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To understand how neurons and nervous systems first evolved, we need an

account of the origins of neural elongations: why did neural elongations

(axons and dendrites) first originate, such that they could become the central

component of both neurons and nervous systems? Two contrasting conceptual

accounts provide different answers to this question. Braitenberg’s vehicles

provide the iconic illustration of the dominant input–output (IO) view.

Here, the basic role of neural elongations is to connect sensors to effectors,

both situated at different positions within the body. For this function, neural

elongations are thought of as comparatively long and specific connections,

which require an articulated body involving substantial developmental pro-

cesses to build. Internal coordination (IC) models stress a different function

for early nervous systems. Here, the coordination of activity across extended

parts of a multicellular body is held central, in particular, for the contractions

of (muscle) tissue. An IC perspective allows the hypothesis that the earliest

proto-neural elongations could have been functional even when they were

initially simple, short and random connections, as long as they enhanced the

patterning of contractile activity across a multicellular surface. The present

computational study provides a proof of concept that such short and

random neural elongations can play this role. While an excitable epithelium

can generate basic forms of patterning for small body configurations,

adding elongations allows such patterning to scale up to larger bodies. This

result supports a new, more gradual evolutionary route towards the origins

of the very first neurons and nervous systems.
1. Introduction
To understand how the very first neurons and nervous systems evolved, we need

an account of how each of neurons’ most central characteristics came about: (a)

their electrical signalling, (b) their synaptic connections, and (c) their elongations

(axons and dendrites). These three features are essential for making a ‘full

neuron’. All three features are central to nervous system functioning, and each

has evolved into a wide variety of forms and modes of operation within the

huge group of animals now known as the neuralia [1]. From these three character-

istics, graded and action potentials go back to unicellular organisms [2–4],

and the same applies to macromolecular components of both the pre- and

postsynaptic organization [5,6].

More difficulties remain with explaining how separate pre- and postsynaptic

components came together to form synapses between separate cells, as well as

how neural elongations first evolved. Both are tied to the multicellular mor-

phology and functionality of proto- and early neuralia. To understand such

early multicellular organizations, genomic and molecular evidence gives insuffi-

cient guidance [7–9], while other evidence remains inconclusive. Fossils of

neuralia go back to the beginning of the Cambrian, 542 Ma (Million years ago)

[10]; therefore, synapses and neural elongations must have originated earlier.

Body and trace fossils from the preceding Ediacaran (635–542 Ma) tend to be

very different from modern animals and are difficult to interpret, although the
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Figure 1. A comparison between an input – output (IO) view as exemplified
by a Braitenberg vehicle (a,b) and an internal coordination (IC) view, rep-
resented by an excitable (myo)epithelium with short and random
connections (c,d ). (a,c) Behaviour of the respective systems and (b,d ) the
wiring. (Online version in colour.)
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presence of complex traces suggests the presence of some kind

of nervous system at this time [11–13]. The first nervous sys-

tems may have evolved around this time, but molecular clock

studies suggest the alternative option that the first neuralia

evolved much earlier [14,15]. Leaving no fossils, such proto-

and early neuralia could have lived as small meiofauna with

sizes up to 1 mm [16,17]. It is also suggested that neurons

and nervous systems evolved several times independently

[18,19]. To conclude, at present very little can be said with cer-

tainty about the first neuralia, either their form, size or how and

when they lived.

A systematic investigation and explication of potential

evolutionary transitions from basic proto-neural configur-

ations to neural ones will be beneficial here: this involves

articulating possible trajectories that specify sequences of

organismal organizations that span the transition from non-

neural multicellular organizations to neural ones. Each step

should consist of a functioning organism, while the consecu-

tive steps from one organization to the next should be

gradual, each one providing some improvement on the exist-

ing functionality [20–22]. Investigating specific hypothetical

transition trajectories will aid in interpreting the limited

empirical evidence and formulating more specific questions

concerning this evidence.

