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Abstract

EvoDesign is a computational algorithm that allows the rapid creation of new protein sequences 

that are compatible with specific protein structures. As such, it can be used to optimize protein 

stability, to resculpt the protein surface to eliminate undesired protein-protein interactions, and to 

optimize protein-protein binding. A major distinguishing feature of EvoDesign in comparison to 

other protein design programs is the use of evolutionary information in the design process to guide 

the sequence search toward native-like sequences known to adopt structurally similar folds as the 

target. The observed frequencies of amino acids in specific positions in the structure in the form of 

structural profiles collected from proteins with similar folds and complexes with similar interfaces 

can implicitly capture many subtle effects that are essential for correct folding and protein-binding 

interactions. As a result of the inclusion of evolutionary information, the sequences designed by 

EvoDesign have native-like folding and binding properties not seen by other physics-based design 

methods. In this chapter, we describe how EvoDesign can be used to redesign proteins with a 

focus on the computational and experimental procedures that can be used to validate the designs.
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1 Introduction

Computational protein design has expanded in recent years from the prediction of the effects 

of single site mutations to the complete redesign of entire proteins, including the alteration 

of protein-protein binding affinity and specificity [1–4], enzymatic activity [5, 6], and even 

the creation of new folds [7] and functions [8] that are not seen in nature. On the theoretical 

side, protein design has been used to find the sequence constraints necessary to generate 

specific folds or functions [9–11]. Through the use of these constraints, fundamental 

questions in protein evolution have been addressed by distinguishing what is physically 

possible from what is actually observed in evolution [10, 12].

However, full protein redesign beyond the mutation of a few hot spot residues, called de 
novo design, is computationally difficult, which is reflected in the relatively low successful 

percentage of successful designs. Most algorithms for de novo protein design approach the 

problem as reverse ab initio protein folding, evaluating the energy of the sequence according 

to all-atom physical potentials. Several problems become apparent in the naïve application 
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of this approach: (1) A very large number of sequences must be considered, which limits the 

force field to only approximate energy terms that can be rapidly calculated; (2) there is a 

mismatch between the low-resolution models generated in the sequence search and the all-

atom physical potentials used for evaluation. To make the design simulation computationally 

tractable, the possible conformations of the side-chains of the protein are restricted to a 

limited set of discrete rotamer conformations. The small steric clashes that necessarily result 

from this approximation force the use of dampened potentials that may miss subtle 

interactions that exist in the native protein [13, 14]; (3) the sequence search is considered 

only with the protein in isolation, not as the protein actually exists in the cellular context. 

This causes subtle problems in the real-life application of the designed proteins, particularly 

with respect to aggregation, as the highly hydrophobic sequences favored by folding 

energetics generally adopt highly compact sequences in silico but tend to aggregate in reality 

when actually expressed [15].

One approach to handle these challenges is to increase the accuracy of the design process by 

attempting to model physical reality at a higher resolution. In this spirit, design 

methodologies have been created that explicitly consider multiple conformations of the 

folded protein using ensemble techniques for multistate design [16–18] or that explicitly 

consider the unfolded state during the design process [18]. Alternatively, other design 

methodologies have been created that recognize the inherent inaccuracy of the force fields 

and attempt to diminish the effects of known inaccuracies. One example is the use of soft-

core potentials that lessen repulsive interactions, preventing strongly unfavorable 

interactions that can be alleviated by small backbone motions from overriding the other 

terms [19]. Another example of this approach is the inclusion of additional terms in the force 

field that consider factors relevant to real proteins that are missing in the simulation, for 

example, the explicit consideration of inappropriate hydrophobic surfaces to limit 

aggregation in the designed sequences [18, 20]. The ongoing development of these methods 

has contributed greatly to the field and has led to some spectacular successes. However, 

complete de novo protein design is still a difficult process with routine application still in the 

future.

An alternative approach, based on hard-won knowledge from protein fold-recognition and 

structure prediction [21–24], is to recognize that evolution implicitly encodes information on 

protein folds and binding interactions that greatly exceeds our ability to describe it through 

reductionist, physics-based methods. This evolution-based method approach to protein 

design differs from the physics-based methods in that most energy terms are not dependent 

on the full-atom representation of each tested sequence, whose inaccuracy is a significant 

source of error. Instead, the sequence space search is constrained by the sequence and 

structural profiles collected from structurally analogous families, assisted by neural network 

predictions of local structural features, including secondary structure, backbone torsion 

angle, and solvation [25, 26].
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2 Methods

2.1 EvoDesign: Evolution-Based Method to Design Protein Folds and Interactions

The principle of EvoDesign follows the critical lessons learned from threading-based protein 

structure prediction methods, i.e., to use the reliable “finger-print” of nature of multiple 

proteins from the same family in the form of structural profile information to guide the 

simulation to the sequence search. It first collects a set of proteins with similar folds to the 

target scaffold structure from the PDB library by the structural alignment program TM-align 

[27], using a TM-score cutoff value to define structural similarity (Fig. 1) [28]. In the second 

step, this set of structurally similar folds is used to create a position specific scoring matrix 

M(p, a) for evaluating potential sequences [29, 30].

