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miR-16 and miR-103 impact 5-HT4 
receptor signalling and correlate 
with symptom profile in irritable 
bowel syndrome
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Irritable bowel syndrome (IBS) is a gut-brain disorder involving alterations in intestinal sensitivity 
and motility. Serotonin 5-HT4 receptors are promising candidates in IBS pathophysiology since they 
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regulate gut motor function and stool consistency, and targeted 5-HT4R selective drug intervention 
has been proven beneficial in subgroups of patients. We identified a single nucleotide polymorphism 
(SNP) (rs201253747) c.*61 T > C within the 5-HT4 receptor gene HTR4 to be predominantly present 
in diarrhoea-IBS patients (IBS-D). It affects a binding site for the miR-16 family and miR-103/miR-107 
within the isoforms HTR4b/i and putatively impairs HTR4 expression. Subsequent miRNA-profiling 
revealed downregulation of miR-16 and miR-103 in the jejunum of IBS-D patients correlating with 
symptoms. In vitro assays confirmed expression regulation via three 3′UTR binding sites. The novel 
isoform HTR4b_2 lacking two of the three miRNA binding sites escapes miR-16/103/107 regulation in 
SNP carriers. We provide the first evidence that HTR4 expression is fine-tuned by miRNAs, and that 
this regulation is impaired either by the SNP c.*61 T > C or by diminished levels of miR-16 and miR-103 
suggesting that HTR4 might be involved in the development of IBS-D.

Irritable bowel syndrome (IBS) is a common gastrointestinal (GI) disorder affecting over 15% of the population 
worldwide. The burden of illness of IBS is significant, and includes considerable impact on quality of life and work 
productivity of affected individuals1.

The syndrome is currently defined by chronically recurring abdominal pain and altered bowel habits. Patients 
are subclassified into either IBS with diarrhoea (IBS-D), with constipation (IBS-C), mixed bowel habit (IBS-M) 
or unsubtyped IBS2.

The aetiology and pathophysiology of IBS is multifactorial including genetic and environmental factors3–5. The 
most substantial findings to date have been reported for the serotonergic and immune system as well as neuronal 
and gut epithelial barrier function6.

Over the last decade, converging evidence has implicated the serotonergic system as a key player in the patho-
physiology of IBS. Serotonin (5-hydroxytryptamine, 5-HT) is released from enterochromaffin (EC) cells7. 5-HT 
regulates various processes including gut motility, secretion, visceral sensation and neuronal signalling within the 
brain-gut axis which are often impaired in IBS patients. Moreover, perturbances in plasma levels of 5-HT, changes 
in expression of key components of the 5-HT system, such as the serotonin transporter (SERT) and tryptophan 
hydroxylase have been observed8.

5-HT exerts different functions via interaction with a variety of 5-HT receptors in the gut, which reside on 
neurons, epithelial and smooth muscle cells. Relevant to this work, 5-HT4 receptors are broadly expressed in the 
human intestine9,10 and can be found on inhibitory nitrergic neurons to induce smooth muscle relaxation and 
on cholinergic neurons to control muscle contraction. In addition to their neuronal localization, they reside on 
enterocytes and enteroendocrine cells of the gut mucosa, regulating the secretion of fluid, mucus and 5-HT10,11.

Based on their wide range of functions within the intestine, 5-HT4 receptors are attractive targets for IBS 
therapy. 5-HT4 receptor agonists benefit patients with IBS-C and functional constipation by increasing motility 
and accelerating transit12.

Currently, six isoforms of the human 5-HT4 receptor gene HTR4 are annotated in the NCBI GenBank. The 
majority of the remaining isoforms have not yet been determined. Besides a common region at their N-terminal 
end until position L358, their amino acid sequences differ at their C-terminal end (Fig. 1A′). All isoforms mainly 
vary on mRNA level presenting with individual 3′ untranslated regions (3′UTR) (Fig. 1A). These regions repre-
sent the major site of microRNA (miRNA, miR) interaction and post-transcriptional regulation.

Mature miRNAs are small single stranded non-coding RNAs of 18–25 nucleotides. For target recognition, 
they depend on a roughly seven nucleotides spanning seed sequence at their 5′ end being perfectly complemen-
tary to the respective mRNA13. Since the sequence complementarities and the thermodynamics of binding play 
an essential role in the interaction of miRNA with its target mRNA, sequence variations in the miRNA-binding 
seed regions are prone to reinforce, weaken, or disrupt the miRNA-mRNA interactions and thereby to affect the 
expression of mRNA targets. This impairment contributes fundamentally to disease aetiology14.

To date, disturbed regulation of seven miRNAs and their targets has been implicated in IBS15–20. The main 
focus of the current study was to determine whether miRNAs play a role in the differential expression regulation 
of the 5-HT4 receptor gene in IBS.

Moreover, we hypothesized that dysregulation of HTR4 expression by miRNAs either due to polymorphic 
target sites or differential miRNA expression profiles might contribute to the pathophysiology of IBS. Our specific 
aims were to locate SNPs residing within the 3′UTRs of GI-relevant HTR4 isoforms in order to identify putatively 
regulating miRNAs and to assess miRNA expression in gut biopsies of IBS patients compared to healthy controls 
and to validate the regulation in vitro.