A well-known example of such an idealized trajectory for

nervous systems is provided by Braitenberg [23]. He formulated

a sequence of configurations starting with a single neural con-

nection between a sensor and an effector to which more

connections could be added, eventually leading to increasingly

complex neural circuits. Figure 1, for example, sketches a con-

figuration with two connections. Braitenberg’s proposed

trajectory is based on an input–output (IO) view on (early)

neural evolution [24]. IO views stress the functioning of

neurons—and whole nervous systems—as connections between

sensors and effectors. Initially, these connections may have been

simple and direct, but over evolutionary time they have become

increasingly complex neural circuits governing behaviour.

Neural elongations function here as specific and often long-

distance connections between specific loci within an organism

(sensors, effectors or other neurons) [25]. While IO views seem

well suited for modern nervous systems, they start with organi-

zationally and developmentally complex bodily organizations,

which raises doubts about their suitability as a primitive

condition. In addition, an IO view does not readily fit the

surface-distributed nerve nets that are generally considered

to represent the most primitive kind of nervous systems [26],

and which are found in cnidarians [27], ctenophores [28]

and—possibly as a derived condition—in Acoelomorpha [9].

By contrast, we focus here on an alternative internal coordi-

nation (IC) view [24], which stresses the need to acquire

multicellular (bodily) coordination as an initial key task for

early—and modern—nervous systems. Coordinating contrac-

tile (muscle) tissue for motility and reversible changes in

body shape is a central example here [29–31] that imposes

different functional demands on early nervous systems

and neural elongations. Rather than focusing on neural

elongations as a way to provide specifically targeted connec-

tions, an IC view opens up the possibility of acquiring neural

elongations in a more gradual way.

We performed a modelling study to test the IC idea that

simple—short and randomly connected—neural elongations

can have played a significant behavioural role for proto-neuralia.

Focusing on the option that the first neuralia evolved early, we
targeted systems of limited (meiofaunal) size that consist of a

few hundred to thousands of cells. The starting point for

this study consists of an excitable and contractile epithelium

(a myoepithelium) that can provide primitive contractile moti-

lity [32]. Myoepithelia with direct electrical connections by

means of gap junctions between the epithelial cells exist in var-

ious extant animals, such as cnidarians [33,34]. Here, we build

on the hypothesis that proto-neuralia could have possessed

myoepithelia with similar electrical connections or with chemi-

cal signalling to conduct electrical activity from one cell to the

next, by either juxtacrine signalling or basic chemical synapses

[30,35,36]. Importantly, this configuration could have provided

a scaffold to bring separate pre- and postsynaptic elements in

adjacent cells together as a full synapse. However, here we

focus only on the impact of neural elongations on an excitable

epithelium in which electrical activity is transmitted from cell

to cell (figure 1).

The model consists of excitable cells connected to one

another as a sheet to form an excitable epithelium in which

active cells activate their neighbours; electrical excitability

generic enough to represent either a calcium-based mechanism

or a sodium-/potassium-based one, and abstract excitatory

synaptic transmission to represent either electrical or chemical

transmission. The sheet of cells is rolled into a ‘body-tube’ to

provide a general body surface on which the activity takes

place. This model does not include external senses, propriocep-

tion or pacemakers. A Poisson process randomly initiates

activity in single cells. We take behavioural functionality to

consist of travelling rings of activation along the tube that

drive a form of muscle-based peristalsis as sketched in figure 1.



rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170399

3
The model’s ‘body-tube’ does not mimic any specific

animal, such as Trichoplax or sponge larvae. Like Braitenberg’s

vehicles, the model is made as abstract and general as possible

to investigate in a generalizable and systematic way under

which conditions an excitable epithelium produces patterned

activity across its surface. The model is also very different

from the models of locomotion in modern animals (e.g. [37])

as it does not target motility itself but the evolutionary motiv-

ated question whether a very limited configuration of cells can

potentially provide a basic controlling device for motility.