To create the position specific scoring matrix, first a multiple sequence alignment (MSA) is 

generated according to the pair-wise structural alignments between the structural analogs 

identified in the first step and the target structure (Fig. 1). An L × 20 matrix (where L = 

length of the protein) is then created according to

(1)

where x represents a particular amino acid, B(a, x) is the BLO-SUM62 substitution matrix 

[31] for amino acid x to amino acid a, and w(p, x) is the frequency of the amino acid x 
appearing at position p in the MSA created by TM-align. The matrix M(p, a) serves as a 

structural profile to guide the sequences toward native-like sequences known to adopt 

structurally similar folds as the target (Fig. 1).

While the structural profile as given by the position specific scoring matrix M(p, a) is 

efficient in guiding the global fold, optimization on the profile alone can result in 

singularities (i.e., disjointed “islands”) in local sequences. To smoothen these singularities, 

back propagation neural network predictors are used to estimate the secondary structure 

(SS), solvent accessibility (SA), and torsion angles (φ/ψ) of the sequence. Unlike other 

predictors for these properties [32–34], these single-sequence-based predictors do not 

require a computationally expensive PSI-BLAST search, which considerably speeds up 

prediction at little cost in accuracy [25].

The evolutionary potential in EvoDesign is defined as the maximum score of the optimal 

alignment path between the decoy and target structure obtained by Needleman-Wunsch 

dynamic programming, giving the energy function:

(2)

where ΔSS, ΔSA, Δφ, and Δψ are the difference in secondary structure, solvent accessibility 

and torsion angles between the target assignments, and the predictions from the decoy 

Brender et al. Page 3

Methods Mol Biol. Author manuscript; available in PMC 2017 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequences. The weighting factors (wi) are decided by the relative accuracy of the single-

sequence-based predictions for each term on a training set [25].

A physics-based potential can be used to predict potential favorable and unfavorable 

interactions among side-chains, such as steric interactions, which may be missed by the 

evolutionary-based terms defined above. While our computational benchmark results 

indicate the evolution-based energy function alone is sufficient to design protein sequences, 

adding a physics-based energy term from FoldX [35] improved the atomic packing of the 

local structures based on both computational structure prediction and experimental structure 

validations [25]. In this case, a full-atom representation of the sequence is needed which is 

created by SCWRL [36].

The final force field for single-chain protein design in EvoDesign is given by the weighted 

Z-scores of the evolution and physics-based terms:

(3)

where 〈…〉 and δ indicate the average and standard deviation of the energy terms.

To actually generate the designed sequences, Monte Carlo searches are performed starting 

from 10 random sequences that are updated by random residue mutations (Fig. 1). Due to 

the imprecision of the force field, the lowest energy states do not always correspond to the 

best sequence design. Instead of simply focusing on the lowest energy sequence, the 

sequences from all 10 runs are pooled and the sequence with the maximum number of 

neighbors is identified using the SPICKER clustering algorithm [37] where the pair-wise 

distance between sequences is measured by the sum of the BLOSUM62 substitution scores 

[38].

The above procedure finds sequences compatible with the target structure. To introduce new 

or altered functionality into the protein, the affinity of existing protein-protein interfaces can 

be improved by EvoDesign or new interfaces created though the optimization of non-native 

complexes created by docking. To modify interfaces, EvoDesign uses a multiscale approach 

incorporating a variety of features at different levels of structural resolution (Fig. 2).

Similar to the design of protein folds with EvoDesign, a key feature of the binding potential 

is the mixture of physics-based and evolutionary terms in the energy function [39]. For 

interface modification, the evolutionary terms are created from the structural alignment of 

similar interfaces from the nonredundant COTH structural library of dimeric proteins [40] 

by the IAlign program [41]. A series of interface similarity cutoffs has been used to define 

three separate interface structure profiles along with different metrics designed to assess the 

accuracy of the profiles relative to the other terms [39]. The interface profiles scores are then 

combined with physics-based all-atom and residue level docking scores. Finally, sequence-

based scores based on phamacophore count differences between the native and designed 

sequences are calculated to complete the multiscale approach. A random forest method 

trained to predict the experimental affinity changes (ΔΔG) associated with single and 
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multiple mutations at the interface is used for the final interface energy score. This energy 

score has a correlation to the experimental ΔΔG values equivalent or superior to the best 

state-of-the-art mutation prediction programs (Pearson’s correlation coefficient = 0.83 for a 

5 fold cross validated set) but is fast enough to calculate the thousands of potential mutations 

necessary for protein design. The interface energy is then added to the regular EvoDesign 

scoring potential, using a user-defined weighting function to balance fold stability and 

protein-protein affinity.