Results
Distinct expression of HTR4 isoforms in the human GI tract.  Initially, the expression profiles of 
the five as yet annotated isoforms of the HTR4 gene in NCBI GenBank (HTR4a NM_001040169.2, HTR4b 
NM_000870.5, HTR4d NM_001040172.2, HTR4g NM_199453.3 and HTR4i NM_001040173.2) were assessed. 
Mandatory to mention for subsequent analyses, all isoforms differ at their 3′ ends, except HTR4b and HTR4i with 
identical 3′UTRs (Fig. 1A). At the protein level, all annotated isoforms share a common region at their N-terminal 
end to position L358, whereas their amino acid sequences differ at the C-terminus (Fig. 1A′). Expression analy-
ses using total RNA from normal stomach, duodenum, jejunum, ileum and colon revealed considerably higher 
expression levels of HTR4a, HTR4b and HTR4i in distal small bowel and colon compared to the proximal intes-
tine (Fig. 1B). Isoforms HTR4a and HTR4i were not expressed in the stomach and HTR4i was also absent in the 
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duodenum. HTR4d and HTR4g showed a weaker and distinct expression pattern suggesting a minor role in the 
gut (Fig. 1B).

HTR4 c.*61 T > C resides in a putative miRNA binding site in the 3′UTR of HTR4b/i and is asso-
ciated with IBS-D.  3′UTRs represent the major binding sites for miRNA-dependent post-transcriptional 
regulation. In order to unravel a putative interplay between miRNAs and the HTR4 3′UTRs, we first assessed the 
genetic heterogeneity of isoform-specific untranslated regions. Moreover, as it is well established that function-
ally relevant SNPs reside in 3′UTRs near the stop codons, we exclusively screened the stop codon surrounding 
regions of the GI-relevant HTR4 isoforms HTR4a, b and i. First, we analysed a discovery sample from the UK and 
detected a rare polymorphism (c.*61 T > C; rs201253747) in two out of 98 screened IBS-D patients in a heterozy-
gous manner. This SNP locates in the 3′UTRs of the HTR4b and HTR4i isoforms, which both share the identical 
3′UTR (Fig. 1A). None of the other clinically defined individuals, neither the controls nor IBS-C patients, carried 
this variant. miRNA target site analysis of the HTR4b/i 3′UTR by in silico prediction tools (TargetScan, miRanda 
and/or RegRNA) suggested that the variant locates within the heptameric seed region (ACGACGA) of a putative 
binding site (Fig. 2; indicated by I-III) for the miR-16 family (I: including miR-15a (hsa-mir-15a; MI0000069), 
miR-15b (hsa-mir-15b; MI0000438), miR-16 (hsa-mir-16-1; MI0000070/hsa-mir-16-2; MI0000115), miR-
195 (hsa-mir-195; MI0000489), miR-424 (hsa-mir-424; MI0001446), miR-497 (hsa-mir-497; MI0003138)). 
Moreover, additional putative binding sites for miR-103/miR-107 (II: hsa-mir-103-1; MI0000109/hsa-mir-103-2; 
MI0000108/hsa-mir-107; MI0000114) alone and combined with the miR-16 family (III) were identified further 
downstream in the HTR4b/i 3′UTRs, all sharing a hexameric, shortened ACGACG seed sequence (see above) 
(Fig. 2). A more comprehensive analysis taking all HTR4 isoforms into account confirmed binding sites for miR-
16 and miR-103/miR-107 in the GI-relevant isoforms HTR4b and HTR4i. However, this analysis also revealed 
binding sites in HTR4g. Since this isoform was only found to be weakly expressed in the duodenum and jejunum, 
it was not further taken into consideration (Fig. 1B).

To replicate our initial finding, we genotyped five additional cohorts from Germany, Belgium, Sweden and 
the USA (EAM, GS) and performed a pooled analysis (in total 832 IBS-D and 614 IBS-C patients as well as 2273 
healthy controls, Supplementary Table S2). Thereby, we confirmed the variant c.*61 T > C to be significantly more 
frequent in IBS-D patients compared with healthy controls and all non-IBS-D patients (p = 0.049, OR = 2.74 

Figure 1.  Illustration of HTR4 isoforms and their expression pattern in the human GI tract. (A) HTR4 
isoforms HTR4a, HTR4b, HTR4d, HTR4g, HTR4i and HTR4c, without a specified 3′UTR. The common region 
(dark grey) encompasses exons 2-6 and is shared by all six HTR4 isoforms. The isoform-specific 3′UTRs are 
highlighted in red and encode unique 5-HT4R C-termini. Not drawn to scale. (A′) 5-HT4 receptor isoform 
transmembrane topologies indicating individual C-terminal ends predicted by Protter for visualization of 
proteoforms (http://wlab.ethz.ch/protter). (B) Expression pattern of HTR4 isoforms in different human GI 
regions. ARF1 served as mRNA integrity and loading control. Respective PCR images were cropped for figure 
implementation.

http://S2
http://wlab.ethz.ch/protter
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(95% CI = 0.961-7.854) and p = 0.039, OR = 2.71 (95% CI = 1.007-7.308) respectively, Table 1). No deviation 
from the Hardy-Weinberg Equilibrium (HWE) was detected in the IBS patients or healthy controls.

Identification of two novel alternatively spliced HTR4b 3′UTR isoforms.  Since the functional rele-
vance of the HTR4b/i c.*61 C variant with IBS-D remained elusive at this stage, we analysed the HTR4b/i 3′UTR 
for alternatively spliced or polyadenylated isoforms, as literature provided evidence for more than six HTR4 
isoforms (Fig. 1A). Currently 25 human isoforms can be found in the NCBI GenBank, mostly varying in the 
composition of their 3′UTRs21.

