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Global change, like droughts, can destabilize the carbon sink
function of peatlands, either directly or indirectly through
changes in plant community composition. While the effects
of drought and plant community composition on individual
carbon (C) related processes are well understood, their
effect on multiple C-related processes simultaneously—
multifunctionality—is poorly known. We studied the effect
of drought on four C-related processes (net and gross CO»
exchange, methane fluxes, and dissolved organic carbon
content) in a plant removal experiment. Plant functional type
(PFT) removal (graminoids, herbs, Polytrichum spp., incl.
combinations) negatively affected multifunctionality; most
markedly when all PFTs were removed. Our results corroborate
a negative drought effect on C-related multifunctionality.
Drought reduced multifunctionality, and this reduction
was again largest when all PFTs were removed. Our data
further indicate that much of these negative drought
effects were carried over and maintained from the initial
removal treatment. These results suggest that while a high
diversity in plant functional types is associated to high
C-related multifunctionality, plant community assembly does
not drive the ability of peatlands to withstand the negative
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impacts of drought on multifunctionality. Hence, to safeguard the carbon cycling function in
intact peatlands, the effects of climate change on the functional composition of the peatland plant
community needs to be minimized.

1. Introduction

Global climate change is affecting important ecosystem processes, by altering abiotic and biotic
conditions. Climate projections predict, for example, precipitation patterns to become increasingly
variable and the frequency of extreme drought to increase for the Northern Hemisphere [1]. Such
changes are extremely important for ecosystems that to a certain extent depend on precipitation for their
functioning, such as peatlands [2]. As peatlands represent an important sink for atmospheric carbon
(C)—they are currently estimated to store about 500 GT of C as peat [3]—the ability of peatlands to
act as a carbon sink depends on how the effects of climate change play out on these ecosystems. Much
research has been devoted on the role of environmental conditions, including hydrological conditions,
on peatland carbon (C) cycling. Overall, consensus exists that the effect of water table drawdown
on net peatland C uptake is negative [4,5]. Yet, the responses of individual C-related functions—net
ecosystem CO; uptake, ecosystem respiration, the release of methane, or the production and leaching
of dissolved organic carbon—to drought can be complex, often with opposite responses for different
processes. A drawdown in the water table, for example, generally leads to enhanced vascular plant
productivity in peatlands [6,7], although the effect largely depends on the composition of the plant
community [8-10]. Clearer is the effect of water table drawdown on carbon uptake by peat mosses;
lower water tables impede peat moss productivity [11-13]. The effects of water table drawdown on
peatland ecosystem respiration are less straightforward. In some studies ecosystem respiration has been
shown to be independent from the water table [14,15], while others report increases in respiration rates
with decreasing water tables [4,5,10]. Oppositely, methane fluxes from peat decrease with water table
drawdown [16]—despite a potential peak at early drought [4]—and are probably the result of decreased
potential methane production and alteration in the microbial communities [17,18]. Lastly, drought has
been linked to increased concentrations in dissolved organic carbon (DOC) leaching, mainly through
increased decomposition of organic matter [19,20]. In short, while our understanding on the effects of
drought on individual C-related processes in peatlands is strong, the effects of drought on multiple,
simultaneously occurring processes are poorly understood.

Climate change affects ecosystem processes directly, but also indirectly through alterations in the plant
community composition [21], which then affect ecosystem processes. These indirect effects are rather
understudied, yet important as changes in the plant community can modulate the negative impact of
climate change [22]. In peatland ecology the latter may be because peatland species composition has
long been perceived as remarkably stable [23,24]. Historical records, however, link drought to changes
in plant community composition [25]. This has led to increased recognition that projected climate
change alters species interactions, especially in the temperate climate zone [26]. Further, alterations
in the climate or environmental conditions may reduce biological diversity [27,28], the cornerstone
for sustaining a variety of ecosystem processes [29,30]. As species typically differ in their functional
traits—a morphological, physiological, or chemical characteristic that strongly influences organismal
performance—changes in plant species composition or diversity may alter functional trait composition
of the community [31]. Depending on the nature of changes in the plant community, climate change
may thus lead to an array of feedbacks on peatland processes, including its carbon sink function.
In peatlands, the importance of plant community composition for individual ecosystem processes
has recently been put forward [12,21,32-35]. Yet, the role of peatland plant community assembly
on the ability of peatlands to maintain multiple carbon-related functions—hereafter referred to a
C-related multifunctionality—remains unresolved. Moreover, the role of plant functional types on
the robustness of C-related multifunctionality to environmental stress, such as drought, is unknown.
We aim to bridge this knowledge-gap, and disentangle the effect of vascular plant community
composition (using a plant removal approach) and drought C-related multifunctionality in peatlands. We
hypothesize (i) that removing plant functional types (graminoids, herbs, non-Sphagnum mosses) erodes
multifunctionality of carbon-related peatland processes, and that this effect is larger with increasing
number of removed plant functional types. Additionally, we hypothesize that (ii) the loss of plant
functional types reduces the ability of poor fen communities to withstand the negative effects of drought
on multifunctionality.
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2. Material and methods
2.1. Field sampling