Earlier modelling showed that body topology is a crucial

factor here [36]: body-tubes with a high length to width ratio

enabled ring-shaped activity patterns travelling along the

length of the tube, while a ring-shaped topology induced pat-

terns travelling along the ring’s circumference. In the present

study, we only used a tube-shaped topology (a) as this par-

ticular configuration is generally plausible as a basic animal

shape; (b) as a single example would be sufficient to make

a case for the potential evolutionary relevance of short and

random proto-neural elongations; and (c) by focusing on a

single topology we could better focus on the relevance

and impact of many different features of the elongations

themselves, as will be discussed below.

For tube-shaped topologies, an excitable epithelium gener-

ates ring-shaped patterns of activation running along the long

axis of a body-tube. These patterns are an emergent feature

resulting from the topology of the system, the size measured

in numbers of cells, random activations, and the refractionary

nature of the cells. However, the occurrence of such patterns

at the whole body scale depends on the size of the body-

tube: ring-shaped activity occurs only for smaller tubes and

is lost in larger ones [36]. For larger body-tubes, the speed of

the travelling waves of activation is too slow to entrain activity

at the level of the tube itself, giving local activations the oppor-

tunity to destroy global patterning. Also, signalling to adjacent

cells provided only travelling wave-fronts that remain thin and

insignificant on the scale of the body-tube.

While other modifications of the model could also have

changed the characteristics of the patterning observed, the

specific evolutionary question we aimed to address was

whether adding neural elongations could provide a mechan-

ism to overcome the limitations of nearest neighbour (NN)

signalling. We hypothesized that the patterns of activation

across a body-tube would change when neural elongations

were added. To keep the change as generic and basic as

possible, we focused on the effects of elongations that are

relatively short—that is, connecting cells that have only a

few intermediate cells between them—while the connections

are made randomly. Such short and random connectivity is

undemanding in terms of body morphology, cell differen-

tiation and developmental patterning as it does not require

preset destinations for these connections. Short and random

elongations can, therefore, provide a small and plausible

step in an evolutionary trajectory towards very primitive

nervous systems.

To test the validity of this idea, we investigated a number of

variations of randomly connected configurations: we varied the

fraction of cells with elongations, the length of the elongations

and the size of the body-tube. The ring-shaped patterns of

excitation travelling along the length of the tube was used as

a biologically plausible form of coordinated activity that also

could be measured both qualitatively and quantitatively

under various modelling conditions.
2. Material and methods
2.1. Computational model
We reimplemented the model of [36] using the brian2 package in

Python [38]. All experiments use the following model:

— A two-dimensional sheet of cells placed equidistantly in a tri-

angular grid.

— The sheet is rolled into a cylinder to create a tube.

— Each cell is modelled by an integrate-and-fire model with a

refractory period.

— Each cell has superthreshold connections to its direct

neighbours.

— Each cell has a superthreshold per-cell Poisson process driver.

In accord with [36], the rate of Poisson process is set at 0.1 Hz.

— We used a tube as body topology. The length to circumference

ratio of the folded tube was fixed at 4:1. While we varied

overall size leading to length by circumference combinations,

respectively, of 32 by 8, 64 by 16, 128 by 32, and 256 by 64.

— A fraction of the cells were given straight elongations in random

directions which provide them with connectivity to each cell

visited by the elongation; details can be found in electronic sup-

plementary material, S1. We performed a parameter scan over

various elongation lengths: 1.5, 2, 2.5, 3, 3.5, 4, 6 and 10 grid

spacings. Additionally, we included a condition without any

elongations, but as in all cases above keeping NN connectivity.

— Experiments have varying fractions of elongated cells. We per-

formed a parameter scan over various elongated cell fractions.

For fractions less than 1, cells to be elongated were picked

randomly. The fractions used are 0.02, 0.05, 0.1, 0.2, 0.5, and 1.

— All connections have a 2 ms synaptic delay. Transmission

speed was not modelled explicitly as the delay used was

assumed to incorporate a transmission delay that was plaus-

ible for the modelled system. For support for this assumption,

see electronic supplementary material, S2.