Therefore, 3′RACE (rapid amplification of cDNA ends) experiments were carried out using total RNA from 
human ileum and colon. Three major amplicons of different size were generated and cloned for sequence verifi-
cation (Fig. 3A). All three amplicons were confirmed by RT-PCR and Sanger sequencing to represent novel iso-
forms of HTR4b (Fig. 3 - Supplementary Figure S1). Besides the established HTR4b isoform, two shorter versions 
of the canonical full length HTR4b 3′UTR with splicing sites at positions 1414/2903 (HTR4b_2; NCBI GenBank 
accession number BankIt2040902 HTR4b_2MF775735) and 2197/2903 (HTR4b_3; NCBI GenBank accession 
number BankIt2040902 HTR4b_3MF775736) were confirmed (positions correlate to NM_000870.5). Both novel 
isoforms lack the miR-103/miR-107 (II) binding site and the highly regulatory region with the double miR-16 
family/miR-103/107 binding site (III), resulting in one remaining target site for the miR-16 family (I; Fig. 3A′). 
Subsequent RT-PCR analysis showed a fairly ubiquitous expression pattern of HTR4b_2 in the investigated GI 
tissue regions (Fig. 3B). Expression of HTR4b_3 was very weak, restricted to ileum and colon and therefore not 
further investigated (Fig. 3B). Luciferase reporter assays (Fig. 3C) and In Cell Western (Fig. 3D) experiments 
in HEK293T cells showed significantly higher luciferase activity and protein expression level for the shortened 
HTR4b_2 isoform compared to the full length HTR4b isoform (Fig. 3C and D), indicating that HTR4b_2 might 
be more efficiently translated into protein.

The miR-16 family is co-expressed with HTR4b and HTR4b_2 in different subregions of the 
human colon.  Previous to the evaluation of the functional impact of miRNAs on HTR4 isoform expression 
levels, we had to ascertain that respective miRNAs and HTR4 isoforms are subregionally co-expressed. In doing 

Figure 2.  Schematic illustration of the miR-16 family and miR-103/miR-107 binding sites in the 3′UTR of the 
HTR4b/i isoforms. Binding sites (I-III) are based on predictions by TargetScan, miRanda and/or RegRNA. The 
position of HTR4b/i c.*61 T > C is highlighted in red within the seed region (nucleotides 2–8) of the indicated 
miRNA binding site.

Genotype c.*61 T/c.*61 T
c.*61 T/ 
c.*61 C c.*61 C/c.*61 C MAF (C) P-value/OR/95% CI

IBS-D 825 7 0 0.00420

IBS-C 612 2 0 0.00163

controls 2266 7 0 0.00154 0.049/2.74/0.961-7.854 
(IBS-D vs. controls)

non-IBS-D 2878 9 0 0.00156 0.039/2.71/1.007-7.308 
(IBS-D vs. non-IBS-D)

Table 1.  HTR4b c.*61 T > C (rs201253747) genotypes in IBS patients and healthy controls IBS, Irritable bowel 
syndrome; D, diarrhoea; C, constipation; MAF, minor allele frequency; OR, odds ratio; CI, confidence interval.

http://S1
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so, distinct miRNA expression was assessed in colonic subregions from normal microdissected tissue (epithe-
lium, lamina propria, muscle and myenteric plexus) by the RNA quantification technology nCounter. In order 
to elucidate overlapping expression patterns with the putative miRNA targets HTR4b, HTR4b_2, and HTR4i, we 
analysed corresponding material with isoform-specific detection probes. Initially, layer specificity was proven by 
cell type-specific marker assessment (data not shown). Except miR-424 and miR-107, all members of the miR-
16 family as well as miR-103 were detectable in each of the tested colonic subregions in moderate to high levels 
with miR-16 and miR-103 showing peak levels (Fig. 4A). In addition, HTR4b (Fig. 4B) and HTR4b_2 (Fig. 4C) 
were expressed in all subregions analysed, showing the lowest expression levels in the lamina propria and in the 
myenteric plexus (only for HTR4b). In contrast, HTR4i seems to be primarily expressed in the lamina propria and, 
to a lower extent, in the other investigated layers (Fig. 4 - Supplementary Figure S2). Based on the differential 
expression of HTR4i we focused in subsequent approaches on HTR4b and HTR4b_2 only.

Expression of HTR4b is downregulated by the miR-16 family and by miR-103 in vitro.  To inves-
tigate the functional impact of the relevant miRNAs on the expression levels of HTR4b, we transfected the respec-
tive miRNA precursor molecules, either separately or combined, into colon adenocarcinoma Colo320 cells and 
quantified HTR4b transcript levels by qPCR. The largest and most significant reduction of the HTR4b mRNA 
level was observed in cells transfected with a combination of the miR-16 family members miR-15b/16/497 as well 
as with miR-103 (Fig. 5). In contrast, overexpression of individual members of the miR-16 family (miR-15b, miR-
16 and miR-497) resulted in minor mRNA changes (Fig. 5).

The HTR4b_2 novel isoform carrying the c.*61 T > C SNP escapes miRNA regulation.  As evi-
dence accumulated that respective HTR4 isoforms are co-expressed with and transcriptionally regulated by rel-
evant miRNAs, we proceeded by assessing the importance of distinct miRNA target sites, and in particular the 
functional relevance of the identified rare variant (c.*61 T > C) associated with IBS-D. For this purpose we per-
formed luciferase reporter assays with the canonical HTR4b/i isoforms by cloning both, the full length wild type 
(WT) HTR4b/i 3′UTR and the corresponding mutated construct (c.*61 C). Moreover, we created four additional 
mutated (mut) 3′UTR HTR4b constructs designed to disrupt each of the three miRNA binding sites (I-III) indi-
vidually and all three at once (Fig. 6A).

