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Carotenoids are among the most important organic compounds present in

Nature and play several essential roles in biology. Their configuration is

responsible for their specific photophysical properties, which can be tailored

by changes in their molecular structure and in the surrounding environment.

In this review, we give a general description of the main electronic and

vibrational properties of carotenoids. In the first part, we describe how the

electronic and vibrational properties are related to the molecular configur-

ation of carotenoids. We show how modifications to their configuration, as

well as the addition of functional groups, can affect the length of the conju-

gated chain. We describe the concept of effective conjugation length, and its

relationship to the S0! S2 electronic transition, the decay rate of the S1 ener-

getic level and the frequency of the n1 Raman band. We then consider the

dependence of these properties on extrinsic parameters such as the polariz-

ability of their environment, and how this information (S0! S2 electronic

transition, n1 band position, effective conjugation length and polarizability

of the environment) can be represented on a single graph. In the second

part of the review, we use a number of specific examples to show that the

relationships can be used to disentangle the different mechanisms tuning

the functional properties of protein-bound carotenoids.
1. Introduction
There are more than 700 known carotenoids in Nature, with different chemical

structures, which play essential roles in biology [1,2]. Carotenoids display a

number of different functions in a large range of different organisms, including

bacteria, algae, plants, starfish, salmon, humans, birds, lobsters. . ., in most cases

bound to protein [3]. They are mainly synthesized by photosynthetic organisms

and provide vibrant natural colours—often red, orange and yellow; even blue

[4]. As a general rule, other organisms only acquire carotenoid molecules

(which they may then eventually modify) through their diet, although there

are rare cases of animals acquiring carotenoid biosynthetic capabilities through

lateral gene transfer [5,6]. Dietary intake of carotenoids by mammals is

thought to be associated with reduced risks of several chronic health disorders

including heart disease, age-related macular degeneration and certain cancers

[7]. It has been postulated that these actions are related to the ability of caroten-

oids to quench reactive oxygen species [8]. Carotenoid binding to proteins can

confer solubility in the aqueous cellular environment (most carotenoid mol-

ecules are highly apolar). Additionally, this binding allows tuning of their

electronic and vibrational properties via the chemical properties of the binding

site. The most common result of such carotenoid–protein interactions is a red-

shift of the carotenoid absorption maximum—such as the shift in absorption of

the carotenoid astaxanthin from 480 to 630 nm in crustacyanin, the blue caro-

tenoid protein complex in the shell of the lobster Homarus gammarus or

Homarus americanus [9–13]. Carotenoids are highly involved in the first steps

of the photosynthetic process, where they assume a paradoxical double func-

tion: they play a role as light harvesters [14–18], and at the same time

they act as photoprotective molecules via a number of different mechanisms,
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including excitation energy quenching. As light harvesters,

carotenoids transfer the absorbed excited state energy to

(bacterio)chlorophylls ((B)Chl); this excitation energy is

eventually trapped by a reaction centre pigment–protein

complex and converted into an electrical potential [19,20].

They also act as protective molecules against the photo-

bleaching of photosynthetic organisms by quenching

(B)Chl triplet states [21,22], which prevents the (B)Chl-

sensitized formation of singlet state oxygen [23–29], by

scavenging singlet oxygen directly [8,30] or by quenching

(B)Chl singlet states [31–33]. Carotenoids have also been

reported to stabilize protein structures, because many photo-

synthetic pigment–protein complexes do not fold properly

without these molecules [34–36]. However, it is unclear

whether this represents a specific function, as removing

such large cofactors from a caroteno-protein structure induces

the presence of a void, which is expected per se to dramati-

cally influence the process of folding.
2. Molecular configuration and energy levels of
carotenoids

Carotenoids are tetraterpenoid derivatives which are initially

formed of eight isoprene molecules [2,37,38]. Carotenoids

split into two main classes—carotenes (which are pure hydro-

carbons) and xanthophylls (which contain oxygen).