2.2. Pattern quantification
The system as described above produces spatiotemporal pat-

terns. Previous work shows that given suitable noise rates, NN

connectivity, and activation with a refractory period, travelling

ring-shaped activity patterns appear. To quantify the degree

and relevance of ring-shaped activity on the surface of the

animal, we developed a pattern detection method. We detect pat-

ternedness by comparing the activity in ring-shaped segments

with average activity over all segments. The activity in a segment

is simply the number of cells active in a given ring-shaped

segment in a given time frame.

We summarize this activity for a given run as follows:

— Divide the tube in n segments. A cell i is in segment s if (s 2 1)/

n . ltube � xi , s/n.

— A spike for a cell i in segment s takes place at a time t. The

simulation is divided into time bins [ jDt, ( j þ 1)Dt).
— For each segment and time bin, we can now count how many

spikes take place: the matrix Cs,j indicates the number of

spikes in segment s during time bin j.

We set Dt to 3 ms, larger than the average synaptic delay

between cells (2 ms) but shorter than the refractory period (20 ms).

Within a time bin, transmission between connected cells can occur,

but a single cell cannot fire twice. Empty and incomplete intervals

at the start and the end of each run are discarded. The number of seg-

ments (n) is set to 16 for all systems in order to be able to compare

measurements between the various body dimensions.

The ratio Tend/Dt determines the number of intervals

included in the analysis.

Visualizing Cs,j, as shown in figure 2, results in the con-

densed activity sequence plots found on the lower sides of
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Figure 2. This graphic shows how a condensed activity representation is
calculated. Time steps t and t þ 1 show the process in detail. For each time
step, the body-tube—cut open in grey on the left—is divided into 16 ring-
shaped segments (in this case, all one cell wide) for each of which the
number of active cells—emphasized—is tallied. This numerical score is trans-
lated to greyscale values ranging from white (maximum) to black (minimum),
providing a single vector for each time step. (Online version in colour.)
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figure 3a(i)–(iii), b(i)–(iii). Ring-shaped activity travelling down

the tube shows up in this format as diagonal stripes, because a

large amount of activation in a single ring-shaped segment tra-

velling along the length of the animal and showing up in the

next segment in a later time interval is a diagonal move.

To quantify the deviation in activity, we performed the fol-

lowing steps. First, we define a per run normalized activity ~Cs,j:

~Cs,j ¼
Cs,j

(Dt=nTend)
P

s,j Cs,j
: ð2:1Þ

Using the normalized activities, we can define a new pattern-

edness measure P, which detects how activity deviates from

homogeneity during each time step and then calculates the

root mean square:

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j
P

s (~Cs,j � �C j)
2

(n � (Tend=Dt)� 1)

s
, ð2:2Þ

where �C j ¼ (1=n)
P

s
~Cs,j

A high P implies low homogeneity over time and ring-

shaped segments and thus strong patternedness over time and

segments, allowing us to compare these values easily for various

experimental conditions.

This measure compares the activity of a given segment not to

the overall mean activity level but to the activity level in a par-

ticular time step. This way, we disqualify situations where the

whole body shows high and homogeneous activity in one time

interval and low homogeneous activity in other time intervals

(‘flickering’ behaviour).
3. Results
Central examples of our main results are presented in figure 3.

Figure 3a(i)–(iv) features small systems measuring 32 cells in

length and 8 in circumference. Those on the right represent

large systems of length 128 and circumference 32. All systems

have NN signalling. Additionally, figure 3a(ii), b(ii) and a(iii),

b(iii) have elongations of length 2 and 4, respectively. These

lengths refer to each cell’s elongation length, implying that

cells up to maximally 4 and 8 cells apart can become connected.

Figure 3a(i)–(iii), b(i)–(iii) provides a detailed picture of the

randomly initiated electrical activity across the cut open

body-tube during six time steps of 3 ms. Below is a condensed
representation of this same activity across 100 time steps,

providing a temporally extended overview of this activity

by compressing all activity at a time step into a line of 16

segments, scaled to the size of the body-tube (figure 2). As

white reflects high levels of activity, travelling waves are

shown as diagonal lines, unpatterned activity as smudges,

and synchronous activation of all cells as a vertical line.