2.2 Using the EvoDesign Server Design Program

The EvoDesign program can be used as a server at http://zhanglab.ccmb.med.umich.edu/

EvoDesign. The only input to the server is a PDB format file of the target structure, which 

can be either a full-atomic or backbone only model. In either case, the backbone of the 

protein structure should be complete without breaks in the chain. Currently, the server is 

limited to design of one protein chain only.

There are three user-defined parameters to control the design simulation. The first parameter 

is the fold-similarity cutoff used for defining the structural profile (Eq. 1). By default, this is 

set to the relatively high value of a TM score of 0.7, which is relaxed if less than ten 

structural analogues are found in the PDB. This value can be adjusted to a higher or lower 

value; lower values incorporate more sequence and structural variability in constructing the 

profile while higher values incorporate less. The usual result is that higher cutoffs penalize 

deviations from the native sequence more strongly, which may or may not be desirable for 

the particular application. The second parameter controls whether the FoldX force field is 

used in the simulation or not. Inclusion of FoldX usually results in only a marginal 

improvement in the folding when validated by structure prediction (see the next section) 

[25], most likely due to the fact that the side-chains are modeled by a different force field 

from the SCWRL force field used for scoring. Including FoldX in the simulation requires 

that the full atomic model of each sequence be constructed, which is the most 

computationally demanding step in the simulation. For this reason, the FoldX force field is 

turned off by default. The last parameter does not affect the design simulation but controls 

whether structure prediction is performed for each of the designed sequences through the 

creation of I-TASSER models (see Subheading 2.3.1).

By default, the EvoDesign server operates without any residue restrictions on the design 

process. In many cases, it desirable to freeze certain residues in the design process, such as 

those involved in disulfide bond formation or in ligand binding. Taken further, in other cases, 

it is useful to redesign only the surface of the protein while keeping the inner core constant. 

An option is therefore provided to specify a set of residues (by residue number) which 

should be kept the same as in the input structure. It is also sometimes desirable to restrict the 

use of some residues completely or at certain positions. A prime example is cysteine 

residues on the surface, which can easily be oxidized to form intermolecular disulfide bonds 

that lead to a loss of activity through aggregation.

The output of the server is ten sequences in decreasing order of cluster size from the clusters 

generated by the SPICKER algorithm. For each sequence, the sequence identity to the native 

sequence is calculated along with the predicted normalized relative error for the secondary 
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structure, solvent accessibility, and torsion angles. Each property is calculated by a high 

accuracy predictor using PSI-BLAST profiles along with neural network predictors 

(PSSPred for secondary structure prediction [42], ANGLOR for torsion angle prediction 

[32], and the method of SOLVE for solvent accessibility [43], respectively). The normalized 

relative error (NRE) is reported for each prediction, which is defined by [25].

(4)

where EDS refers to “error of designed sequence,” i.e., the mismatch between the predicted 

structure feature from the designed sequence and the target structure. ETS refers to “error of 

target sequence” that is defined similarly to EDS but for the target sequence. The NRE 
defined thus accounts for the uncertainty from the structure feature predictors. Finally, I-

TASSER models of each of the designed sequences are provided if user selects the third 

option on I-TASSER modeling. The I-TASSER models represent a partial validation of the 

success of the design simulation as described below.

2.3 Computational Validation of Protein Designs

No computational design method is perfect, and validation remains an essential part of the 

design processes. Validating experimentally that the designed protein sequence successfully 

folds to the desired structure requires both successfully expressing the protein and 

successfully determining the structure. A full structure determination at the atomic level 

through either NMR spectroscopy or X-ray crystallography is a time-consuming and 

difficult task. Even simpler, less precise experimental methods for determining protein 

structure, such as comparing the secondary structure of the native and designed proteins 

through circular dichroism CD (see Subheading 2.4.7) and recognition of the presence of 

folded tertiary structure through 1D NMR (see Subheading 2.4.8), still require that the 

protein be successfully expressed. Compared to computational techniques, protein 

expression is relatively expensive, limited in throughput, and in some cases may be 

challenging to achieve. Before expression, it is therefore desirable to know which designed 

sequences are most likely to fold to the target structure. The first step is to visually confirm 

that the design sequences are compatible with the structure. Specifically, it is a good idea to 

look for buried charges without salt-bridges and buried side-chains without hydrogen 

bonding partners before proceeding. The EvoDesign program uses a fixed backbone 

approximation in its calculations. High energies from van der Waals clashes can usually be 

relieved by small changes in the backbone [44, 45]. However, buried charges and missing 

hydrogen bonds are much harder to compensate for by small structural movements. Since 

even one missed hydrogen bond or buried charge is enough to completely destabilize a 

structure, any designs possessing these features should be eliminated from consideration.