Carotenoids present a significant structural diversity because

their carbon skeletons may vary from purely linear, including

cyclic structures, or contain functional groups such as carbo-

nyls or allenes; in each case, the grouping may be conjugated

or not with the isoprenoid chain (figure 1) [1]. The electronic

structure of carotenoids has been studied for more than a
century, but for many years it was assumed that the lowest

energy excited state in all p-electron-conjugated molecules

could be reached by one-photon absorption, promoting a

single electron from its highest occupied molecular orbital

to its lowest unoccupied molecular orbital. Work in the

early 1970s by Hudson & Kohler [39] and Schulten & Karplus

[40] challenged this molecular orbital theoretical inter-

pretation of the electronic absorption spectra for linear

p-electron-conjugated polyenes (which include carotenoids).

They proposed that the lowest-lying excited state, S1ð21A�g Þ,
is absorption silent, displaying the same symmetry as the

ground state, and that the strong absorption of carotenoids

arises from a transition from the ground to the second excited

state, S2ð11Bþu Þ. This excited S2 state decays by internal con-

version (less than 200 fs) to the low-lying S1ð21A�g Þ state,

which itself decays to the ground state S0 by internal conver-

sion in several picoseconds (fluorescence occurs with

extremely low yield) [41]. Other ‘dark’ S* states have been

proposed in the vicinity of S1 and S2 to account for the

network of relaxation pathways observed in carotenoids

[42–44]. A detailed discussion of the energetic levels of caro-

tenoids can be read in [45,46]. Carotenoids have remarkably

complex excited-state dynamics, but a system of three

electronic states, described in figure 2, with S0ð11A�g Þ,
S1ð21A�g Þ and S2ð11Bþu Þ electronic levels can account for

most of the observed properties. The S0! S2 transition of

carotenoids usually exhibits a characteristic three-peak

structure corresponding to the lowest three vibronic

bands of the electronic transition S0! S2, termed 0–0, 0–1

and 0–2 (figure 2). For simplicity, during the rest of

this review, when we address the energy of the S0! S2 elec-

tronic transition, we will refer specifically to the energy of the

(0–0) band.
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3. A tailored vibrational technique for
carotenoids

Resonance Raman is ideally suited to the study of carotenoids

because the resonance coefficient of these molecules, which

may reach more than six orders of magnitudes, is the highest

among natural biomolecules. As a vibrational technique, res-

onance Raman yields direct information on the molecular

properties of their electronic ground state. The resonance

Raman spectra of carotenoids contain four main groups of

bands, termed n1 to n4, which were observed as early as

1970 [47]. Figure 3 shows the resonance Raman spectrum of

the linear carotenoid lycopene with the four major regions

labelled. The most intense n1 band, appearing above

1500 cm21, arises from stretching vibrations of conjugated

C¼C double bonds [48]. Its position depends on the length

of the p-electron-conjugated chain and on the molecular con-

figuration of the carotenoid [49–53], such that an increase in

conjugation length and trans–cis isomerization both result in

an increase in n1 frequency (the more central the cis bond

along the chain, the greater the effect) [49,52,53]. Addition-

ally, the n1 frequency shows a linear dependence according

to temperature in the 77–295 K range. This was proposed

to arise from changes affecting both the vibronic coupling

and the extent of p-electron delocalization in the carotenoid

molecule [54]. A shift of approximately 5 cm21 in the position

of the n1 band is generally observed between 293 and 77 K

[55]. The n2 band is actually constituted by a cluster of contri-

butions around 1160 cm21, that arise from stretching

vibrations of C–C single bonds coupled with C–H in-plane

bending modes, and this region is a fingerprint for the assign-

ment of cis-isomers [49,56]. The n3 band (approx. 1000 cm21)

arises from in-plane rocking vibrations of the methyl groups

attached to the conjugated chain, which are coupled with in-

plane bending modes of the adjacent C–H’s [48], and can be

used as a fingerprint for the configuration of conjugated end-

cycles [55]. Finally, the n4 band around 960 cm21 arises from

C–H out-of-plane wagging motions coupled with C¼C tor-

sional modes (out-of-plane twists of the carbon backbone)

[48]. When the carotenoid conjugated system is planar,

these out-of-plane modes will not be coupled with the elec-

tronic transition, and so these bands are not resonance
enhanced. However, distortions around C–C single bonds

increase the coupling of these modes with the electronic tran-

sition, resulting in an increase in the structure and intensity of

this band. Hence, they can be used as an indicator of such dis-

tortions (twisting) of the carotenoid backbone (see [57]).