The Molenpolder is situated in the Vechtplassen area, a region rich in plant diversity due to the presence
of all successional terrestrialization stages from open peat ponds to ombrotrophic peatlands. A total
of 24 samples (diameter 22 cm, depth 26 cm) were collected from a poor fen in the Molenpolder,
The Netherlands (52°9'7.07” N; 5°5’83.18" E), in March 2010. The fen is characteristic for the area
and of special interest for conservation. It is characterized by a peat soil (1.5-2 m deep) overlain by
homogeneous Sphagnum spp. (mainly S. palustre L., S. squarossum Crome) and Polytrichum commune
Hedw. co-dominated bryophyte layer. The vascular plant community is dominated by the graminoids
Carex echinata Lam., Juncus effuses L., Juncus acutiflorus Benth., Hierochloé¢ odorata (L.) Britton, Sterns &
Poggenb., Carex hirta L., Carex canescens L. and Alopecurus geniculatus Lindh. Ex Scheele, and the herbs
Peucedanum palustre (L.) Moench, Lysimachia thyrsiflora L., Drosera rotundifolia L., Potentilla palustris (L.)
Scop. and Hydrocotyle vulgaris L. We sampled in a 10 x 10 m area of a 30 x 75 m mesotrophic fen. This
approach was assumed to reduce variance in peat structure, and ensure homogeneity in the vegetation.
Extracted mesocosms were, however, never extracted closer than 1 m from each other, while taking
care that each mesocosm would contain a selection of species from all plant functional types (Sphagnum
mosses, Polytrichum spp., graminoids, and herbs). Samples, consisting of fen peat and living vegetation,
were placed in PVC containers, and are hereafter referred to as mesocosms.

2.2. Experimental set-up

All mesocosms were subjected to a four-week acclimatization period in a phytotron (20°C/18°C
and 12/12h day/night, 70% relative humidity (RH), 400 ppm CO,, 200 umol PARm2s~! light
intensity), where we maintained water tables at field condition (1-2 cm below the bryophyte surface),
using an artificial rainwater solution [36]. After this acclimatization period, plant communities were
experimentally manipulated. All mesocosms were randomly allocated to one of the following treatments
(n=4): controls (C), graminoid removal (-Gram), herb removal (-Herb), Polytrichum removal (-Poly),
graminoid + herb removal (-Gram & Herb), and graminoids + herb + Polytrichum removal (-Gram &
Herb & Poly). Due to experimental limitations we did not remove Polytrichum mosses in combination
with graminoid or herb removal. Further, Sphagnum mosses were never removed as they are considered
key to the functioning of the ecosystem. For the vascular plants, removal was realized by clipping
the aboveground biomass flush to the moss layer. Polytrichum was removed by pulling all individuals
from the mesocosms. This was done cautiously to minimize perturbation in the peat soil. The control
mesocosms were left unchanged in species composition, yet to control for potential effects of the
treatment we selectively removed 5-10% of the vascular plant and Polytrichum cover (balanced over
the present plant functional types (PFTs) and based on visual comparison of the effect of the clipping
on the plant cover in removal mesocosms). As a result of these treatments, we removed 0.77+0.1 g
in the control mesocosms, 4.55+1.4 g in the graminoids removal mesocosms, 0.24 £0.07 g in the herb
removal mesocosms, 13.5 +4.9 g in the Polytrichum removal mesocosms, 3.53 £ 0.4 g in the graminoids &
herb removal mesocosms, and 9.76 +2.6 g in the graminoid & herb & Polytrichum removal mesocosms.
Throughout the experiment, treatments were reinforced by regular removal of regrowth.

After plant removal, mesocosms were left to acclimatize over a four-week period (post-clipping
acclimatization). Previous research with ombrotrophic bog mesocosms has shown this time to be
sufficient to minimize the effect of decaying roots on ecosystem respiration [12]. During the post-
clipping acclimatization period, mesocosms were watered two times per week to maintain field conditions.
Following the post-clipping acclimatization, a 25 day drought period was initiated. This period commenced
by draining all water from the mesocosms, and a full stop of the watering regime.

2.3. Ecosystem function measurements

Closed transparent flux chambers (diameter 20 cm, height 29 cm, fitted with a circulating fan) were
placed over the mesocosms to measure CO, and CHy fluxes, using a photoacoustic multi-gas analyser
(Innova Bruel and Kjeer BK 1302) connected to a multipoint sampler (CBISS MK2, 4-channel, CBISS
Ltd., England). Chamber measurements comprised five succeeding sampling points with an 8 min
interval. Net ecosystem exchange (NEE) was measured weekly during the acclimatization and the post-
acclimatization period, to enable calculating reliable initial values (see below). To assess the effect of
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Figure 1. Schematic set-up of the data analyses. The effect of clipping on each ecosystem function (1. clipping effect) was calculated
as the difference in ecosystem function before clipping (mean of all values, n = 24) and after clipping. z-values were calculated after
standardization by the pre-clipping mean and standard deviation. The effect of drought was calculated in two different ways. First (Ila),
the effect of drought for each plant removal treatment on each ecosystem function was calculated as the difference in the respective
function during drought and the post-clipping acclimatization control values. Hence, for each treatment z-values were calculated
after standardization by the post-clipping acclimatization control. In the second approach (IIb), instead of using the post-clipping
acclimatization control as a reference, the post-clipping acclimatization ecosystem function values for each corresponding treatment
were used.

drought, NEE was measured at the first and last day of the drought period. Ecosystem CO, respiration
(Reco) was measured in parallel, using a darkened chamber. Further, pore-water samples were extracted
from all mesocosms at the time of gas measurements using Rhizon soil moisture samplers (type MOM,
pore size 0.1 um, Eijkelkamp, Giesbeek, NL). Pore-water samples were stored in glass vials in the dark
at 4°C and were analysed for dissolved organic carbon (DOC) within two weeks after collection, using a
Skalar SANPLUS segmented flow analyser (Skalar analytical b.v. Breda, NL). As DOC is highly mobile
in the peat, we assume this part of the peat carbon pool to represent the labile carbon pool, vulnerable to
leaching and able to enhance decomposition of organic matter by stimulating the microbial community.

NEE was calculated from the change in concentration in the chamber headspace with time, using an
exponential nonlinear function [37]. CHy fluxes and Rgco were calculated using linear regression of gas
concentrations in the chamber headspace over time. Gross ecosystem production (GEP) was calculated
as the sum of NEE and Rgco. The ecological sign convention was used for the CO, (NEE and GEP)
and CHy data, so that positive values indicate a sink function, while negative values indicate a source
function of the ecosystem. High concentrations of DOC, which is the product of decomposition and plant
exudation, were seen as a negative function, as these DOCs can be lost from the ecosystem. To maintain
directional change comparable to the other functions we calculated inversed DOC concentrations (i.e.
low inversed values = high DOC concentrations).