It is, however, not possible to tell reliably if a protein will fold correctly by simple visual 

analysis. Accurate structure prediction of designed sequences is therefore central to the 

EvoDesign methodology, as it allows a much larger number and variety of sequences to be 

tested for correct folding than can be experimentally checked. EvoDesign currently employs 
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I-TASSER, which is a hierarchical approach to protein structure modeling that constructs 

protein 3D models by reassembling continuous fragments excised from the multiple 

threading templates [43, 46–48]. I-TASSER has been extensively tested in both 

benchmarking [46, 47, 49] and blind tests [50–53]. In particular, the community-wide CASP 

(Critical Assessment of protein Structure Prediction) experiment is designed to benchmark 

the state-of-the-art of protein structure predictions every two years since 1994 [54–56]. I-

TASSER was tested (as “Zhang-server”) in the 7–11th CASP competitions in 2006–2015. 

Figure 3 shows the histogram of the Z-score of the GDT-score, which measures the 

significance of the model predictions by each group of automated structure predictors 

compared to the average performance, in the latest 11th CASP competition. The data shows 

the advantage of the I-TASSER in comparison to other state-of-the-art protein structure 

prediction methods, provided that the protein is already known to fold to a specific structure.

2.3.1 Estimating Structural Fidelity and Foldability of Designed Sequences 
Using I-TASSER—The I-TASSER-based structure prediction of designed sequences in 

EvoDesign seeks to answer two related but distinct questions. First, does the designed 

sequence fold to any structure at all or is it only partially or completely unfolded when 

expressed? Second, given that the protein folds, does it fold to the correct structure? If a 

designed sequence is known to fold, there is considerable evidence from the benchmark and 

blind tests described above that I-TASSER could, with some confidence, tell if it will fold to 

its target structure. However, the ability of template-based protein structure programs to 

determine whether or not a given sequence can fold correctly to any structure at all has been 

tested much less extensively (see Note 1).

In an early test, I-TASSER was shown to cleanly distinguish native sequences from random 

sequences with similar sequence identity and secondary structural propensity [38]. For a 

more stringent benchmark test, we recently tested 16 successfully designed sequences that 

are known to match their target structure and 29 unsuccessful sequences that were known to 

either fold to a different structure or were unable to fold at all in the literature [25]. As 

shown in Fig. 4, I-TASSER successfully captured the deviation of the structures of the 

designed sequences from the target structure. Furthermore, the confidence level (C-score) 

[57] of the I-TASSER prediction is roughly correlated with the chance of success of the 

design: a C-score below −1.5 indicates an almost certain failure and a C-score above 0 

indicates a very strong possibility of success. I-TASSER prediction on designed sequences 

can therefore allow a winnowing out of poorly designed sequences without resorting to the 

lengthy procedure of expressing and experimentally determining the structures of designed 

proteins at each step.

1The distinction between these two questions becomes clear when the nature of the benchmarks is considered. Due to the 
experimental requirements of structure determination, the benchmark test largely consists of proteins that can be successfully 
expressed, successfully purified, and are stable for a prolonged period of time at high concentration. In addition, the protein also must 
be crystallized in the case of X-ray structures, which is a rather severe restriction for proteins with large unfolded regions as the 
disordered regions have poor crystal contacts which interferes with the crystallization process [79]. Even if the protein can be 
crystallized, the disordered regions will have poor electron density and will therefore not be resolved in the structure. Similarly, the 
structure of unfolded proteins is difficult to determine by NMR due to the lack of long-range NOE constraints and poor chemical shift 
dispersion [80]. These experimental constraints suggest that though the PDB library is largely complete with respect to the possible 
universe of monomeric folded domains [81, 82], it is still biased toward compact folded structures, as proteins that are intrinsically 
unstable or unfolded are difficult to observe. The PDB library should therefore not be considered as completely representative of the 
conformational ensembles, folded or not, that all protein sequences can adopt.
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2.4 Experimental Validation of Designed Sequences

True validation of the designed protein requires that protein be characterized experimentally 

for structurally fidelity and activity. The processes listed below have been employed in the 

EvoDesign studies [25, 58], aiming to ensure that the designed proteins are 

thermodynamically stable, soluble, and adopt the desired fold. In all cases, the same tests 

should be performed with the wild-type protein as well for a control.