Given the apparent structural simplicity of common caroten-

oids such as b-carotene and lycopene, it might be supposed

that their electronic and vibrational properties should be

easily modelled through modern molecular physics. How-

ever, it is only recently that the calculation of these

properties could be achieved with any reasonable precision,

through the application of density functional theory and

time-dependent density functional theory [58–62]. A full

analysis of the resonance Raman spectra of carotenoids is out-

side the scope of this work, but it can be found in the review

by Robert [63].
4. Linear carotenoids and the effect of
conjugated end-cycles in solution

4.1. Effect of C¼C conjugated length on electronic and
vibrational properties

Araki & Murai [64] established in the early 1950s that the

number of C¼C double bonds in the carotenoid structure

(N) is inversely related to the position of the absorption maxi-

mum, and this fundamental property has been validated by a

large number of experimental studies [65–67]. This effect can

be predicted with the simplest theoretical models which

describe p–p* transitions [46]. The dependence of excited

state energies and lifetimes of linear carotenoids on N is

straightforward for linear carotenoids such as neurosporene

(N ¼ 9), spheroidene (N ¼ 10) and lycopene (N ¼ 11), where

the conjugated backbone consists of a linear chain of p-elec-

tron-conjugated C¼C bonds. The same linear relationship

has also been demonstrated for all five low-lying excited

states of linear carotenoids [68], even though the existence of

three of these states is still questioned. Empirical linear

relationships have been established for several series of poly-

ene and carotenoid homologues having differing N, providing

extrapolated values for the energy of their S0! S2 transition

[46,68,69]. Extrapolating the results toward infinite polyenes

and carotenoids, the experimental data give an asymptotic
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limit of 700 nm [70,71]. Linear carotenoids also show a depen-

dence on N21 for their S1 lifetime. The pioneering work of

Wasielewski & Kispert [72] demonstrated a systematic depen-

dence of the measured S1 lifetime on conjugation length for

toluene solutions of b-carotene (8.4+0.6 ps), canthaxanthin

(5.2+0.6 ps) and b-80-apocarotenal (25.4+0.2 ps). More

recently, studies on spheroidene and linear analogues con-

firmed this dependence, yielding lifetimes of 400 ps (N ¼ 7),

85 ps (N ¼ 8), 25 ps (N ¼ 9), 8.7 ps (N ¼ 10), 3.9 ps (N ¼ 11),

2.7 ps (N ¼ 12) and 1.1 ps (13) [73]. A similar dependence

was found for a b-carotene series (although with slightly

different values): 282 ps (N ¼ 7), 96 ps (N ¼ 8), 52 ps (N ¼ 9)

and 8.1 ps (N ¼ 11) [68]. Finally, the vibrational properties,

and specifically the position of the n1 Raman band, are also

dependent on the conjugation length (N) [69,74,75]. Figure 4

displays the linear correlation between the n1 position and

N21 for the linear carotenoids neurosporene (N ¼ 9), spheroi-

dene (N ¼ 10), lycopene (N ¼ 11) and spirilloxanthin (N ¼ 13)

in n-hexane. As for their S1 decay rates and the energy of their

S0! S2 transition, the measurement of the n1 Raman band can

give accurate values for the conjugation chain length N of

these molecules.