2.4. Ecosystem multifunctionality

The overall effects of plant removal and drought on C-related processes were tested using a
multifunctionality approach [38]. Here, multifunctionality is defined as a single metric (z-score)
describing the overall function of net CO, and CHy ecosystem exchange, gross ecosystem production,
and the production and leaching of dissolved organic carbon. We calculated multifunctionality in a
multiple-step approach. First, per mesocosms data for each process were averaged for the four time
points during the acclimatization and post-clipping acclimatization period. This step was necessary to
reduce the variance in the ecosystem process values, hence provide a robust value for further analyses.
Next, to calculate the effect of plant functional type removal on ecosystem processes per treatment,
we standardized the process values by the global mean and standard deviation (i.e. the mean and
standard deviation of all mesocosms, 1 =24) of the pre-clipping ecosystem process (figure 1). To assess
the effect of drought on ecosystem processes we used two approaches (figure 1). In the first approach
(figure 1, Ila), we standardized ecosystem process during the drought period for each treatment by the
mean and standard deviation of the post-clipping acclimatization control values. In the second approach
(figure 1, IIb), ecosystem process values during drought for each treatment were standardized by the
mean and standard deviation of the post-clipping acclimatization values of the corresponding treatment.
These approaches differ in that the first approach takes the non-clipped control values as a reference,
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Table 1. (a) Results of the model testing, comparing the power of two models—one with only the plant removal treatments, one
with both the removal treatment and the amount of biomass removed as factors—in explaining the change in ecosystem (0, net
exchange (NEE), gross ecosystem production (GEP), net methane (CH4) flux, and the content of dissolved organic carbon, before and after
plant removal. LL,, = maximized log-likelihood of the model, AIC = Akaike Information criterion, AIC, = corrected AIC. (b) Results of
analysis on variance (ANOVA) on the most significant model, i.e. the model with the lowest AIC,.

@)
ecosystem process model LLax AlC AlC,
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e Ly Do
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while the second approach tests for the effect of drought irrespective of apparent effects of clipping on
ecosystem processes. Subsequently, the z-scores were used as an index of ecosystem multifunctionality
[39]. To remain close to natural processes and differences in the individual process rates, and hence be
relevant to land managers, we did not scale individual process values. Negative z-scores indicate low
multifunctionality, while positive z-scores indicate high multifunctionality.

2.5. Data analyses

The effects of the plant functional type removal treatments on individual ecosystem processes
and multifunctionality was tested using generalized linear models (GLMs) assuming Gaussian data
distribution. As the amount of biomass removed may explain part of the effects, we initially tested
different models: one that excluded, and one that included biomass removed (g) as a covarying factor.
Using the selMod function in the pgirmess package in R, we selected the model with the smallest corrected
Akaike information criterion (AICc). This model was then subjected to analysis of variance, using the
ANOVA function and the F statistic in the stats package, followed by a Tukey multicomparison test to
highlight differences between treatments. The effect of clipping and drought (for both standardization
approaches) on multifunctionality was analysed in a similar manner. All analyses were performed with
the software R 3.2.3.

3. Results

3.1. Plant removal effect on individual ecosystems functions

Plant functional type removal affected net ecosystem carbon exchange (NEE) and gross ecosystem
production (GEP), but not methane (CHy) fluxes and pore water dissolved organic carbon (DOC)
concentrations (table 1 and figure 2). Notably, removing all vascular plant functional types from the
mesocosms caused NEE to decrease dramatically. GEP decreased upon plant removal in those treatments
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Figure 2. The effect of the removal of plant functional types on net ecosytem C0; exchange, gross ecosystem production, CH4 production,
and the dissolved organic carbon (DOC) content in the pore water. Bars represent the change in the four carbon-related processes after
plant biomass removal. Different letters indicate significant difference between PFT removal treatments (Tukey’s multi-comparison test,
p < 0.05). We tested the effect of biomass removal on our model outcomes, see table 1.

that included the removal of graminoids (i.e. -Gram, -Gram & Herb, -Gram & Herb & Poly), and
could be partly explained by the loss of biomass (table 1 and figure 2). While not significant (table 1),
the removal of more than one plant functional type seemed to lower methane production by the peat
(figure 2).

3.2. Plant removal effect on carbon-related multifunctionality

Multifunctionality in carbon-related ecosystem processes was in general eroded when plant functional
types were removed (figure 3). The removal of graminoids, herbs, Polytrichum, and graminoids & herbs
resulted in a non-significant decrease (175, 132, 217, and 319%, respectively) in multifunctionality. The
removal of all vascular plant functional types enhanced this trend (figure 3, 588%), and in line with the
aforementioned was mainly due to the decrease (p <0.05) in NEE and GEP (figure 2). The removal of
5-10% of the plant cover without changing the community composition, i.e. the control plots, showed
an increase in multifunctionality, underpinning the negative effect of the loss of PFTs on C-related
multifunctionality.