2.4.1 Expression and Purification of Designed Proteins—Before a protein can be 

characterized experimentally, the pure protein must be generated in sufficient quantities for 

the experiments. This is done through a process called recombinant expression, which 

involves incorporating the DNA sequence of the designed protein into the genome of another 

organism and using that organism’s protein production process to generate the target protein. 

Since there are many variations on the technique and the specifics of the process can vary 

with the protein being produced, a comprehensive description of the technique is not given 

here. Instead, key considerations are outlined in a basic manner for those unfamiliar with 

process. For further, more depth treatment readers are encouraged to consult several 

excellent reviews on this topic [59].

2.4.2 Choice of Host Cell—The first decision that must be made in setting up a 

recombinant protein expression system is the choice of the host cell whose protein synthesis 

machinery will produce the target protein. This choice is one of the most critical ones as the 

choice of the expression organism defines the scope of the project, the reagents and 

equipment needed, and the final outcome of the expression process [59]. Each protein 

expression has advantages and disadvantages. In most cases, bacterial expression systems 

are favored as they are low cost, easy to manipulate genetically, scale easily from small- to 

large-scale expression, and can easily incorporate isotopic labels for NMR studies. The main 

disadvantage of bacterial expression is that eukaryotic posttranslational modifications such 

as glycosylation and phosphorylation are not performed. In the case that these 

posttranslational modifications are essential, a eukaryotic host cell such as yeast or insect 

cells must usually be used and the process becomes considerably more complex.

Disulfide bond formation is also more difficult in bacteria, although this may be overcome in 

most cases by selecting a bacterial strain such as the Orgami cell line that have mutations in 

the thioredoxin reductase and glutathione reductase genes, which creates an oxidative 

environment that greatly enhances disulfide bond formation in the cytoplasm [60]. 

Expression can vary greatly for different bacterial strains. For this reason, different 

specialized strains of bacteria have been created to optimize the expression of recombinant 

proteins. Most specialized bacterial strains for expression start with the BL21 genetic 

background that is deficient in the Ion and ompT proteases that can lead to improper 

cleavage of the protein product. Other bacterial strains attempt to minimize the difference in 

codon usage between the natural codon usage of the bacteria and the codon usage required 

to express the protein.

Recombinant expression of proteins can lead to a high demand for specific tRNAs that are 

normally produced in only small amounts by the bacteria. Depletion of these low abundance 
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tRNAs can cause translation to stall on the ribosome, leading to premature release from the 

ribosome and the generation of truncated versions of the protein [61]. From our studies [25, 

58, 62], we recommend for routine use of the Rosetta 2 bacterial cell line that combines the 

protease mutations found in the BL21 strain along with additional modifications that allow 

the bacteria to generate low abundance tRNAs more efficiently and mutations that allow 

tunable expression through mutations in the Lac permease gene (see below). However, 

alternate strains may be considered in certain situations such as the Rosetta-gami strain, 

which adds the disulfide-bond promoting mutations of the Orgami strain to the Rosetta 

background.

2.4.3 Selection of Expression Vector—Once the host cell is selected, the next step is 

to create the vector that introduces the foreign DNA into host cell. This is typically a 

bacterial plasmid that contains several elements besides the DNA encoding the target 

protein. The first element is a gene for antibiotic resistance which provides a growth 

selection mechanism for discovery; only those bacteria that have incorporated the plasmid 

into their genome can grow in the presence of the antibiotic. The second is the promoter 

system, which ties the expression of the target protein to another protein whose expression is 

essential for the cell and whose expression can be readily induced at a specific time. 

Triggering expression at a specific time is essential as bacteria continue to grow during 

incubation and the time at which the protein is lysed determines the overall yield and final 

purity of the product. If the cell density is too low, the yield of expressed protein is naturally 

low. On the other hand, too high of cell density can also result in decreased yields and purity 

from loss of the plasmid from the bacteria [63], metabolism of the antibiotic within the 

medium, and death of the bacteria from lack of dissolved oxygen [64]. Typically, this is done 

through the use of the Lac operon, in which protein expression can be induced at a specific 

time period during growth with the lactose analog isopropyl β-D-1-thiogalacto-pyranoside 

(IPTG).

2.4.4 Purification of Expressed Protein—Once expressed, the expressed protein still 

needs to be purified from the other proteins in the bacterial cell. Although this may be 

accomplished using the sequence of the designed protein without modification using 

multiple steps of column chromatography, it is easier to fuse the designed sequence to other 

protein domains to make purification easier. In many cases, the expressed protein is not 

soluble at the very high concentrations generated during expression. In this situation, the 

expressed protein accumulates in an insoluble form in the bacteria as particles known as 

inclusion bodies. The formation of inclusion bodies can make purification easier or more 

difficult. The inclusion bodies generally contain the expressed protein in highly pure form 

with only a small amount of the other proteins of the host cell mixed in, a clear advantage 

for the purification process. On the other hand, proteins within inclusion bodies must be first 

disaggregated and then refolded with urea, which may prove a difficult process [65]. If the 

stability of the protein is unknown, such as the case with designed proteins, it is often easier 

to try to purify already folded, soluble proteins.