This elegant linear relationship between the nominal conju-

gation length N (that assumed from the chemical structure)

and the S0! S2 electronic transition, S1 decay rate and n1

Raman band is not always readily followed by carotenoids

containing chemical groups, such as conjugated end-cycles,

b-rings, ketones and allene groups. In carbonyl carotenoids

the presence of a conjugated C¼O group extends the conju-

gated part of the chromophore, resulting in a shift of the

absorption transition to longer wavelengths. Aryl-carotenoids
and linear carotenoids with conjugated end-cycles (the class

which has been the most extensively studied up to now)

behave, from the point of view of their absorption, vibrational

and photochemical properties, as carotenoids with shorter con-

jugation length than expected. This was proposed to arise from

a decrease in orbital overlap between the p-orbital of the ring

double bond and those of the polyene chain, as steric hin-

drance results in twisting of the conjugated end-cycles out of

the conjugated plane [78]. Although the conjugated end-cycle

contributes to the conjugation chain length [76,79], it extends

it by the equivalent of only 0.3 of a C¼C bond. For instance,

b-carotene, instead of showing the properties of a carotenoid

with 11 C¼C bonds (as would be expected from its structure),

presents the spectroscopic properties of a carotenoid with only

9.6 C¼C bonds [75,76]. This value was termed the effective con-

jugation length (Neff ), as it accounts for the carotenoids’

electronic and vibrational properties. Studies on a series of b-

carotene derivatives with different chain lengths showed that

these follow a similar relationship to linear ones, but shifted

due to the partial conjugation of their end-rings [75]. Similar

results were also observed for aryl-carotenoids [76]. The Neff

value works exceedingly well for predicting the electronic

properties of carotenoids—their absorption position, but also

their S1 decay rate. The relationship between the S0! S2 elec-

tronic transition and the S1 decay rate with the inverse of N is

displayed in figure 4 for linear carotenoids (where the effective

and nominal conjugation length is the same) as well as for b-

carotene (Neff ¼ 9.6) in n-hexane (blue line). For both relation-

ships, the Neff value calculated for b-carotene indicates that it

obeys the same trend as linear carotenoids, once its effective

conjugation is taken into account. Similarly, the correlation

between the frequency of the n1 Raman band with the inverse

of the effective carotenoid conjugation length (Neff ) is also well

established in the literature [69,74,75]. Using b-carotene to

illustrate this, the measured n1 frequency of 1525 cm21 gives

the same value of Neff ¼ 9.6 as that obtained using the other

methods, demonstrating that they are equivalent. For simpli-

city, only b-carotene is plotted here, but this concept can be

extended to all carotenoids with conjugated end-cycles, as

well as to aryl-carotenoid molecules.
4.2. Effect of environment polarizability
The effect of solvent properties, specifically the refractive

index, n, and dielectric constant, 1, on the position of the

absorption transition of carotenoid molecules has been

studied extensively [64,80–87]. The position of the S0! S2

electronic transition in solution depends on the solvent

polarizability defined as R(n) ¼ (n2 2 1)/(n2 þ 2), n being

the refractive index of the solvent. For linear carotenoids the

S0! S2 transition shifts to a longer wavelength as the refrac-

tive index increases [86] due to dispersive interactions

between the solvent environment and the large transition

dipole moment of the carotenoid [86]. A significant linear cor-

relation was found between the frequency of the n1 Raman

band and the polarizability of the solvent for different

linear carotenoids (including those with conjugated end-

cycles), proving an influence of the solvent polarizability on

the carotenoid ground state [75]. Figure 5a,b represents a

practical example of the polarizability effect on the absorp-

tion spectra and n1 Raman band for lycopene in n-hexane

and carbon disulfide. Figure 5c plots the correlation between

the S0! S2 electronic transition and the polarizability of the
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solvent for b-carotene, lycopene and spheroidene. It illustrates

a clear linear relationship that can be extended to a great

variety of linear carotenoids. Figure 5d plots the correla-

tion between the position of the n1 Raman band and the

polarizability of the solvent for b-carotene, lycopene and

spheroidene. Again, this linear relationship extends to a large

variety of carotenoids (linear, linear with conjugated end-

cycles, aryl-carotenoids and in this case those with allene

groups) [75,88]. The n1 Raman band reflects polarizability-

induced changes in the ground state only, while the absorption

shift results from the combined effects on both S0 and S2. It is

also of note that the dependence on polarizability appears to

be similar for all carotenoid molecules and exhibits comparable

trends, albeit the slopes are not identical.
4.3. Combining intrinsic and extrinsic effects: S0! S2,
n1 Raman band, polarizability of the environment
(R), and Neff