A combination of miR-15b/16/497 significantly decreased reporter expression of the WT construct (Fig. 6A′). 
However, this effect could not be rescued by the HTR4b c.*61 C variant nor by the disrupted first (I; mut1) or sec-
ond (III; mut2) miR-16 family binding site. A significant increase of reporter levels was only accomplished by the 
simultaneous disruption of both (I, III; mut3) miR-16 family target sites (Fig. 6A′). Corresponding experiments 

Figure 3.  Identification of two novel HTR4b splice variants by 3′RACE. (A) Three different isoforms were 
identified by 3′RACE. (A′) Schematic illustration of the 3′UTRs of full length HTR4b and the novel isoforms 
HTR4b_2 and HTR4b_3. miRNA binding sites are indicated by ‘I-III’ (in blue). Arrows reflect positions of 
3′RACE primers. (B) Expression pattern of the three HTR4b isoforms in different human GI tissues. ARF1 
served as cDNA integrity and loading control. Respective PCR images were cropped for figure implementation. 
(C) Relative luciferase activity of HTR4b_2 and HTR4b 3′UTR reporter gene constructs (n = 3) and (D) Relative 
5-HT4b and b2 receptor levels quantified by In Cell Western experiments (n = 3) in HEK293T. Values are 
means ± SEM., **p < 0.01, ***p < 0.001. Unpaired t-test.

http://2


www.nature.com/scientificreports/

6Scientific Reports | 7: 14680  | DOI:10.1038/s41598-017-13982-0

co-expressing luciferase constructs with miR-103 showed a similar pattern as WT and HTR4b c.*61 C. Reporter 
levels were both significantly reduced (Fig. 6A″). In addition, the simultaneous disruption of the second (II; 
mut2) and third (III; mut4) target site led to an incremental rescue of reporter expression (Fig. 6A″).

The novel isoform HTR4b_2 only harbours the miRNA binding site (I: miR-16 family, Fig. 6B) where the 
c.*61 T > C SNP resides. Therefore, it was our aim to assess the functional impact of the SNP on HTR4b_2 expres-
sion regulation. As shown in Fig. 6B′, the co-expression with miR-15b/16/497 reduced the HTR4b_2 WT reporter 
levels to a significant extent. Remarkably, this effect was counteracted by both the HTR4b_2 c.*61 C variant and 
the completely disrupted miRNA binding site (I; mut1) (Fig. 6B′). Binding of miR-103 to this particular target 

Figure 4.  Expression analyses of relevant miRNAs, HTR4b and HTR4b_2 in human colonic subregions. 
nCounter miRNA expression profile of (A) selected miR-16 family members as well as of miR-103/miR-107. 
(B) HTR4b and (C) HTR4b_2 in normal laser capture microdissected human colonic subregions. Values are 
means ± SEM of codeset counts from total RNA of tissue specimens from four individuals, respectively. E 
(epithelium), LP (lamina propria), M (muscle), MP (myenteric plexus).

Figure 5.  HTR4b mRNA levels after overexpression of several miRNAs in Colo320 cells analysed by qPCR. 
Relative expression analysis of HTR4b mRNA levels after transfection (72 h) with different miRNAs (miR-
15b, miR-16, miR-497, miR-15b/16/497, miR-103) and a negative control miR (neg. ctrl. miR). Values 
are means ± SEM of three to four independent experiments and were normalised to SDHA. *p < 0.05; 
***p < 0.001. Unpaired t-test.
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Figure 6.  The HTR4b_2 novel isoform carrying the c.*61 T > C SNP escapes miRNA regulation. Illustration 
of the HTR4b/b_2 related luciferase reporter gene expression experiments. (A) Respective HTR4b/i 3′UTRs 
including predicted miRNA target sites (I-III, indicated in blue) and luciferase gene reporter constructs. (A′) 
Relative luciferase activity in HEK293T transfected with miR-16 family members. (A″) Relative luciferase 
activity in Colo320 transfected with miR-103. (A′) and (A″) Particular miRNAs are both co-expressed with 
respective luciferase constructs (WT, c.*61 C, mut2, mut3, mut4) and related to negative control miRNA 
(neg. ctrl. miR). Values are means ± SEM. n = 4 (A′) and n = 3 (A″) experiments for each condition. (B) 
Respective HTR4b_2 3′UTR including predicted miRNA target site (I) and luciferase gene reporter constructs. 
(B′) Relative luciferase activity in Colo320 transfected with miR-15b/16/497 (miR-16 family) or (B″) 
relative luciferase activity in Colo320 transfected with miR-103. (B′) and (B″) Particular miRNAs are both 
co-expressed with luciferase constructs (WT, c.*61 C, mut1) or negative control miRNA (neg. ctrl. miR). 
Values are means ± SEM. (n = 5) (B′) and (n = 4) (B″) experiments for each condition. *p < 0.05; **p < 0.01; 
***p < 0.001. One-way ANOVA with Bonferroni post-hoc test, WT (wild type), mut (mutated).
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site was not predicted by computational tools. However, as miR-103 shares six of the seven seed nucleotides with 
the miR-16 family (Fig. 6A), we assumed that it could additionally affect HTR4b_2 expression. Indeed, when 
co-expressed with miR-103, the WT reporter signal was significantly reduced (Fig. 6B″). The presence of either 
the HTR4b c.*61 C variant or the disrupted miRNA binding site (I; mut1) significantly weakened this regulation 
(Fig. 6B″).