3.3. The effect of drought on ecosystem multifunctionality

When compared to the post-clipping acclimatization values of the control, i.e. the unchanged communities,
C-related multifunctionality was unaffected directly after the initiation of drought, but eroded after the
25 day drought period (figure 4a and table 2). Within-time analysis (t=1, t=25) indicates no plant
removal effect on multifunctionality directly after the initiation of drought owing to, in part, the loss
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Figure 3. Ecosystem multifunctionality after biomass removal in relation to plant functional type (PFT) removal treatment.
Multifunctionality was calculated as the mean z-value calculated from the standardized (overall pre-clipping mean and standard
deviation, figure 1) ecosystem values. Different letters indicate significant difference between PFT removal treatments (Tukey’s multi-
comparison test, p < 0.05).

of biomass (table 2). After the 25day drought period, multifunctionality was eroded (p <0.05) when
more than one plant functional types were removed (figure 42 and table 2). The negative effects of
PFT removal in C-related multifunctionality are likely ‘carried over’ from decreased z-values prior to
the initiation of drought (figure 4a; electronic supplementary material, figure S1). To elucidate this,
we performed a similar test but now compared multifunctionality values during drought to the post-
clipping acclimatization values of the corresponding treatment (intra-treatment comparison, figure 1).
Multifunctionality one day after the initiation of drought increased (non-significant) irrespective of plant
functional type removal, but decreased after 25 days of drought (figure 4b). These results underpin a
strong eroding effect of drought on C-related multifunctionality, but also attest for an absence of a role
of plant community assembly thereon (figure 4b and table 2).

4. Discussion

Fens have been intensively studied in the context of nitrogen and phosphorus pollution [40-42]
and vegetation succession and distribution [43,44]. Additionally, the effects of climate change driven
alterations in plant community assembly on poor fen ecosystem processes are well understood [21].
The combined effects of plant functional types on the overall performance of these ecosystems, and
on the ecosystems’ ability to sustain these functions, to our best of knowledge, however, remain
elusive. In grassland ecosystems, functional identity and diversity of the plant community are important
drivers for ecosystem multifunctionality [45-47]. Our study does not necessarily reconcile these findings.
We suggest that the less pronounced effects of plant functional type (PFT) removal on C-related
multifunctionality in our study are explained by opposing responses in individual processes that balance
the mean performance over the four carbon-related processes [48]. To illustrate, a decrease in NEE
upon PFT removal seems to be counteracted by a reduction in methane fluxes; the latter most likely
caused by reduced methanogenic activity through decreased input of labile carbon [18,34,49]. While
PFT removal decreases gross C uptake (GEP), depending on the nature of the PFT, the related decrease
in biomass results in lower maintenance respiration. This explains, in part, the close resemblance in
patterns of NEE and GEP. Nevertheless, and despite the absence of pronounced statistical differences
in multifunctionality after PFT removal, the removal of PFTs from the communities always caused
multifunctionality to shift from positive to negative. Moreover, the removal of single PFT resulted
in a decrease in the simultaneous performance of the four C-related processes. These results reflect
general understanding that a high level of diversity is needed to sustain multifunctionality [50-52]. Most
likely, plant-microbe interactions play an important role in explaining our results, as changes in the
peatland plant community are repeatedly reported to be reflected in the microbial community [34,53,54].
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Figure 4. Ecosystem multifunctionality after the initiation of an experimental drought in relation to plant functional type (PFT) removal
treatment. C-related multifunctionality was calculated in two ways: First, (a) as the mean z-value calculated from individual ecosystem
values standardized by mean and standard deviation values of the post-clipping acclimatization control treatments (figure 1, lla drought
effect); second, (b) as the mean z-value calculated from individual ecosystem values standardized by mean and standard deviation values
of the corresponding post-clipping acclimatization PFT treatments (figure 1, b drought effect). The relationships between PFT removal
and each individual ecosystem function over the experimental period are shown in electronic supplementary material, figure S1. Different
letters indicated significant difference between PFT removal treatments (Tukey’s multi-comparison test, p < 0.05; n.s., not significant),
analysed separately for the two times after initiation of drought.

Decreased biodiversity, and in our case the loss of plant functional types, may even reduce the functional
diversity of the microbial community [55]. Such reduction of microbial functional diversity may in turn
further erode ecosystem multifunctionality [46].

Multifunctionality is an average measure that considers a set of ecosystem processes simultaneously,
and should be interpreted with care. If, for example, different functions (i.e. carbon, nitrogen and
phosphorus cycling, biodiversity provisioning, etc.) are considered, opposite function may moderate
the value of multifunctionality, making ecological interpretation difficult without assessing individual
functions. We argue, however, that describing multifunctionality from simultaneous processes that
contribute to a single function—C-related multifunctionality—is very powerful as it allows a holistic
assessment of the ecosystem function. In other words, while the individual processes that underlie
an ecosystem function are important, how these individual processes play out simultaneously—
multifunctionality—provides more understanding on the overall status of the particular ecosystem
function. Our results highlight that although the influence of plant community assembly on C-related
multifunctionality seems to level out due to contrasting effects on individual processes, the loss of
individual plant functional types had an overall negative effect on these processes. This then resulted
in a slight, though non-significant, decrease in the overall carbon cycling function of the poor fen system.

We calculated the effect of drought on C-related multifunctionality in two ways, one where pre-drought
ecosystem function values of the undisturbed control mesocosms served as a reference, and one where
the values during drought were compared to values pre-drought from the same treatment. Both results
show that drought exacerbates the erosion in poor fen C-related multifunctionality. The first approach
shows that, with almost one month of drought, the removal of more than one plant functional types

61v0LL % Ds uado 205y B10‘Buiysigndkiaposieforsoss



Table 2. Results of repeated measures analysis of variance (RM—ANOVA), testing the effect of plant functional type removal, incl. n
biomass removed (co-variable) on the z-values during drought. The two different ways of testing refer to the method of calculating
multifunctionality (see text in Material and methods, figure 1). n.s., non-significant.

dfyum, dfden F-value p-value

drought effect lla on multifunctionality
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strongly reduces ecosystem multifunctionality. The second approach, where within-treatment effect of
drought on multifunctionality was assessed, does not show such effect. This would mean that pre-
drought differences in multifunctionality, caused by PFT removal, while exacerbated during drought,
persist during drought. In a previous study on mesocosms from a Sphagnum-dominated bog, it has
been shown that removing vascular plant functional types decreased net carbon uptake but not the
robustness of the ecosystem as a carbon sink to withstand drought [12]. Our results corroborate these
findings, and underpin earlier findings on the importance of the peat moss community and the peat
matrix for sustaining the functioning of the ecosystem. In other words, non-Sphagnum plant functional
types are largely responsible for the magnitude of the peatland carbon sink function, but play less a role
in sustaining that function during environmental perturbation like drought.