In the previous sections, we have seen that the energy of the

S0! S2 electronic transition and the frequency of the n1

Raman band are linearly dependent on intrinsic factors,

namely 1/Neff, and on environmental factors, namely the

polarizability of the environment. As all these properties

are linked by linear dependences, it is possible to conceive

a graph containing all the information discussed above, plot-

ting the linear relationship between the position of the

carotenoid S0! S2 electronic transition and the frequency

of its n1 Raman band [51,69]. As both of these parameters

strictly depend on Neff, they present an excellent correlation

for all the carotenoids studied, as shown in figure 6. In
addition, the effect of polarizability on the effective

conjugation length of these molecules can easily be distin-

guished, as it results in a shift of this straight line (e.g. between

the blue and orange lines in figure 6). For simplicity, we will

refer to this type of plot, which relates the position of the elec-

tronic transition to the frequency of the n1 Raman band at

room temperature, as the MP graph (from the first author of

the original paper in 2013, Mendes-Pinto) [75]. In the MP

graph in figure 6, we have removed most of the experimental

points obtained for different solvents, showing only those for

n-hexane (blue line and circles), a common solvent with low

polarizability (0.299), and for carbon disulfide (orange line), a

solvent with high polarizability (0.355). Each arrow represents

the MP relationship for a single carotenoid species according

to the polarizability of the environment, and illustrates the

shift from the blue to the orange line. This graph may be used

to disentangle the different mechanisms underlying the tuning

of the energy of the S0! S2 transition observed in complex

media, and in particular in proteins or in vivo.
5. Carotenoids containing carbonyl and allene
groups in solution

Carotenoids display a vast structural variability, and the pres-

ence of additional chemical groups makes analysis of their

electronic behaviour increasingly difficult. For example, the

presence of carbonyl or allene groups can influence the effec-

tive conjugation length or S2 excited state; however, this is in

a different way from that observed in linear or linear with

conjugated end-cycle carotenoids. Figure 7 illustrates this,

as it displays an MP graph where two keto-carotenoid
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molecules, namely echinenone and canthaxanthin [89], as

well as one allene carotenoid, fucoxanthin [88], are rep-

resented. Echinenone (downward red triangles) differs from

b-carotene by one C¼O on one of its rings, and presents an

Neff slightly longer than that of b-carotene. However,

canthaxanthin, which contains one C¼O on each of its two

rings, is clearly off the blue line. The introduction of a keto

group in the carotenoid thus has a complex effect on its

electronic structure. A similar effect is observed with fucox-

anthin, a more complicated carotenoid containing both keto

groups and an allene group. Fucoxanthin has seven nominal

double bonds plus an allene group and a keto group. The

representation of the pair (n1, S0! S2) for fucoxanthin

(upward pink triangles) shows how it falls off the line for

Neff, also indicating a perturbation of its S2 excited state.
6. Carotenoids in photosynthetic protein
complexes

The electronic properties of carotenoid molecules underlie

their multiple functions throughout Nature. In biological sys-

tems, carotenoids are generally present in highly anisotropic

environments and most often bound to proteins, and their

properties are tuned by these complex binding sites. In this

review we restrict ourselves to the scope of carotenoids pre-

sent in well-defined environments, and it is mainly in

photosynthesis that the environment of the different caroten-

oids is precisely known (due to the existence of three-

dimensional structures for a large number of photosynthetic

pigment-binding proteins). In light-harvesting (LH) com-

plexes, carotenoids perform both LH and photoprotective
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roles. The electronic properties of several carotenoids in