To enhance the solubility of proteins during purification, a solubility tag such as the Mocr 

domain [66] can be fused to the target protein. This domain is usually fused N-terminal to 
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the designed sequence. Since it is localized to the N-terminus, the Mocr domain is therefore 

synthesized first and folds into its native form before the translation of the designed 

sequence, stabilizing the designed domain’s folding process. Moreover, the high negative 

charge on the Mocr domain increases the solubility during the purification process by 

preventing self-association by electrostatic repulsion. Along with the solubility tag, another 

sequence that specifically binds a particular column can be incorporated to assist 

purification. A common choice is the His tag, six consecutive histidine residues that strongly 

bind nickel (Ni) columns. A protease cleavage site is often placed between the Mocr domain 

with the His tag and the sequence of the designed protein so that the two domains can be 

separated. The expressed protein with the Mocr/His tag will bind the Ni column; most other 

bacterial proteins will not. The Mocr/His domain is then cleaved from the target sequence by 

the addition of a protease specific to the cleavage site and passed through the Ni column 

again. This time, the target protein does not bind the Ni column but all other nickel-binding 

proteins will remain bound to the column. The end result of this process is a highly pure 

protein in a soluble form.

2.4.5 Confirmation of Protein Solubility—In addition to adopting a stable folded 

conformation, many proteins must be soluble in water to perform their biological function. 

This requirement constrains the design process, as sequences that are optimized only for 

stability of the folded conformation may not be optimized for solubility. A key advantage of 

the EvoDesign method is that the structural profiles implicitly include all the constraints 

involved in determining the sequences that are compatible with a specific fold, not just those 

concerned with fold stability. As a result, sequences designed by EvoDesign are significantly 

more native-like in composition than those designed by physics only methods [25], which 

tend to overemphasize hydrophobic residues on the surface more than is found in native 

proteins [20, 38, 67]. Consequently, aggregation by the coalescence of exposed hydrophobic 

patches is a common source of failure in physics-based design [20].

As aggregation generally makes a protein useless for most applications, the oligomeric state 

of the protein should be determined before proceeding at the highest concentration used for 

the other biophysical experiments. Typically, this is around 100 μM for a 100-residue 

domain. The limiting factor is usually sensitivity of the 1D NMR experiment for tertiary 

structure estimation and sensitivity of the urea denaturation experiment used for the 

determination of protein stability (see Note 2). An approximate concentration range may be 

established by measuring the signal-to-noise ratio at different concentrations of the native 

protein. The signal of both experiments is actually more sensitive to the total concentration 

2The signal-to-noise ratio in an NMR experiment depends on a number of factors including the field strength of the NMR 
spectrometer (higher magnetic fields give higher resolution spectra and hence higher signal-to-noise ratios), the size of the protein 
(larger proteins give rise to broader signals), and other factors such as conformational exchange (transitions between conformations 
under certain timescales give rise broader signals). The signal-to-noise ratio in a CD spectrum also depends on a variety of factors, 
including the transparency of the buffer in the far UV region of the spectrum (180–260 nm), the path-length of the cuvette, and the age 
of the xenon lamp used to acquire the spectrum. Of these factors, the transparency of the buffer usually has the most impact. A buffer 
strongly absorbing in the UV serves as an inner filter that attenuates the incoming light reaching the protein. Phosphate buffers are 
optimal for CD due to their transparency in the far UV region of the spectrum, although Tris buffers are nearly as good. Chloride ions 
absorb in this region and the proteins in NaCl solutions should be dialyzed against an equivalent of concentration of NaF. Finally, 
many additives used to stabilize proteins, such as glycerol, arginine, and Triton-X, absorb strongly in the UV and are incompatible 
with CD spectroscopy for this reason.
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by weight than the molar concentration. The 100 μM value may need to be adjusted upward 

or downward for proteins significantly shorter or longer than 100 residues.

The presence of aggregation is most readily determined quantitatively by dynamic light 

scattering, which measures the hydrodynamic radius of proteins in solution, or from a 

correctly calibrated analytical size exclusion column. In the absence of either instrument, 

aggregation may be measured semiquantitatively by the absorbance at 400 nm. At this 

wavelength range, the protein does not absorb light and increases in absorbance are due to 

Raleigh scattering, which is proportional to the sixth power of the particle radius. A 

comparison to the corresponding absorbance at 400 nm of the native protein provides a 

qualitative estimate of the amount of aggregation in the sample (see Note 3).