The results from our study are important, as climate change is known to alter the composition of
peatlands, with pronounced shifts between vascular plants and peat mosses, as well as between plant
functional types within these larger groups [7,56]. Increased temperature and drought occurrences can
increase vascular plant growth leading to a decrease in peat moss growth [21]. Subsequently, shifts in
the competitive balance between plant functional types may result in the loss of key plant functional
types, weakening the carbon sink function of peatlands [21,57]. In this study, Sphagnum mosses were
never removed as they are a crucial part of the ecosystem in Sphagnum-dominated peatland [58], and
removing them from the system would result in a non-viable ecosystem [32]. In the light of our results,
the loss of single vascular plant functional types from fen ecosystems only marginally affects the ability
of these ecosystems to sustain multiple carbon-related functions. Oppositely, our results indicate that
a diverse plant functional type composition is most effective in sustaining C-related multifunctionality.
Results from a recent study show that the protection of current carbon stocks is important in order to
slow down the rate of increases in atmospheric CO; [59]. Our study reconciles with such statement;
protecting the diversity in plant communities in northern peatlands, while not increasing the robustness
of these systems to projected drought, increases the overall C-sink function of these systems.

Ethics. Permission for sample collection was granted to B.B. by the Dutch State Forestry Service (Staatsbosbeheer).



Data accessibility. Datasets are deposited at the Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.g1pk3) [60].
Authors’ contributions. B.J.M.R. and M.M.H. designed the study; B.J.M.R. and B.B. collected the samples. B.J.]M.R. and
M.M.H. collected the data. B.J.M.R. and V.E.].]. analysed and interpreted the data. B.J.M.R. and V.E.].]. wrote the first
draft of the manuscript, to which B.B. and M.M.H. contributed. All authors gave final approval for publication.
Competing interests. We have no competing interests.
Funding. Financial support for this work has come from the Dutch Foundation for the Conservation of Irish Bogs.
Acknowledgements. We thank R. van Rossum for collecting many of the flux data, and J. Kuiper for help during the set-up
of the experiment. Eric Allan provided help with the R-codes on multifunctionality. Further, we are indebted to the
input of two anonymous reviewers whose contributions improved the quality of our manuscript.

References

Dai A. 2012 Increasing drought under global
warming in observations and models. Nat. Clim.
Chang. 3, 52-58. (doi:10.1038/nclimate1633)

Clymo RS. 1987 The ecology of peatlands. Sci. Prog.
71,593-615.

Yu ZC. 2012 Northern peatland carbon stocks and
dynamics: a review. Biogeosciences 9, 4071-4085.
(doi:10.5194/bg-9-4071-2012)

Estop-Aragonés C, Zajac K, Blodau C. 2016 Effects of
extreme experimental drought and rewetting on
(0, and CH, exchange in mesocosms of 14
European peatlands with different nitrogen and
sulfur deposition. Glob. Chang. Biol. 22, 2285-2300.
(doi:10.1111/gch.13228)

Lund M, Christensen TR, Lindroth A, Schubert P.
2012 Effects of drought conditions on the carbon
dioxide dynamics in a temperate peatland. Environ.
Res. Lett. 7, 045704. (d0i:10.1088/1748-9326/7/4/
045704)

Weltzin JF, Pastor J, Harth C, Bridgham SD,
Updegraff K, Chapin CT. 2000 Response of bog and
fen plant communities to warming and water-table
manipulations. Ecology 81, 3464—-3478.
(doi:10.1890/0012-9658(2000)081[3464:R0BAFP]
2.0.00,2)

Buttler A et al. 2015 Experimental warming interacts
with soil moisture to discriminate plant responses
in an ombrotrophic peatland. J. Veg. Sci. 26,
964-974. (doi:10.1111/jvs.12296)

Korrensalo A, Alekseychik P, Hajek T, Rinne J, Vesala
T, Mehtétalo L, Mammarella |, Tuittila E-S. 2017
Species-specific temporal variation in
photosynthesis as a moderator of peatland carbon
sequestration. Biogeosciences 14, 257-269.
(doi:10.5194/bg-14-257-2017)

Breeuwer A, Robroek BJM, Limpens J, Heijmans
MMPD, Schouten MGC, Berendse F. 2009 Decreased
summer water table depth affects peatland
vegetation. Basic Appl. Ecol. 10, 330-339.
(doi:10.1016/j.baae.2008.05.005)

. Strack M, Waddington JM, Rochefort L, Tuittila E-S.

2006 Response of vegetation and net ecosystem
carhon dioxide exchange at different peatland
microforms following water table drawdown. J.
Geophys. Res. 111, G02006. (d0i:10.1029/2005
1G000145)

. Adkinson AC, Humphreys ER. 2011 The response of

carbon dioxide exchange to manipulations of
Sphagnum water content in an ombrotrophic bog.
Ecohydrol. 4,733-743. (d0i:10.1002/eco.171)

. Kuiper JJ, Mooij WM, Bragazza L, Robroek BJM. 2014

Plant functional types define magnitude of drought
response in peatland (0, exchange. Ecology 95,
123-131. (doi:10.1890/13-0270.1)

20.

2.

2.

23.

24.

25.