photosynthetic proteins have been studied extensively,

including (i) linear molecules in purple bacteria, spheroidene,

neurosporene and spirilloxanthin [33,90,91], (ii) cyclic mol-

ecules, b-carotene, lutein and xanthophyll cycle pigments

in higher plants [92–94] and cyanobacteria [32], and

(iii) carbonyl carotenoids in marine algae, 3-hydroyechine-

none [95,96], peridinin [60,97], fucoxanthin [98,99] and

fucoxanthin derivatives [88]. In the following sections, we

will describe practical cases where the relationships obtained

above are useful for conveying new information; we also

discuss their current limitations.
6.1. Linear carotenoids in purple bacteria
LH pigment–protein complexes from purple photosynthetic

bacteria can bind many different carotenoids, with significant

variations observed not only between bacterial species but also

for the same species in different habitats [90]. These caroten-

oids can have different functions depending on their

configuration and environment, either as auxiliary LH mol-

ecules [100,101] or as photoprotective species quenching

Chl exited states [33,90,91]. In native LH pigment–protein

complexes, spheroidene and neurosporene bind to LH2 from

Rhodobacter sphaeroides, strains 2.4.1 (grown anaerobically)

and G1C, respectively, whereas spirilloxanthin is present in

LH1 from Rhodospirillum rubrum strain S1 [90,91,102]. The

correlation between the n1 Raman band and the position of

the S0! S2 transition for these carotenoid-bound proteins

was compared with the correlation found for in vitro caroten-

oids (figure 8, red symbols). The position of the pairs of

values (n1, S0! S2) for LH-bound spheroidene, neurosporene

and spirilloxanthin clearly follows the correlation seen when

varying the polarizability of the solvent for the corresponding

isolated carotenoid. These results suggest that the average

polarizability of the protein binding pocket is the dominant

factor for tuning the position of the S0! S2 transition upon

binding to their LH protein host. This average polarizability,
which is nearly identical for the three proteins, corresponds

to a value, R(n), of about 0.334, slightly lower than that found

in carbon disulfide (R ¼ 0.355). This value is very high, and

can be explained by the fact that LH-bound carotenoids are in

close contact with (B)Chl molecules, which may provide them

with a highly polarizable environment [103]. Given that the

carotenoid in each case occupies an equivalent binding position

in these homologous LH proteins, the binding pocket is also

expected to exhibit similar electrostatic properties, as observed

here [75]. Similar results were found by Dilbeck et al. [33] for six

LH2 proteins from genetically modified strains of the purple

photosynthetic bacterium Rhodobacter (Rb.) sphaeroides. It

was again found that the shift in the n1 Raman band and the

absorption spectrum for the studied LH2-bound carotenoids

(neurosporene, spheroidene, lycopene, spirilloxanthin, ketos-

pirilloxanthin or diketospirilloxanthin) could be explained by

the polarizability of the environment alone. Figure 8 compares

the results obtained for neurosporene, spheroidene and spiril-

loxanthin in the two studies described here. Both studies

describe a similar behaviour of the carotenoids in LH1 and

LH2 from purple bacteria, down-shifting their energy levels

due to the polarizability of their binding environment. The

data obtained by Dilbeck et al. (green symbols) are slightly

red-shifted by approximately 1–2 cm21 from the results

obtained by Mendes-Pinto et al. (red symbols), but this should

be considered as within experimental error because they were

obtained in different set-ups.

6.2. Cyclic carotenoids in higher plants and
cyanobacteria

The use of the relationship described here is not only appli-

cable to changes caused by the polarizability of the

environment. The LHCII protein, the major LH protein

from higher plants, binds two lutein molecules which exhibit

electronic transitions at different positions. LHCII is a very

complex protein–pigment complex, which assembles into a

trimer in the photosynthetic membrane, with each monomer
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containing two lutein molecules whose binding sites are

