given this discrepancy, we ask whether novelty bias can

provide a better explanation. Any form of pro-novelty bias,

however, will only increase the differences (cf. figure 4)

and therefore we focus on anti-novelty bias. Figure 5 (red

lines) shows the best fit over a discrete set of parameter

values to the data. To replicate that only a relatively small

(at least compared with the neutral predictions) number of

innovations are transmitted at least once, we need to choose

10 ¼ 21 in equation (4.2), so that new variants (initially)

have zero competitive effect on any extant variant. We also

choose l� b, so that if a variant survives (meaning is trans-

mitted at least once), it quickly begins to interact neutrally

with the rest of the population. We note that we are not seek-

ing to rigorously fit the anti-novelty bias model, but it is

apparent that with these choices anti-novelty bias provides a

potential explanation for the phenomena we see in these data.
(b) Restricting to popular names
Our example dataset above contains every baby name regis-

tered over a 70-year period in a single region, leading to the

potential conclusion that new, rare variants have a disadvan-

tage. However, many available datasets for registered baby

names in other regions are incomplete, providing only the

most popular names owing to privacy considerations. Pre-

vious studies have often tested hypotheses for cultural

evolution based on similarly incomplete data and in this sec-

tion we explore how this incompleteness may alter

conclusions about the existence of selection biases in the

population.

In the following, we consider two common ways of prepro-

cessing cultural frequency data, both of which amount to

removing some subset of data. First, we only keep the most

popular names over a given time span, removing any names

with fewer appearances (in total, throughout the time interval)

than a given threshold. Second, we remove any names with

less than a given threshold in any given year.

In figure 6, we show the results of three analyses of the

South Australia baby name dataset (a,b,c: boys’ names, d,e,f:
girls’ names). Alongside our analysis using the full dataset

(a,d ), we also (i) remove names containing fewer than 5

instances over the 70-year time span (b,e) and (ii) remove

names from a given year that have fewer than 5 instances

in that year (c,f ). We call these a total threshold and a year-

by-year threshold, respectively. The differences between the

three approaches are stark.
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We have seen in §5a that the full progeny distribution can be

replicated by assuming that innovations are strongly selected

against but that this disadvantage fades away quickly, as

soon as those novel names are transmitted. They then interact

neutrally with the population and therefore we might expect

that imposing the total threshold (i.e. in this case innovations

are names whose progeny count exceeds this threshold) gener-

ates a distribution that is consistent with neutrality. However, if

we impose the year-by-year threshold, the resulting progeny

distribution changes substantially—if we treat these data as if

all names were present, it would look consistent with a novelty

advantage, rather than neutrality or novelty disadvantage.

The effect of these preprocessings of names data, and the quali-

tative differences they make, demonstrate the need to be

cautious about any conclusions drawn using incomplete data.

Our results here mirror a long-standing debate in ecology on

snapshots of species abundances, where a lack of sampling of

rare species introduces what has been termed a ‘veil line’, and

can alter the shape of the species abundance distribution [51,52].

In our case, the progeny distribution veil line can lead us to infer

a purely neutral explanation, where in reality there is a strong

bias against new names.
6. Discussion
Innovation is ubiquitous across biological and social

domains, but in many cases we lack a direct way to character-

ize the mechanisms of the innovation process. This is

particularly true in the realm of cultural evolution, where it

is often not obvious what to look for or to measure in a

new variant to describe the mechanism that gave rise to it.

For example, the baby names considered in this paper have
no direct analogue of beak size, body plan or carbon fixation

pathways. Nevertheless, we know that in these domains new

variants are ‘different’ from extant variants. In this paper,

we assumed that variants are functionally equivalent but

differ in their ages and abundances in the population, and

aimed at understanding how these differences can affect the

spread behaviour of the innovations. To this end, we ana-

lysed the characteristics of the progeny distribution, which

aggregates the temporal dynamics of new variants across

the population over a fixed time interval, under different

assumptions of cultural transmission.

Using a mean field model drawn from ecology, we

derived the first analytical representation of the progeny

distribution under the hypothesis of neutrality. We showed

that the neutral progeny distribution consists of two phases:

a power-law phase for intermediate numbers of progeny

with a universally applicable exponent of �3=2, followed

by an exponential decay phase for large numbers of progeny.

The onset of the exponential phase is modulated by the inno-

vation rate: the higher the rate, the earlier is the exponential

cut-off. The analytical representation allowed us further to

derive maximum likelihood estimates of the neutral model

parameters, and therefore to establish whether observed

empirical patterns are consistent with the hypothesis

of neutrality.

To allow for selective differences between the cultural

variants, we developed a simulation framework and ana-

lysed the effects of pro- and anti-novelty biases on the

shape of the progeny distribution. These biases alter the

shape of the progeny distribution, with pro-novelty biases

increasing the occurrence of variants with a low or intermedi-

ate numbers of progeny and decreasing the occurrence of

variants with high numbers of progeny. These results go
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hand-in-hand with decrease in the average lifetime of the

individual variants. The reverse is true for anti-novelty bias.

In applying our methodology to baby names from South

Australia, we found that the data showed at least two differ-

ent regimes. First, we see the generation of a lot of variation.

The datasets contain a large number of innovations with

abundance 1, i.e. innovations that have never been trans-

mitted. Second, we see the persistence of some names over

a very long time. Our analysis showed that neutrality alone

is not able to replicate these patterns, as it produces

too many variants with intermediate numbers of progeny

relative to singletons (i.e. names that have never been trans-

mitted), and too few variants with very large numbers of

progeny. The empirical progeny distribution of baby names

is much more closely reflected by assuming an anti-novelty

bias whereby the bias decays as soon as a variant survives

long enough to become established. Importantly, we con-

cluded that most new names do not proliferate, but if they

are transmitted, their interactions with the other variants in

the population quickly resemble those under neutrality (the

code used for this analysis is available at https://github.

com/odwyer-lab/neutral_progeny_distribution).

This result points to the crucial importance of rare var-

iants for reliable inference of processes of cultural evolution

from aggregated population-level data in the form of progeny

distributions. Analyses based on incomplete datasets includ-

ing only popular variants according to different threshold

rules revealed consistency between the observed (incomplete)

data and neutral evolution as well as pro-novelty bias. This is

a powerful reminder that we need to be cautious with

conclusions about underlying evolutionary processes drawn

from incomplete data.
Lastly, we note that the result of this study is not to say that

the choice of baby names is guided by anti-novelty bias but that

anti-novelty bias is a potential cultural transmission process

which could explain the observed, complete dataset of baby

names, whereas neutral evolution and pro-novelty biases are

not. There may be other, potentially more complex processes

of cultural transmission that are able to replicate the observed

progeny distribution equally well. For example, content bias

might be producing a disadvantage for most new variants,

leading to their early extinction, and leaving behind only

those new variants which did not have this disadvantage.

But the implication of this explanation is that content bias is

fairly restrictive, with either a large negative, or neutral

effect, but rarely (or never) a positive effect, a distribution

that itself would require an explanation. The extension of our

analytical approach to incorporate these processes, alongside

the inherent variability over time of real systems, will help

in shedding more light on this issue and be the focus of

future research.
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