. Malmer N, Svensson BM, Wallén B. 1994

Interactions between Sphagnum mosses and field
layer vascular plants in the development of
peat-forming systems. Folia Geobot. Phytotax. 29,
483-496. (d0i:10.1007/BF02883146)

. Lafleur PM, Moore TR, Roulet NT, Frolking S. 2005

Ecosystem respiration in a cool temperate hog
depends on peat temperature but not water table.
Ecosystems 8, 619-629. (doi:10.1007/510021-003-
0131-2)

. Updegraff K, Bridgham SD, Pastor J, Weishampel P,

Harth C. 2001 Response of (0, and CH4 emissions
from peatlands to warming and water table
manipulation. Ecol. Appl. 11, 311-326. (doi:10.1890/
1051-0761(2001)011[0311:ROCACE]2.0.€0;2)

. Strack M, Waddington JM. 2007 Response of

peatland carbon dioxide and methane fluxes to a
water table drawdown experiment. Global
Biogeochem. Cycles 21, GB1007. (doi:10.1029/
2006GB002715)

. Yrjdld K et al. 2011 CH4 production and oxidation

processes in a boreal fen ecosystem after long-term
water table drawdown. Glob. Chang. Biol. 17,
1311-1320. (doi:10.1111/1.1365-2486.2010.02290.x)

. Galand PE, Fritze H, Conrad R, Yrjéla K. 2005

Pathways for methanogenesis and diversity of
methanogenic archaea in three boreal peatland
ecosystems. Appl. Environ. Microb. 71, 2195-2198.
(doi:10.1128/AEM.71.4.2195-2198.2005)

. Fenner N, Freeman C. 2011 Drought-induced carbon

loss in peatlands. Nat. Geosci. 4, 895-900.
(doi:10.1038/nge01323)

Kalbitz K, Geyer S. 2002 Different effects of peat
degradation on dissolved organic carbon and
nitrogen. Org. Geochem. 33, 319-326.
(doi:10.1016/50146-6380(01)00163-2)

Dieleman CM, Branfireun BA, McLaughlin JW, Lindo
1.2014 Climate change drives a shift in peatland
ecosystem plant community: implications for
ecosystem function and stability. Glob. Chang. Biol.
21, 388-395. (doi:10.1111/gcb.12643)

Ward SE, Ostle NJ, Oakley S, Quirk H, Henrys PA,
Bardgett RD. 2013 Warming effects on greenhouse
gas fluxes in peatlands are modulated by
vegetation composition. £col. Lett. 16,1285-1293.
(doi:10.1111/ele.12167)

Rydin H, Barber KE. 2001 Long-term and fine-scale
coexistence of closely related species. Folia Geobot.
36, 53-61. (doi:10.1007/BF02803138)

Backéus I. 1972 Bog vegetation re-mapped after
sixty years: studies on Skagershultamossen, central
Sweden. Oikos 23, 384-393. (doi:10.2307/3543178)
Stowiriski M et al. 2016 Drought as a stress driver of
ecological changes in peatland—a palaeo-

26.

27.

2.

29.

30.

3.

32

3.

34.

35.

ecological study of peatland development between
3500BCE and 200BCE in central Poland. Palaeogeogr.
Palaeoclimatol. Palaeoecol 461, 272-291.
(doi10.1016/j.palae0.2016.08.038)

Schwarzer C, Heinken T, Luthardt V, Joshi J. 2013
Latitudinal shifts in species interactions interfere
with resistance of southern but not of northern
bog-plant communities to experimental climate
change. J. Ecol. 101, 1484-1497. (doi:10.1111/
1365-2745.12158)

Field CD et al. 2014 The role of nitrogen deposition in
widespread plant community change across
semi-natural habitats. Ecosystems 17, 864—877.
(doi:10.1007/510021-014-9765-5)

Stevens CJ, Dise NB, Mountford JO, Gowing DJ. 2004
Impact of nitrogen deposition on the species
richness of grasslands. Science 303, 1876—1879.
(doi:10.1126/science.1094678)

Hector A et al. 1999 Plant diversity and productivity
experiments in European grasslands. Science

286, 1123-1127. (doi:10.1126/science.286.

5442.11%3)

Eisenhauer N et al. 2016 Biodiversity—ecosystem
function experiments reveal the mechanisms
underlying the consequences of biodiversity change
in real world ecosystems. J. Veg. Sci. 27,1061-1070.
(doi:10.111/jvs.12435)

Lavorel S, Garnier E. 2002 Predicting changes in
community composition and ecosystem
functioning from plant traits: revisiting the Holy
Grail. Funct. Ecol. 16, 545—-556. (doi:10.1046/j.
1365-2435.2002.00664.X)

Ward SE, Bardgett RD, McNamara NP, Ostle NJ. 2009
Plant functional group identity influences
short-term peatland ecosystem carbon flux:
evidence from a plant removal experiment. Funct.
Fcol. 23, 454-462. (doi:10.1111/].1365-2435.2008.
01521.x)

Ward SE, Orwin KH, Ostle NJ, Briones MJI, Thomson
B, Griffiths RI, Oakley S, Quirk H, Bardgett RD. 2015
Vegetation exerts a greater control on litter
decomposition than climate warming in peatlands.
Ecology 96, 113-123. (d0i:10.1890/14-0292.1)
Robroek BJM et al. 2015 Peatland vascular plant
functional types affect methane dynamics by
altering microbial community structure. J. £col. 103,
925-934. (doi:10.1111/1365-2745.12413)

Potvin LR, Kane ES, Chimner RA, Kolka RK, Lilleskov
EA. 2015 Effects of water table position and plant
functional group on plant community, aboveground
production, and peat properties in a peatland
mesocosm experiment (PEATcosm). Plant Soil

387, 277-294. (doi:10.1007/511104-014-

2301-8)