related by pseudo-symmetry. Whereas in LHCII mono-

mers both luteins absorb at 495 nm, in LHCII trimers one

lutein (lut1) absorbs at 495 nm whereas the second one

(lut2) is shifted to 510 nm [92,93]. Plotting the lut1 pair of

(n1, S0! S2) values on an MP plot shows that the position

of its electronic transition is mainly governed by the polariza-

bility of its protein binding site (as is the case for both luteins

in LHCII monomers). Indeed, this pair strictly obeys the cor-

relation obtained for lutein according to the solvent refractive

index. However, the (n1, S0! S2) pair for lut2 shows that the

energy shifts between the blue- and the red-absorbing lutein

molecules are not induced by a variation in polarizability of

their binding sites. Instead, the lut2 values suggest that the

conjugated chain of the carotenoid is increased by nearly

one C¼C double bond at constant polarizability. The appar-

ent length of the conjugated chain for lutein in solvent (and

for lut1 in LHCII) is 9.3—as discussed above, the ring is

only partially conjugated as steric hindrance causes rotation

of the ring out of the conjugated plane. On the other hand,

Neff for the red-absorbing lut2 in LHCII is approximately

10. This increase in Neff was suggested to be due to rotation

of the b-ring back towards a planar conformation, resulting

in a gain in conjugation length [55]. A similar effect was

observed with the two b-carotene molecules in the photosys-

tem II reaction centre, PSII-RC, which also displays shifted

absorption [104–106]. Plotting the (n1, S0! S2) pair for

each of these molecules (figure 9) shows that, while the

blue-absorbing b-carotene fits on the line obtained for

b-carotene in different solvents, the values obtained for the

red-absorbing b-carotene suggests a sizeable increase in the

apparent conjugation length (calculated as approx. 10.2).

Analysis of the available three-dimensional structures for

both LHCII and PSII-RC revealed the presence, in both

cases, of an aromatic sidechain forcing the ring of the red-

absorbing carotenoid back into the conjugated plane through
steric hindrance [55]. In helix high-light-inducible pro-

teins (Hlips) from cyanobacteria (HliD), the two bound

b-carotenes display even more distinct electronic transitions:

b-CarHliD-b presents S0! S2 at 498 nm whereas b-CarHliD-r

exhibits S0! S2 at 525 nm [32,94]. Plotting (n1, S0! S2) pairs

on an MP graph for these two carotenes again shows that,

while the pair corresponding to the blue b-CarHliD-b lies on

the line obtained for b-carotene in solvents, the red-absorbing

one (b-CarHliD-r) deviates from this line. Again it was con-

cluded that the electronic properties of the blue carotene are

tuned by the polarizability of its protein binding site, while

the red-absorbing molecule must display a longer effective

conjugated length, as well as being present in an environment

of relatively high polarizability. It was proposed in this case

that the effective length of b-CarHliD-r lies between 10.5 and

10.6 C¼C, and the polarizability of its binding site is either

in the first case very high, similar to carbon disulfide, or

similar to toluene in the second case.
6.3. Proteins containing carbonyl or allene carotenoids
It is difficult to extract similar information for carbonyl and

allene carotenoids in biological environments as they do not

follow the same patterns as the simpler carotenoids discussed

above. However, comparison with their properties in different

solvents can nevertheless be useful in addressing their proper-

ties in photosynthetic proteins. Orange carotenoid protein

(OCP) is a cyanobacterial photoactive protein, involved in

the photoprotection of these photosynthetic organisms

against intense illumination [107,108]. The bound carotenoid

3-hydroxyechinenone (spectroscopically indistinguishable

from echinenone) spans its N-terminal and C-terminal

domains [109]. The orange-coloured OCPo before illumination

is converted to red OCPr upon illumination with intense blue-

green light, and this is linked to a change in configuration of

the 30-hydroxyechinenone [110]. The pairs (n1, S0! S2) were
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plotted on an MP graph for this carotenoid in several solvents,

and compared with the values obtained for OCPo and OCPr.

The data for OCPr are consistent with a carotenoid of similar

effective conjugation length to isolated 3-hydroxyechinenone,

in a highly polarizable environment. Thus the OCPr carotenoid

is in a planar, all-trans conformation. The OCPo pair indicates

that the effective conjugation length of orange 3-hydroxyechi-

nenone (Neffffi 9) is much shorter than isolated echinenone in

solvents (Neff ffi 10), although resonance Raman spectra of

this molecule otherwise show it is in an all-trans configuration
[89]. These results, together with density functional theory cal-

culations of three isomers of echinenone and canthaxanthin,

suggest two possible mechanisms for the OCPo to OCPr

transition. An s-cis to s-trans isomerization of the carotenoid

end-cycle would increase the relative conjugation of this ring;

alternatively, bending both of the echinenone rings would

bring them from out of the conjugated C¼C plane in the

OCPo form and into the C¼C plane in the OCPr form [89].