Together, these panes give an indication of both the details

and the more abstracted differences between the patterning

resulting from the various conditions.

In addition to these qualitative results, figure 3a(iv), b(iv)

shows graphs for the same small and large body-tubes, repre-

senting more extensive parameter scans, involving the NN

condition and eight different elongation lengths (on the

x-axis). The y-axis shows the measure of patternedness calcu-

lated as outlined in the Pattern quantification section. The line

represents the average patternedness for the given condition

and the points the individual model runs. The conditions rep-

resented in detail in figure 3a(i)–(iii), b(i)–(iii) are marked as

such within the two graphs.

As previously found [36], small systems without added

elongations exhibit ring-shaped patterns (figure 3a(i)), while

these patterns are lost when the system is larger (figure

3b(i)). As hypothesized, when neural elongations are added

to such large systems, ring-shaped patterns return (figure

3b(ii)–(iii)). However, such elongations are detrimental for

smaller systems (figure 3a(ii)–(iii)), where they have a nega-

tive effect on patternedness (figure 3a(iv)). This can be seen

by inspecting the examples and the quantitative results

presented in figure 3a(iv), b(iv).

The comparison between figure 3a(iv), b(iv) shows the

main effect of elongations on different topologies: for the

small systems, elongations lower the patternedness (figure

3a(iv)). For the large systems, elongations increase the pat-

ternedness, though returns do diminish for the longer

elongations (figure 3b(iv)).

The results discussed so far are based on systems where the

probability of each cell having an elongation is 0.5 (i.e. the

chance that any given cell has an elongation on top of NN con-

nectivity is 50%), while we focused on two sizes of the body-

tube. To investigate the effect of various elongation fractions

(hereafter referred to as f ) on patternedness, we also compared

elongation fractions f across various body sizes and elongation

lengths as described above. We also did these experiments for

two extra body sizes: 64 by 16 and 256 by 64. The results are

presented in figure 4, which is similar to figure 3a(iv), b(iv)

(included, respectively, as the lines marked with circles and

diamonds in the pane marked ‘f ¼ 0.5’) but with additional

conditions regarding f and the additional body sizes.

Figure 4 shows the effect of f on patternedness. From top to

bottom, f increases. For larger systems (darker red lines,

marked with diamonds and triangles), having a higher fraction

of cells with elongations improves patternedness. For the smallest

system (yellow circles) elongations appear to be detrimental to

patternedness. For the second-smallest system (orange squares),

higher fractions (lower graphs) have a beneficial effect on pattern-

edness for all but the longest two. However, low fractions (top

graphs) show no such positive effect on patternedness—yet the

low fractions also harm less for the longer elongation lengths.

Interestingly, for the larger body sizes, there appear to be

diminishing returns to higher fractions. For the largest system

(darkest line), patternedness for f ¼ 0.5 is only marginally

better than f ¼ 0.2 for all elongation lengths.
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representations spanning longer sequences (below). Individual time frames are identified by frame numbers, both above and below. a(i) – (iii) A small (32 by 8)
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represent the 10 individual model iterations which were performed for each condition. (Online version in colour.)
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4. Discussion
Our model represents an IC approach to early nervous

system evolution (see figure 1). Our aim was to investigate

IC scenarios that involve tissue configurations that are

intermediate between non-neural and neural ones. In
particular, we asked whether the presence of neural

elongations providing random connections over very short

distances could have functioned to enhance IC for

comparatively small meiofaunal proto-neuralia. Our results

show how such elongations can, indeed, enhance
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coordinated activity across very basic multicellular confi-

gurations. We discuss four specific implications of the

modelling results.
First, short and randomly directed neural elongations

allow patterned activity within larger multicellular organ-

isms. Direct connections between adjacent cells within an



rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170399

7
excitable epithelium can provide a way to initiate and main-

tain coordinated patterns of excitability across a body surface.

Such patterns could have enabled organized contraction.

However, while this mechanism works for small body-

sizes, such patterning deteriorates for larger bodies [36].