61v0LL % Ds uado 205y B10‘Buiysigndkiaposieforsoss


http://dx.doi.org/10.5061/dryad.g1pk3
http://dx.doi.org/10.1038/nclimate1633
http://dx.doi.org/10.5194/bg-9-4071-2012
http://dx.doi.org/10.1111/gcb.13228
http://dx.doi.org/10.1088/1748-9326/7/4/045704
http://dx.doi.org/10.1088/1748-9326/7/4/045704
http://dx.doi.org/10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2000)081[3464:ROBAFP]2.0.CO;2
http://dx.doi.org/10.1111/jvs.12296
http://dx.doi.org/10.5194/bg-14-257-2017
http://dx.doi.org/10.1016/j.baae.2008.05.005
http://dx.doi.org/10.1029/2005JG000145
http://dx.doi.org/10.1029/2005JG000145
http://dx.doi.org/10.1002/eco.171
http://dx.doi.org/10.1890/13-0270.1
http://dx.doi.org/10.1007/BF02883146
http://dx.doi.org/10.1007/s10021-003-0131-2
http://dx.doi.org/10.1007/s10021-003-0131-2
http://dx.doi.org/10.1890/1051-0761(2001)011[0311:ROCACE]2.0.CO;2
http://dx.doi.org/10.1890/1051-0761(2001)011[0311:ROCACE]2.0.CO;2
http://dx.doi.org/10.1029/2006GB002715
http://dx.doi.org/10.1029/2006GB002715
http://dx.doi.org/10.1111/j.1365-2486.2010.02290.x
http://dx.doi.org/10.1128/AEM.71.4.2195-2198.2005
http://dx.doi.org/10.1038/ngeo1323
http://dx.doi.org/10.1016/S0146-6380(01)00163-2
http://dx.doi.org/10.1111/gcb.12643
http://dx.doi.org/10.1111/ele.12167
http://dx.doi.org/10.1007/BF02803138
http://dx.doi.org/10.2307/3543178
http://dx.doi.org/10.1016/j.palaeo.2016.08.038
http://dx.doi.org/10.1111/1365-2745.12158
http://dx.doi.org/10.1111/1365-2745.12158
http://dx.doi.org/10.1007/s10021-014-9765-5
http://dx.doi.org/10.1126/science.1094678
http://dx.doi.org/10.1126/science.286.5442.1123
http://dx.doi.org/10.1126/science.286.5442.1123
http://dx.doi.org/10.1111/jvs.12435
http://dx.doi.org/10.1046/j.1365-2435.2002.00664.x
http://dx.doi.org/10.1046/j.1365-2435.2002.00664.x
http://dx.doi.org/10.1111/j.1365-2435.2008.01521.x
http://dx.doi.org/10.1111/j.1365-2435.2008.01521.x
http://dx.doi.org/10.1890/14-0292.1
http://dx.doi.org/10.1111/1365-2745.12413
http://dx.doi.org/10.1007/s11104-014-2301-8
http://dx.doi.org/10.1007/s11104-014-2301-8

36.

3.

38.

39.

40.

4.

4.

4.

Garrels RM, Christ CL. 1965 Solutions, minerals and
equilibria. Boston, MA: Jones and Bertlett
Publishers.

Kutzbach L, Schneider J, Sachs T, Giebels M,
Nykénen H, Shurpali NJ, Martikainen PJ, Alm J,
Wilmking M. 2007 (0, flux determination by
closed-chamber methods can be seriously biased by
inappropriate application of linear regression.
Biogeosciences 4,1005-1025. (doi:10.5194/bg-4-
1005-2007)

Allan E et al. 2015 Land use intensification alters
ecosystem multifunctionality via loss of biodiversity
and changes to functional composition. Ecol. Lett.
18, 834-843. (doi:10.1111/ele.12469)

Maestre FT et al. 2012 Plant species richness and
ecosystem multifunctionality in global drylands.
Science 335, 214-218. (doi:10.1126/science.1215442)
Paulissen MPCP, Van Der Ven PJM, Dees AJ, Bobbink
R.2004 Differential effects of nitrate and
ammonium on three fen bryophyte species in
relation to pollutant nitrogen input. New Phytol.
164, 451-458. (doi:10.1111/.1469-8137.2004.01196.x)
Kooijman AM. 2012 ‘Poor rich fen mosses':
atmospheric N-deposition and P-eutrophication in
base-rich fens. Lindbergia 35, 42-52.

Kooijman AM. 1992 The decrease of rich fen
bryophytes in The Netherlands. Biol. Conserv. 59,
139-143. (d0i:10.1016/0006-3207(92)90573-6)

Faber AH, Kooijman AM, Brinkkemper 0, van der
Plicht J, van Geel B. 2016 Palaeoecological
reconstructions of vegetation successions in two
contrasting former turbaries in the Netherlands and
implications for conservation. Rev. Palaeobot.
Palynol. 233, 77-92. (doi:10.1016/j.revpalbo.
2016.07.007)

. Sarneel JM, Soons MB, Geurts JJM, Beltman B,

Verhoeven JTA. 2011 Multiple effects of land-use
changes impede the colonization of open water in
fen ponds. J. Veg. Sci. 22, 551-563. (doi:10.1111/j.
1654-1103.2011.01281.x)

4.

46.

47.

48.

49.

50.

51

52.

53.

