Skip to main content
. 2017 Nov 2;18:512. doi: 10.1186/s13063-017-2248-1

Table 1.

Summary of details of ten regression models evaluated in the simulation study

Model SEs 95% CI or posterior interval Other assumptions
GLM-Bin Model-based, unadjusted for center correlation Wald
GEE binomial Robust sandwich t-based Exchangeable working correlation
GEE binomial KC-correcteda Robust sandwich with small-sample correction t-based Exchangeable working correlation
GEE Poisson Robust sandwich t-based Exchangeable working correlation
GEE Poisson KC-correcteda Robust sandwich with small-sample correction t-based Exchangeable working correlation
GLMM binomial Model-based Wald Adaptive quadrature with 10 points
GLMM binomial bootstrapa Parametric bootstrap Parametric bootstrap, quantile-based Laplace for fitting bootstrap samples
GLMM Poisson Model-based Wald Adaptive quadrature with 10 points
GLMM Poisson bootstrapa Parametric bootstrap Parametric bootstrap, quantile-based Laplace for fitting bootstrap samples
Bayesian binomial GLMM Posterior SD Quantile-based posterior interval Priors β0 ~ Normal(0,102); β1, β2 ~ Normal(0,1); σ ~ half-Normal(0,1)

Abbreviations: GEE Generalized estimating equation, GLM-Bin Log-binomial regression model, GLMM Generalized linear mixed model, KC Kauermann and Carroll

aThe small sample KC correction or bootstrap samples correct only the SEs and 95% CIs and do not affect the point estimates of the risk ratio