The mutated miR-16 A > G attenuates the regulation of HTR4b_2 through miR-16 in human 
goblet cells.  We next aimed to gain additional evidence for the functional relevance of miRNA regulation 
on the HTR4b/i c.*61 T > C variant and the novel HTR4b_2 isoform. As gut biopsies of SNP carriers were not 
available, we applied a complementary approach to investigate non-cancer cell lines. Since the expression and 
functional role of 5-HT4 receptors in goblet cells had previously been elucidated10, we used the human colonic 
goblet cell line HT29-MTX-E12. In order to inversely mimic the in vivo situation of SNP carriers, we applied 
a mutated miR-16 precursor carrying the corresponding mutation within the seed region (hsa-miR-16 A > G, 
Supplementary Figure S3A). Goblet cells showed only marginal levels of HTR4b, while the shorter isoform 
HTR4b_2 was robustly expressed (Supplementary Figure S3B); therefore, we restricted the following analyses 
to the HTR4b_2 isoform. miR-16 induced a significant reduction of HTR4b_2 expression compared to the neg-
ative control miR. In contrast, an increased HTR4b_2 expression by both miR-16 A > G, mimicking the SNP 
situation, and miR-103, was observed although differences did not reach statistical significance (Supplementary 
Figure S3C).

miR-16 and miR-103 are significantly downregulated in the small intestine of IBS-D 
patients.  To further understand the role of the GI subregionally most abundant miR-16 and miR-103 in 
IBS, we performed comparative expression analysis by qPCR on intestinal biopsy samples from the jejunum of 
IBS-D patients compared to controls. This revealed a significant downregulation of miR-16 and miR-103 in IBS-D 
patients compared with healthy controls (Fig. 7A). To validate a putative regulation of both the canonical HTR4b 
and the novel HTR4b_2 isoform on mRNA level, we further assessed their expression by nCounter analysis in 
jejunal biopsies of patients and controls. However, no differences in expression levels were found on the mRNA 
level, neither for HTR4b nor HTR4b_2 (Fig. 7B). In addition, genotyping of the tested samples did not identify 
any SNP carriers (data not shown). To the best of our knowledge and based on extensive analysis of available anti-
5-HT4 antibodies, currently no 5-HT4b specific antibody exists. Therefore, we were not able to confirm differential 
expression on the receptor protein level (see Supplementary information).

Bowel movements and stool form of IBS-D patients correlate with miR-16 and miR-103 expres-
sion.  To reveal the potential clinical relevance of our findings, we successively applied the Spearman’s corre-
lation rho to pooled data of IBS-D patients and healthy controls taking bowel movements and stool form into 
consideration amongst others (Fig. 7C). This analysis showed that the expression of miR-16 and miR-103 nega-
tively correlated with bowel habits (Spearman’s rho rs and p-values are given in Fig. 7C).

Discussion
In this study, we identified a regulatory SNP affecting a miRNA binding site and confirmed isoform-specific 
miRNA regulation, both relevant in IBS-D. Multiple target sites within the 3′UTR ensure miRNA-mediated 
expression control in a redundant manner and are able to compensate the mismatch caused by the minor 
HTR4b/i c.*61 C allele in the full length form. Our study revealed the novel short 3′UTR of HTR4b_2 to be 
potently downregulated by miR-16 family members as well as miR-103 via the remaining miR-16 target site (I). In 
addition, we showed that the minor HTR4b/i allele c.*61 C impairs miRNA binding, thereby increasing reporter 
levels by 20-30% for HTR4b_2. This may in turn correspond to increased expression of the 5-HT4b2 receptor iso-
form in c.*61 C carriers. Since no gut biopsies of SNP carriers were available, we mimicked the in vivo situation 
by applying a mutated miR-16 precursor (miR-16 A > G) carrying the corresponding mutation in a human goblet 
cell line. Thereby, we were able to counteract the downregulation, pointing to the deregulation of 5-HT4 receptor 
expression fine-tuning in SNP carriers.

miR-16 family members are ubiquitously expressed in moderate to high levels, and at least one family member 
seems to be present in every human cell type pointing to their importance in various cellular processes22. In par-
ticular, miR-103 is most ubiquitously, whereas all other miR-16 family members are distinctly and moderately to 
marginally expressed in the GI tract23. Our data corroborates these findings showing moderate to high expression 
for all, except miR-424 and miR-107, with peak levels of miR-16 and miR-103 in the analysed colon layers. In 
contrast, HTR4b and HTR4b_2 show a more distinct expression profile in the respective subregions compared to 
HTR4i pointing to more specific roles in the respective GI layers. The overlap in expression of HTR4b/HTR4b_2 
and the miR-16 family in the particular colonic subregions make the fine-tuning of 5-HT4b/b_2 receptor levels by 
miR-16 and miR-103 in the GI tract obvious.

To date, approximately 60% of all protein coding genes are estimated to be targeted by miRNAs and miRNA 
target site polymorphisms have been functionally linked to several diseases24–26. HTR4b/i c.*61 T > C is the sec-
ond variant of a serotonin receptor gene associated with IBS-D since we identified the functional HTR3E variant 
c.*76 G > A15, both of which lead to disturbed miRNA regulation and potentially affect receptor densities.