2.4.6 Confirmation of Structural Fidelity—X-ray crystallography remains the gold 

standard for confirming whether a protein design has the desired structure. However, not all 

well-folded proteins crystallize and the expense of X-ray crystallography severely restricts 

the number of designs that can be studied. From a functional perspective, absolute structural 

fidelity is not necessary in many cases and small changes on the atomic scale are tolerated if 

the protein is stable, soluble, and functional. To test a larger number of sequences, faster 

low-resolution biophysical techniques can be used to eliminate obviously badly designed 

sequences [68, 69].

2.4.7 Confirmation of Secondary Structure—Secondary structure is the most basic 

building block of protein structure. The existence of severely incorrect secondary structure 

in the designed protein therefore very strongly implicates a failed design. Since each 

secondary structure element (α-helix, β-sheet, and random coil) has a distinct circular 

dichroism (CD) spectra, the relative fractions of each in a protein can be estimated from a 

CD spectra by fitting to a reference set of proteins with known CD spectra and secondary 

structure [70]. The accuracy of this procedure is typically around ±5 %, with α-helical 

content determined more precisely than either random coil or beta sheet content. If available, 

infrared (IR) spectra can also be used in a similar manner to characterize the secondary 

structure, as it has been shown that IR and CD are largely complementary and a combination 

of the two techniques gives a more accurate picture of the secondary structure than either 

technique alone [71].

2.4.8 Confirmation of Existence of Tertiary Structure—The existence of tertiary 

structure has traditionally been defined in a qualitative way from the appearance of the 

1D 1H NMR spectra of the protein. A protein that is poorly folded, without extensive 

contacts within the protein core, has a distinctive 1D NMR spectra characterized by the lack 

of highly shielded peaks in the region of the spectra from −1 to 0.5 ppm and poor dispersion 

of the signal within the amide region (see Fig. 5) [72, 73]. While this method is standard in 

the protein design field [68, 69], it is subjective and qualitative. A more objective and 

quantitative method is to use the autocorrelation of a 1D 1H [74] or unassigned 3D 15N 

NOESY-HSQC NMR spectrum [75], which have been shown to accurately distinguish 

3An alternative wavelength can be used if the protein possesses a cofactor such as FAD or FMN that absorbs in the visible light range.
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folded and unfolded proteins. A comparison of the binding of the dye SYPRO Orange, 

which binds to exposed hydrophobic surfaces, to the native sequence can provide an 

additional test for a misfolded protein structure [76].

2.4.9 Confirmation of Fold Stability—The free energy of folding can be measured 

using chemical denaturation with urea, with denaturation measured by the decrease in 

secondary structure as determined by CD [25]. As the concentration of urea is increased, the 

protein unfolds, in most cases by a two-step process without a significant population of 

partially unfolded intermediates. The first step of determining the stability is to measure the 

CD signal without denaturant (CDfolded), where it is assumed to be completely folded, and at 

a high concentration of denaturant, where it is assumed to be completely folded (CDunfolded). 

If unfolding is a two-step process, the CD signal as a function of the urea concentration is 

[77]:

(5)

where ffolded(urea) and funfolded(urea) refer to the fractions of folded and unfolded proteins 

respectively, at a given urea concentration. Since the equilibrium constant can be calculated 

directly from fraction of folded and unfolded proteins, the Gibbs free energy of unfolding 

can be calculated for each urea concentration [77]:

(6)

(7)

The relevant free energy is the free energy of unfolding in the absence of denaturant, which 

can be obtained by linear extrapolation of the free energy to zero urea concentration.

3 Conclusions

Using an evolution-based approach, we have successfully designed, expressed, and 

experimentally characterized a number of single domain proteins [25, 58]. In the first 

benchmark test, we used EvoDesign to redesign 87 globular proteins randomly collected 

from the PISCES server. I-TASSER was then used to test the fidelity of the predicted 

structure to the target. Although all homologous templates have been excluded from the I-

TASSER template library, out of the 87 designed sequences, 80 % were predicted to fold to 

structure with an RMSD of <2.0 Å to the target scaffold, and 42.5 % were predicted to fold 

to an essentially identical structure with an RMSD < 1.0 Å. This was a clear difference from 

designed sequences created using only the FoldX force field, for which only 54 % of the 

predicted structures have an RMSD < 2.0 Å to the target structure, and only 31 % have an 

RMSD < 1.0 Å.
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In a separate test, we redesigned five globular proteins by EvoDesign and used the 

experimental validation procedures described in Subheading 2.4 to confirm the success of 

the designs. All five proteins were successfully expressed using the expression system in 

Subheading 2.4.3 and were soluble to at least 70 μM. Further, all five designed proteins have 

secondary structure consistent with the target protein (<12 % difference). Three out of the 

five had a compact tertiary structure confirmed by NMR (Subheading 2.4.8, Fig. 5), for an 

overall success rate of 60 %. One of the three, the Phox homology domain of the cytokine-

independent survival kinase (CISK-PX), could be crystallized and its structure compared to 

the native protein [78]. Despite having only 32 % sequence identity, the structure of the 

designed protein showed a very close similarity to the target with a RMSD of 1.54 Å and a 

TM score of 0.90 to the target template. The RMSD and TM score between the I-TASSER 

model and the X-ray crystal structure of CISK-PX are 1.32 Å and 0.91, respectively. Most of 

the difference between the two structures was in a loop that is disordered in the original 

structure.