Our last example concerns an allene carotenoid, the isofu-

coxanthin-like carotenoid (Ifx-l) found in the LH complex of

Chromera velia [88]. This antenna protein contains, in addition

to chlorophyll a and linear carotenoids, two Ifx-l with different

configurations, with absorption bands located at 515 and

548 nm, respectively. The measured (n1, S0! S2) values for

the two protein-bound Ifx-l molecules were compared on an

MP graph with a series of data obtained for isolated Ifx-l in sev-

eral solvents (n-hexane, cyclohexane, diethyl ether, toluene,

acetonitrile and carbon disulfide). Even though allenic caroten-

oids do not behave exactly as linear carotenoids, it was

nevertheless possible from such a comparison to conclude

that the electronic absorption of the blue-absorbing Ifx-l is

mainly tuned by the polarizability of its environment, while

the red-absorbing one largely deviates from the solvent-

derived relationship. The electronic transition of this carotenoid
is approximately 900 cm21 below that of the blue Ifx-l, even

though they both exhibit the same n1 Raman frequency. It

was concluded that the absorption of the red-absorbing Ifx-l2
presents at best a weak charge transfer character [111]. None-

theless, these results suggest that the shift in energy of the

transition of the red-absorbing Ifx-l arises from a change in

the excited state structure only [88].
7. Conclusion
In the first part of this review, we address the different elec-

tronic and vibrational properties of carotenoids and discuss

the influence of the presence of additional, conjugated

groups on these properties. For isolated carotenoids, we

introduce the concept of effective conjugation length, and

how this parameter is related to their S0! S2 electronic tran-

sitions, the decay rate of the S1 energetic level and the

frequency of the vibrational n1 Raman band. We then

describe how these parameters depend not only on intrinsic

parameters such as effective conjugation length, but also on

extrinsic (environmental) parameters such as the polarizabil-

ity of their environment. We go on to explain how all this

information can be represented on a single (MP) graph.

The usefulness of this type of plot is then illustrated in

the second part of the review. We give several examples

of protein-bound carotenoids, and show how the MP

graph can be used to disentangle the various parameters

responsible for tuning of their functional properties.
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91. Angerhofer A, Bornhäuser F, Gall A, Cogdell RJ.
1995 Optical and optically detected magnetic
resonance investigation on purple photosynthetic
bacterial antenna complexes. Chem. Phys. 194,
259 – 274. (doi:10.1016/0301-0104(95)00022-G)

92. Ruban AV, Pascal AA, Robert B. 2000 Xanthophylls
of the major photosynthetic lightharvesting complex
of plants: identification, conformation and
dynamics. FEBS Lett. 477, 181 – 185. (doi:10.1016/
S0014-5793(00)01799-3)

93. Caffarri S, Croce R, Breton J, Bassi R. 2001 The major
antenna complex of photosystem II has a
xanthophyll binding site not involved in light
harvesting. J. Biol. Chem. 276, 35 924 – 35 933.
(doi:10.1074/jbc.M105199200)

94. Llansola-Portoles MJ, Sobotka R, Kish E, Shukla MK,
Pascal AA, Polı́vka T, Robert B. 2017 Twisting a
b-carotene, an adaptive trick from nature for dissipating
energy during photoprotection. J. Biol. Chem. 292,
1396 – 1403. (doi:10.1074/jbc.M116.753723)

95. Polı́vka T, Kerfeld CA, Pascher T, Sundström V. 2005
Spectroscopic properties of the carotenoid 3‘-
hydroxyechinenone in the orange carotenoid protein
from the cyanobacterium Arthrospira maxima.
Biochemistry 44, 3994 – 4003. (doi:10.1021/
bi047473t)
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