Quantitative analysis of total 5-HT4 receptor levels within GI subregions in HTR4b/i c.*61 T > C carriers is 
mandatory for final proof. Yet SNP carriers are rare and currently no reliable 5-HT4 receptor antibodies suit-
able for quantitative Western blot analysis are available (see Supplementary information and Supplementary 
Figure S4), making such an approach challenging at present. As there are no animal and disease models in molec-
ular genetics to study IBS, a functional follow up in an in vivo model is currently not feasible. We presently 
depend on human tissue material and in vitro test systems. The establishment of patient-derived primary cell 
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Figure 7.  Expression analysis of miR-16 and miR-103 and HTR4b and HTR4b_2 in the human jejunal mucosa 
in IBS-D vs. healthy controls (Ctrl.). (A) qPCR analysis of miR-16 and miR-103. Fold-change value is based on 
the ratio of target miRNA and the average of reference genes normalised to the average of the healthy group. 
Values are means ± SEM. (14 IBS-D; 17 controls). **p < 0.01. Unpaired t-test with Welch’s correction. (B) 
nCounter analyses of HTR4b and HTR4b_2. Fold-change is based on the ratio between target mRNA and the 
average of the reference genes normalised to the average of the healthy control group. Values are means ± SEM. 
(30 IBS-D; 18 controls). Mann-Whitney U test. (C) Correlations of IBS symptoms with miRNA expression in 
the jejunal mucosa of IBS-D patients and controls. Spearman’s correlation rho was applied to the pooled data. 
Identical values refer to multiple equal correlation values of different individuals. n = 31 (14 IBS-D; 17 controls). 
Spearman’s rho (rs) and p-values (p) are given.
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culture models may help to further elucidate disease-associated pathways and mechanisms at the molecular level 
in future approaches.

Furthermore, downregulation of miR-16 and miR-103 in the jejunum of IBS-D patients adds to the relevance 
of this particular miRNA family in IBS and its importance in HTR4b regulation, presumably on a translational 
level since no expression changes became evident on the mRNA level. In line with this, in vitro results in Colo320 
cells point to a secondary role of miRNA-mediated mRNA degradation concerning the mechanism of action in 
this regulatory process. Most importantly, the negative correlation of miR-16 and miR-103 with bowel habits and 
stool form, defined clinical features of IBS-D patients, fits very well with the presumed phenotypic consequences 
in IBS-D. More specifically, the lower the respective miRNA levels are, the higher the bowel activity and the looser 
the stool will be, presumably mediated via increased 5-HT4 receptor levels and therefore enhanced 5-HT4 recep-
tor mediated signal transduction (Fig. 8).

Based on our in vitro data, a more pronounced effect on protein level might be anticipated contributing 
to the obvious clinical features. Due to the current limitations discussed above, protein expression analysis 
is currently impossible since no isoform-specific antibody exists (Supplementary Figure S5). As the various 
HTR4 isoforms mainly differ in their respective 3′UTRs (Figure 1A)21, this gene seems to use these regions 
to regulate differential expression and receptor homeostasis. Alternative polyadenylation and varying length 
of 3′UTRs are involved in many cellular processes during development and differentiation27. The two novel 
isoforms provide further evidence towards a sophisticated regulatory mechanism to enable the HTR4b_2 
transcript to escape miRNA regulation. Additional 3′UTR polymorphisms may subsequently be identified, 
which could interfere with splicing consensus sequences or mRNA secondary structures or affect miRNA 
regulation28.

Interestingly, miR-16 has been reported to regulate other IBS-relevant genes of the serotonergic system, in 
particular the SERT gene SLC6A4, regulating serotonin bioavailability in the nervous system but also gut epithe-
lium29. Also relevant due to the high comorbidity of IBS with psychiatric phenotypes, miR-16 has been reported 
to mediate depression and anxiety behaviours through regulation of SLC6A429,30. Moreover, miR-16 has lately 
been shown to reduce TNF-α and IL-12p40 levels, putatively suppressing mucosal inflammation and thereby 
resulting in the relief of symptoms in a colitis mouse model suggesting miR-16 as a potential therapeutic target for 
the treatment of Crohn’s disease31. More recently, we found impaired miR-16 expression regulation of Claudin-2 
(CLDN2) in IBS-D, thereby contributing to disturbed gut barrier function19.

Putting our results into perspective, alterations in the serotonergic system in IBS patients have been 
described for IBS in general, as well as the different subtypes. Therefore, the HTR4 polymorphism / miRNA 
level changes may also be of relevance in IBS-C patients enrolled in this study as well as other subtypes 
which were not included. This is based on the fact that previous studies have shown that the IBS subtype 
might not be stable over time since IBS symptoms, including bowel habits fluctuate. Amongst others, a one 
year follow up study showed that 29% of the patients switched between the IBS-D and IBS-C subtypes32 
while another one reported that only 14% of IBS-C cases changed to IBS-D or vice versa. However, although 
changes between IBS subtypes are common, changes between IBS-C and IBS-D are rare33.One major issue in 

Figure 8.  5-HT4 receptor mediated function in the intestine. 5-HT4 receptor activation promotes GI motility 
at different levels. Decreased miR-16 and miR-103 levels as well as hypermorphic allele variants (c.*61 T > C) 
may lead to elevated 5-HT4 receptor activity resulting in increased secretion and peristalsis in all or particular 
subregions and make individuals more susceptible to develop diarrhoea. Figure components were kindly 
provided from Servier Medical Art (http://www.servier.com). This work is licensed under the Creative 
Commons Attribution 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/
licenses/by/3.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. The 
authors acknowledge the free figure access.
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IBS are the very limited treatment options. Due to the heterogeneous origin of the disorder, therapy is mostly 
based on “trial and error” and targeting predominant symptoms rather than the whole symptom complex of 
IBS12. Consequently, molecular definition of functional variant carriers might be used for custom-tailored 
treatment. IBS-D patients carrying a HTR4 SNP might benefit from 5-HT4 receptor-targeting compounds. 
According to the Medtrack database (www.medtrack.com) currently six drugs targeting 5-HT4Rs are explored 
as potential treatment for IBS. In addition, siRNA or miRNA-based drugs could be used in the future to 
re-adjust expression levels that have been disturbed either by decreased miRNA expression or gene variants, 
as seen in our study.