Finally, we have shown that EvoDesign can be used to create functional complexes for the 

X-linked inhibitor of apoptosis proteins (XIAP) with improved properties by designing a 

peptide-protein complex involved in apoptosis inhibition [58]. The XIAP protein inhibits 

apotosis by binding caspase-9, an activity that is in turn regulated by the second 

mitochondria-derived activator of caspases (SMAC). The designed XIAP protein by 

EvoDesign binds SMAC but does not possess affinity for caspase-9. As such, the designed 

protein can serve as a SMAC sink, altering the normal protein-protein interaction network 

involved in cell death. The circular dichroism and isothermal calorimetry data showed that 

the designed XIAP domain was more stable than WT-XIAP and bound the SMAC derived 

peptide with a Kd of 167 ± 67 nM, which compares favorably with the 80 ± 25 nM Kd found 

for WT-XIAP. Interestingly, a designed version of XIAP with native interface residues 

actually showed worse binding (Kd of 352 ± 79 nM) and stability than the fully designed 

sequence, highlighting the efficiency of evolution-based full protein design.
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Fig. 1. 
Overview of the EvoDesign method showing the construction of the structural profile, the 

Monte Carlo search in sequence space, and the final selection of the sequences by sequence 

clustering
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Fig. 2. 
Multiscale approach to predicting protein binding affinity using features derived from 

interface structural profiles, WT and mutant sequences, and physics-based scoring of the 

structures of the wild-type and mutant complexes. (1) Interface profile scores derived by 

structural alignment of structurally similar interfaces using an interface similarity cutoff to 

define the aligned sequences that are used to build the profile. (2) Physics-based scores are 

formed at the residue or atomic level formed by modeling the mutant monomeric protein and 

complex and evaluating the difference in energy. (3) Sequence features are formed by the 

difference between the WT and mutant sequences in the number of hydrophobic (V, I, L, M, 

F, W, or C), aromatic (Y, F, or W), charged (R, K, D, or E), hydrogen bond acceptors (D, E, 

N, H, Q, S, T, or Y), and hydrogen bond donating residues (R, K, W, N, Q, H, S, T, or Y) 

along with difference in amino acid volume calculated from the sequence
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Fig. 3. 
Histogram of the Z-scores of all automated protein structure predictors in the CASP11 

experiment. The first bin contains groups that have Z-score below 0. Data are taken from 

official CASP webpage at URL http://www.predictioncenter.org/casp11/zscores_final.cgi?

model_type=first&gr_type=server_only
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Fig. 4. 
Divergence in the confidence score of the I-TASSER models for successfully and 

unsuccessfully designed sequences. Approximate cutoff values are indicated by the arrows. 

A C-score < −1.5 indicates a high probability that the design will not be folded correctly and 

a C-score > 0 indicates a high probability that the design will fold to the target structure
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Fig. 5. 
NMR spectra of folded (with asterisk) and unfolded designed proteins. The folded designs 

have a wider range of chemical shift values in the amide region of the spectrum (7–10 ppm) 

and have chemical shift values below 0.5 ppm indicating side-chains strongly shielded from 

solvent, as would be expected in a well-packed protein core

Brender et al. Page 22

Methods Mol Biol. Author manuscript; available in PMC 2017 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	1 Introduction
	2 Methods
	2.1 EvoDesign: Evolution-Based Method to Design Protein Folds and Interactions
	2.2 Using the EvoDesign Server Design Program
	2.3 Computational Validation of Protein Designs
	2.3.1 Estimating Structural Fidelity and Foldability of Designed Sequences Using I-TASSER

	2.4 Experimental Validation of Designed Sequences
	2.4.1 Expression and Purification of Designed Proteins
	2.4.2 Choice of Host Cell
	2.4.3 Selection of Expression Vector
	2.4.4 Purification of Expressed Protein
	2.4.5 Confirmation of Protein Solubility
	2.4.6 Confirmation of Structural Fidelity
	2.4.7 Confirmation of Secondary Structure
	2.4.8 Confirmation of Existence of Tertiary Structure
	2.4.9 Confirmation of Fold Stability


	3 Conclusions
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5