The model presented here shows that short and random

neural elongations can support similar forms of patterning

for increasingly larger multicellular organisms. Thus, such

very primitive forms of neural elongations provide a mechan-

ism for adapting patterned activity to changes in body-size.

Second, neural elongations provide a way to scale the

activity patterns themselves with respect to the size of the

organism. An epithelial configuration allows only the spread

of activation to adjacent cells, which limits the width of the pat-

terns in the travelling direction to one or two cells (figure 3a(i),

b(i)). With elongations, the travelling patterns of activity can

extend across more cells at every time step. This allows the

patterns themselves to become wider and to scale up with

larger body sizes (figure 3b(ii), b(iii)).

Third, for larger systems (figure 3b(iv)), patternedness

tends to correlate positively with the length of the

elongations, although even short elongations already provide

an improvement of patterning. Thus, while even short

elongations can be beneficial, lengthening them over evol-

utionary time provides a gradual path to further improve

such patterning capabilities.

Fourth, while the influence of elongations on patterning

tends to be more prominent when a larger fraction of cells

have them, even a small fraction of cells with elongations

can have significant effects depending on the size of the organ-

ism (see the top graph of figure 4). Again, this provides an

evolutionary path for a gradual improvement of the system.

Together these results provide a proof of concept that

an organismal configuration relying on patterned activity

across an excitable epithelium can use very basic neural

elongations to maintain and improve patterning capacity

for larger body-sizes. These changes can occur in small incre-

mental steps allowing for a gradual evolutionary route

towards increasingly complex neural elongations.

These findings have a broad conceptual relevance for

understanding the very early evolution of both neurons and

nervous systems. Rather than assuming that neurons must

have come first and by aggregating together came to constitute

the first nervous systems, here the sequence is reversed. With

the IC view developed here, ‘nervous system functioning’ can
be produced without full modern neurons—combining elec-

trical signalling, synapses and elongations—by epithelia

acting as a ‘proto-nervous system’ and relying on electrical sig-

nalling alone. Such epithelia could have provided a scaffold

for gradually evolving full neurons and nervous systems. In

this way, tissue configurations spanning the gap between

non-neural and neural tissues become conceivable. The

model presented here shows that this speculative idea is

indeed consistent and opens up new avenues for looking at

the early evolution of nervous systems.

For example, the proposed outline of the piecemeal evol-

utionary assembly of neurons provides a new framework to

make sense of the origins of nervous systems, which warrants

further attention. Also, the focus on the intrinsic difficulties of

evolving efficient muscle control provides a way to help

explain the long cryptic evolutionary history of animals that

is predicted by molecular clock studies [14,15] while also pro-

viding a scaffold for the Cambrian evolution of new senses

such as eyes [39] and predatory behaviour [40]. Finally, the

IC approach developed here predicts an intrinsic connection

between muscle control and the evolution of nervous sys-

tems. While it is widely acknowledged that muscle and

neurons systematically co-occur in extant animals [41] the

connection is potentially much more significant, and could

constitute a fundamental feature of the animal senses [31,35].

To conclude, in comparison to the standard IO view that

assumes the beneficial presence of long and specifically tar-

geted neural connections, the results from this IC-based

model provide new evolutionary scenarios that bring the

neuron’s three main features—electrical signalling, synapses

and elongations—together in a gradual and plausible way.
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25. Jékely G. 2011 Origin and early evolution of neural
circuits for the control of ciliary locomotion. Proc. R.
Soc. B 278, 914 – 922. (doi:10.1098/rspb.2010.2027)

26. Arendt D, Tosches MA, Marlow H. 2016 From nerve
net to nerve ring, nerve cord and brain—evolution
of the nervous system. Nat. Rev. Neurosci. 17,
61 – 72. (doi:10.1038/nrn.2015.15)

27. Koizumi O. 2016 Origin and evolution of the
nervous system considered from the diffuse nervous
system of cnidarians. In The Cnidaria, past,
present and future (eds S Goffredo, Z Dubinsky),
pp. 73 – 91. Berlin, Germany: Springer.

28. Jager M, Chiori R, Alié A, Dayraud C, Quéinnec E,
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