In conclusion, we delineate first feasible molecular mechanisms by which the miR-16 family and miR-103 as 
well as a non-coding, cis-regulatory variant in the HTR4 gene may impact 5-HT4 receptor levels and functions, 
predisposing carriers to an IBS phenotype with diarrhoea symptoms. Follow-up studies will shed greater light 
on the role of miRNAs in functional GI disorders, the 5-HT system in general and in particular on the emerging 
importance of the HTR4 isoforms.

Material and Methods
IBS patients and healthy controls.  SNP analysis was carried out on DNAs from six case-control cohorts. 
Expression analyses of HTR4b/HTR4b_2 and miRNAs in jejunal biopsies were carried out in a case-control 
cohort from Vall d’Hebron Institute of Research (Barcelona) (see Supplementary Table S2).

All participants were of Caucasian origin. Written informed consent was obtained from all subjects and the 
experiments were conformed to the principles set out in the WMA Declaration of Helsinki and the Department 
of Health and Human Services Belmont Report. All studies were approved by the local Ethic Committees as out-
lined in detail in the Supplementary Information.

RNA isolation.  Total RNA of cryoconserved or laser capture microdissected (LCM) gut resections, jeju-
nal mucosal biopsies or cultivated cells was isolated using TRIzol Reagent (Thermo Fisher Scientific, Waltham, 
Massachusetts) according to the manufacturer. Total RNA samples were used for cDNA synthesis, nCounter 
expression analyses or 3′RACEs.

cDNA synthesis.  1 µg RNA was reverse transcribed using the SuperScript III First-Strand Synthesis System 
(Thermo Fisher Scientific) (ratio random hexamer/ Oligo(dT): primers 1:1). For miRNA quantification, cDNA 
synthesis was performed using 20 ng of total RNA with the Universal cDNA Synthesis Kit II (Exiqon, Vedbaek, 
Denmark).

Polymerase chain reactions (PCRs).  Reverse transcription polymerase chain reaction (RT-PCR) and 
quantitative PCR (qPCR) are described in detail in the Supplementary Methods. Primer sequences are specified 
in Supplementary Table S1.

Rapid amplification of cDNA ends (3′RACE).  1 µg total RNA from human ileum and colon were 
reverse transcribed using the ThermoScript RT-PCR System for First-Strand cDNA Synthesis (Thermo Fisher 
Scientific) according to the manufacturer’s instructions. 3′RACE PCRs specific for HTR4b were performed using 
the HotStarTaq DNA Polymerase protocol. First PCR was run for 15 cycles with 2 min elongation time using 
1 µl of the Thermoscript cDNA product as template. 1 µl product of the first PCR run was taken as template for 
the following nested PCR, which was run for another 30 cycles with 2 min elongation time per cycle, respec-
tively. Primer sequences given in Supplementary Table S1. PCR products were analysed on a 1.5% agarose gel, 
cloned into the pSTBlue-1 AccepTor Vector (Merck Millipore, Billerica, Massachusetts) according to the manu-
facturer’s instructions and sequence verified with the MegaBACE system (GE Healthcare, Little Chalfont, United 
Kingdom).

Plasmid generation and mutagenesis.  An existing pcDNA3.1(+) HTR4 cDNA construct was modified 
in order to generate a HTR4b (full length) and HTR4b_2 construct by cloning respective 3′UTRs downstream via 
AfeI (HTR4 internal restriction site) and NotI (vector restriction site).

For luciferase reporter constructs, HTR4b_2 3′UTRs were cloned downstream of the hRluc gene in the 
psiCHECK-2 vector (Promega, Madison, Wisconsin) via XhoI and NotI restriction sites.

Full length HTR4b 3′UTRs were cloned downstream of the Rluc gene in the pRL-TK vector (Promega) via 
its XbaI restriction site. Site-specific mutagenesis was performed using the QuikChange Lightning Site-Directed 
Mutagenesis Kit (Stratagene, San Diego, California). All primers are listed in Supplementary Table S1.

Plasmids were purified using the PureLink HiPure Plasmid Filter Midiprep Kit (Thermo Fisher Scientific) and 
inserted sequences verified by Sanger sequencing using the MegaBACE system (GE Healthcare).

nCounter expression analysis.  Total RNA (up to 100 ng) of LCM colon samples and jejunal mucosal 
biopsies served as input material for the quantitative nCounter expression analysis (NanoString Technologies, 
Seattle, Washington) using a human miRNA codeset (release 1.2) and a customized codeset, as recommended by 
the manufacturer. The customized codeset included probes for HTR4b, HTR4b_2 and HTR4i detection as well as 
cell type-specific markers for verification of layer specificity (Supplementary Table S4). miRNA expression data 
was analysed according to the manufacturer’s instructions. Normalisation was performed to the top 100 miRNA 
counts.

Background correction and normalisation of the customized codeset data were performed using the nSolver 
Analysis Software 3.0 provided by NanoString Technologies.
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Cell culture and transfection.  The human cell lines HEK293T (embryonic kidney) and Colo320 (colon 
cancer) were maintained in Dulbecco’s modified eagle medium (DMEM, Thermo Fisher Scientific), supplemented 
with 10% fetal bovine serum (FBS, Thermo Fisher Scientific), 100 U/ml penicillin and 100 µg/ml streptomycin 
(Thermo Fisher Scientific) in a humidified atmosphere containing 5% CO2 at 37 °C. Transfections of HEK293 and 
Colo320 cells with Pre-miR miRNA precursors were performed in Opti-MEM I Reduced Serum Media (Thermo 
Fisher Scientific) using Lipofectamine RNAiMAX Reagent (Thermo Fisher Scientific). Co-transfection of HTR4 
constructs and Pre-miR miRNA precursors for luciferase assays and In Cell Western (ICW) experiments were 
carried out with polyethylenimine (PEI, Sigma-Aldrich, St. Louis, Missouri).