Mouillot D, Villéger S, Scherer-Lorenzen M, Mason
NWH. 2011 Functional structure of biological
communities predicts ecosystem multifunctionality.
PLoS ONE 6, €17476. (d0i:10.1371/journal.pone.
0017476)

Wagg C, Bender SF, Widmer F, van der Heijden
MGA. 2014 Soil biodiversity and soil community
composition determine ecosystem
multifunctionality. Proc. Natl Acad. Sci. USA T,
5266—5270. (doi:10.1073/pnas.1320054111)
Gonzélez Macé 0, Steinauer K, Jousset A,
Eisenhauer N, Scheu S. 2016 Flood-induced changes
in soil microbial functions as modified by plant
diversity. PLoS ONE 11, e0166349. (doi:10.1371/
journal.pone.0166349)

Bradford MA et al. 2014 Discontinuity in the
responses of ecosystem processes and
multifunctionality to altered soil community
composition. Proc. Nat/ Acad. Sci. USAT,

14 478-14 483. (d0i:10.1073/pnas.1413707111)

Strom L, Tagesson T, Mastepanov M, Christensen
TR. 2012 Presence of Eriophorum scheuchzeri
enhances substrate availability and methane
emission in an Arctic wetland. Soil Biol. Biochem. 45,
61-70. (d0i:10.1016/j.50ilbi0.2011.09.005)

Gamfeldt L, Hillebrand H, Jonsson PR. 2008 Multiple
functions increase the importance of biodiversity
for overall ecosystem functioning. Ecology 89,
1223-1231. (doi:10.1890/06-2091.1)

Isbell F et al. 2011 High plant diversity is needed to
maintain ecosystem services. Nature 477,199-202.
(doi:10.1038/nature10282)

Gamfeldt L, Roger F. 2017 Revisiting the
biodiversity—ecosystem multifunctionality
relationship. Nat. Ecol. Evol. 1, 0168.
(doi:10.1038/541559-017-0168)

Marti M, Juottonen H, Robroek BJM, Yrjala K,
Danielsson A, Lindgren P-E, Svensson BH. 2015
Nitrogen and methanogen community

54.

55.

56.

57.

58.

59.

60.

composition within and among three Sphagnum
dominated peatlands in Scandinavia. Soil Biol.
Biochem. 81,204-211. (doi:10.1016/j.soilbio.
2014.11.016)

Opelt K, Berg C, Schonmann S, Eberl L, Berg G. 2007
High specificity but contrasting biodiversity of
Sphagnum-associated bacterial and plant
communities in bog ecosystems independent of the
geographical region. ISME J. 1, 502-516.
(doi:10.1038/ismej}.2007.58)

Lefcheck JS et al. 2015 Biodiversity enhances
ecosystem multifunctionality across trophic levels
and habitats. Nat. Commun. 6, 6936.
(d0i:10.1038/ncomms7936)

Walker TN, Ward SE, Ostle NJ, Bardgett RD. 2015
Contrasting growth responses of dominant
peatland plants to warming and vegetation
composition. Oecologia 178, 141-151. (doi:10.1007/
500442-015-3254-1)

Bragazza L, Buttler A, Robroek BJM, Albrecht R,
Zaccone , Jassey VEJ, Signarbieux C. 2016
Persistent high temperature and low precipitation
reduce peat carbon accumulation. Glob. Change Biol.
22, /M4-4123. (doi:10.1111/gcb.13319)

Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot
J, Frolking S, McGuire AD, Tuittila E-S. 2012 The
resilience and functional role of moss in boreal and
arctic ecosystems. New Phytol. 196, 49—67.
(doi:10.1111/j.1469-8137.2012.04254.x)

Keenan TF, Prentice IC, Canadell JG, Williams CA,
Wang H, Raupach M, Collatz GJ. 2016 Recent pause
in the growth rate of atmospheric 0, due to
enhanced terrestrial carbon uptake. Nat. Commun.
7,13428. (doi:10.1038/ncomms13428)

Robroek BJM, Jassey VEJ, Beltman B, Hefting MM.
2017 Data from: Diverse fen plant communities
enhance carbon-related multifunctionality, but do
not mitigate negative effects of drought. Dryad
Digital Repository. (doi:10.5061/dryad.qg1pk3)

6vv0LL b DS uado 205y B1oBuiysigndfaaposieforsoss


http://dx.doi.org/10.5194/bg-4-1005-2007
http://dx.doi.org/10.5194/bg-4-1005-2007
http://dx.doi.org/10.1111/ele.12469
http://dx.doi.org/10.1126/science.1215442
http://dx.doi.org/10.1111/j.1469-8137.2004.01196.x
http://dx.doi.org/10.1016/0006-3207(92)90573-6
http://dx.doi.org/10.1016/j.revpalbo.2016.07.007
http://dx.doi.org/10.1016/j.revpalbo.2016.07.007
http://dx.doi.org/10.1111/j.1654-1103.2011.01281.x
http://dx.doi.org/10.1111/j.1654-1103.2011.01281.x
http://dx.doi.org/10.1371/journal.pone.0017476
http://dx.doi.org/10.1371/journal.pone.0017476
http://dx.doi.org/10.1073/pnas.1320054111
http://dx.doi.org/10.1371/journal.pone.0166349
http://dx.doi.org/10.1371/journal.pone.0166349
http://dx.doi.org/10.1073/pnas.1413707111
http://dx.doi.org/10.1016/j.soilbio.2011.09.005
http://dx.doi.org/10.1890/06-2091.1
http://dx.doi.org/10.1038/nature10282
http://dx.doi.org/10.1038/s41559-017-0168
http://dx.doi.org/10.1016/j.soilbio.2014.11.016
http://dx.doi.org/10.1016/j.soilbio.2014.11.016
http://dx.doi.org/10.1038/ismej.2007.58
http://dx.doi.org/10.1038/ncomms7936
http://dx.doi.org/10.1007/s00442-015-3254-1
http://dx.doi.org/10.1007/s00442-015-3254-1
http://dx.doi.org/10.1111/gcb.13319
http://dx.doi.org/10.1111/j.1469-8137.2012.04254.x
http://dx.doi.org/10.1038/ncomms13428
http://dx.doi.org/10.5061/dryad.g1pk3

	Introduction
	Material and methods
	Field sampling
	Experimental set-up
	Ecosystem function measurements
	Ecosystem multifunctionality
	Data analyses

	Results
	Plant removal effect on individual ecosystems functions
	Plant removal effect on carbon-related multifunctionality
	The effect of drought on ecosystem multifunctionality

	Discussion
	References