Transfections and harvesting of cells are described in detail in the Supplementery Methods.
The HT29-MTX-E12 cell line (kindly provided by Dr. Marguerite Clyne, University College Dublin) was 

cultured in DMEM, high Glucose, GlutaMAX plus 10% FCS, 1% NEAA and 1% Sodiumpyruvat (Thermo 
Fisher Scientific). Transfection of miRNA precursors was performed with Lipofectamine 2000 (Thermo Fisher 
Scientific) and CombiMag (OZBiosciences, Marseille, France) as outlined in Supplementary Methods. Pre-miR 
miRNA precursors are given in Supplementary Table S5.

Luciferase assay.  Luciferase assays were performed using the Dual-Luciferase Reporter Assay System 
(Promega) according to the manufacturer. Briefly, cells were lysed with 100 µl 1x passive lysis buffer per well and 
a 50 µl aliquot of each sample was measured in a Berthold Centro LB 960 luminometer. Three transfection repli-
cates were measured per individual experiment.

In Cell Western (ICW).  24 h after transfection cells were washed once with 1x phosphate buffered saline 
(PBS, Thermo Fisher Scientific) and immediately fixed with 4% paraformaldehyde (PFA, Sigma-Aldrich)/1x PBS 
for 15 min. Cells were washed three times and permeabilized with 0.1% Triton-X-100 (Sigma-Aldrich) in 1x 
PBS (5 min/wash) and subsequently blocked with Odyssey Blocking Buffer (LI-COR, Lincoln, Nebraska) for 
1 h. Incubation with 1:500 diluted primary antibodies (rabbit anti-5-HT4 #HPA040591; mouse anti-GFP) was 
carried out in Odyssey Blocking Buffer for 1 h and followed by another three wash cycles with 1x PBS. Then, cells 
were incubated with secondary antibody solution (1:750 in Odyssey Blocking Buffer; donkey anti-rabbit IRDye 
800CW and donkey anti-mouse IRDye 680CW, LI-COR) for 1 h, protected from light. Cells were washed three 
times with 1x PBS, scanned with a LI-COR Odyssey Infrared Imaging System and analysed by the software pro-
vided by the manufacturer. An antibody list is given in the Supplementary Table S6.

Tissue material.  Unaffected, normal tissue from stomach, duodenum, jejunum, ileum and colon was 
obtained from three female and two male patients (55-77 years old, two colon adenocarcinomas, one small intes-
tine adenocarcinoma, one gastric carcinoma and one pancreatic adenocarcinoma; tissue was obtained from the 
GEZEH tissue bank (www.gezeh.de) and approved by the local Ethic Committee) and used for RNA extraction, 
subsequent RT-PCR analysis and 3′RACEs.

Four unaffected colon samples (two male and two female patients, 56–70 years old; two sigma diverticulitis, 
one rectum carcinoma and one hemicolectomy) were used for laser captured microdissection and subsequent 
nCounter expression analysis.

Jejunal mucosa samples from IBS-D patients and healthy controls were obtained as described earlier19,34.

Laser captured microdissection (LCM) and pressure catapulting.  Fresh frozen colon samples 
were cut into 18 µm thick sections using a cryostat (Leica CM1850, Leica Microsystems, Wetzlar, Germany) 
and processed as following: the sections were mounted on membrane slides (PEN-membrane, 1 mm glass, Carl 
Zeiss MicroImaging GmbH) and incubated for 10 min at −20 °C in RNAlater-ICE (Ambion, Thermo Fisher 
Scientific). For further preservation, samples were fixed in ethanol and stained in cresyl violet acetate (1% (w/v) 
in ACS-grade ethanol (all from Sigma-Aldrich) for 15 s. Subsequently, the slides were washed in ethanol and 
incubated for 5 min in xylene (Carl Roth, Karlsruhe, Germany). After air-drying, the slides were mounted on the 
stage of an inverse microscope which is a component of a Microbeam LMPC System (Carl Zeiss MicroImaging 
GmbH, Oberkochen, Germany). We employed the RoboLPC method to microdissect and capture the appropriate 
tissue fragments (approx. 10 mm2 epithelium or lamina propria cells, ~100,000–250,000 cells; approx. 15 mm2 
myenteric plexus or muscular cell layer, ~100,000–250,000 cells).

Statistics.  Statistical analysis of genotyping data.  Comparison of genotype frequencies, association analyses 
and tests for deviation from the Hardy-Weinberg Equilibrium (HWE) were performed as described previously15.

Statistical analysis for luciferase, qPCR, ICW and goblet cell data.  Two-tailed parametric tests were used as appro-
priate (unpaired t-test, one-way ANOVA followed by Bonferroni correction post-hoc test) using GraphPad Prism 
5.0 software (GraphPad Software, Inc., La Jolla; California). Besides, a Mann-Whitney U test and an unpaired 
t-test with Welch’s correction were applied as indicated in the figure legends.

Relationships between clinical features (bowel movement, stool form) and miRNA expression were assessed 
by Spearman’s correlation rho. Data are expressed as mean ± standard error of the mean (SEM), unless stated 
otherwise; p-values of <0.05 (*p < 0.05) were considered statistically significant.

In silico analysis of miRNA binding sites.  Comparative in silico analyses of miRNA binding sites in 
the HTR4 gene were performed using the online prediction tools miRWalk35,36, RegRNA 1.037, miRanda38 and 
TargetScan4.2 (www.targetscan.org). Putative miRNA binding sites predicted by at least two different algorithms 
were taken into account.

A summary of all samples and applied experiments is given in the Supplementary (Supplementary Figure S6).
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The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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