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Maximal whole body exercise leads skeletal muscle blood flow to 
markedly increase to match metabolic demands, a phenomenon 
termed exercise hyperaemia that is accomplished by increasing vaso-
dilation. However, local vasodilatory mechanisms in response to skele-
tal muscle contraction remain uncertain. This review highlights meta-
bolic vasodilators released from contracting skeletal muscle, endotheli-
um, or blood cells. As a considerable skeletal muscle vasodilation po-
tentially results in hypotension, sympathetic nerve activity needs to be 
augmented to elevate cardiac output and blood pressure during dy-
namic exercise. However, since the enhanced sympathetic vasocon-
striction restrains skeletal muscle blood flow, intramuscular arteries 
have an indispensable ability to blunt sympathetic activity for exercise 
hyperaemia. In addition, we discuss that mechanical compression of 

the intramuscular vasculature contributes to causing the initial phase of 
increasing vasodilation following a single muscle contraction. We have 
also chosen to focus on conducted (or ascending) electrical signals 
that evoke vasodilation of proximal feed arteries to elevate blood flow in 
the microcirculation of skeletal muscle. Endothelial hyperpolarization 
originating within distal arterioles ascends into the proximal feed arter-
ies, thereby increasing total blood flow in contracting skeletal muscle. 
This brief review summarizes molecular mechanisms underlying the 
regulation of skeletal muscle blood flow to a single or sustained muscle 
contraction.

Keywords: Blood flow control, Endothelium, Exercise hyperaemia, 
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INTRODUCTION

During steady-state dynamic exercise, blood flow to active skel-
etal muscle is dramatically increased by nearly 100 times (i.e., ex-
ercise hyperaemia) (Richardson et al., 1993). Skeletal muscle 
blood flow is regulated by metabolic vasodilatory substances (Clif-
ford and Hellsten, 2004). Furthermore, increased sympathetic 
nerve activity that causes vasoconstriction in ‘noncontracting’ 
skeletal muscle to prevent hypotension is interestingly reduced in 
‘contracting’ skeletal muscle to increase vasodilation and provide 
adequate blood flow during exercise (Hearon and Dinenno, 2016). 
A number of leading investigators have also attempted to demon-
strate how skeletal muscle vasodilation is initiated from a single 
muscular contraction. Potential mechanisms such as acetylcholine 
(ACh) spillover, potassium release following skeletal muscle con-

traction, mechanosensitive component-induced vasodilation, and 
conducted vasodilation would be discussed in this review.  

METABOLIC VASODILATORY FACTORS 

Nitric oxide (NO), an endogenous vasoactive candidate, is gen-
erated by endothelial nitric oxide synthase or neuronal nitric oxide 
synthase (nNOS) in the endothelium or skeletal muscle cells, re-
spectively (Frandsen et al., 1996; Grozdanovic et al., 1996). Since 
exercise-induced increases in endogenous agonists (e.g., ACh, bra-
dykinin, and adenosine triphosphate [ATP]) elicit NO generation 
(Nosarev et al., 2015), NO seems to play a crucial role in vasodi-
lation in contacting skeletal muscle. However, roles of NO in ex-
ercise hyperaemia are still far from clear. Prior studies have been 
shown that pharmacological inhibition of NOS with L-NAME 
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does not diminish vasodilation of skeletal muscle arteries in con-
tracting leg muscle (Frandsenn et al., 2001; Rådegran and Saltin, 
1999), indicating that NO may be a nonobligatory molecule for 
exercise hyperaemia. Contrarily, it has been reported that skeletal 
muscle contraction leads matricryptic type II repeat of fibronectin 
(FNIII-1) receptors on vascular smooth muscle cells (VSMCs) to 
be exposed, inducing NO-mediated vasodilation by stimulating 
nNOS (Hocking et al., 2008). Collectively, further studies are re-
quired for a better understanding of NO in exercise hyperaemia. 

Prostaglandin E2 and prostacyclin (PGI2) are derived from pros-
taglandin H2 that is converted from arachidonic acid through cy-
clooxygenase (COX). These prostaglandins are commonly gener-
ated from endothelium or skeletal muscle cells (Davidge, 2001). 
Exercise is shown to increase levels of prostaglandin E2 and PGI2 
in the interstitial space or venous efflux of contracting skeletal 
muscle (Frandsen et al., 2000). However, similar to NO, some de-
bates exist as to whether prostaglandins are involved in exercise 
hypereamia. Once COX inhibitors were infused to reduce prosta-
glandin production, blood flow of human forearm and leg was not 
considerably altered at rest or during exercise (Schrage et al., 2004; 
Schrage et al., 2010). Interestingly, simultaneous suppression of 
COX and NOS reduced blood flow in the exercise leg by 30% 
(Schrage et al., 2004), suggesting that NO-dependent vasodilation 
may compensate for COX inhibition-mediated decrease in vaso-
motor reactivity to provide adequate blood flow during exercise.

The fact that each skeletal muscle is innervated by a motor 
nerve at the neuromuscular junction suggests the intriguing hy-
pothesis that ACh spillover results in skeletal muscle arteriolar 
vasodilation (Welsh and Segal, 1997). ACh released from the end 
plate of motor nerves stimulates nicotinic receptors on the sarco-
lemma to elicit muscle contraction. ACh spillover is sufficient to 
functionally reach small-sized arteries and capillaries in skeletal 
muscle for vasodilation (Welsh and Segal, 1997). ACh directly 
binds to muscarinic receptors in endothelial cells (ECs) and in 
turn alters intracellular Ca2+ dynamics including Ca2+ release from 
the endoplasmic reticulum (ER). These Ca2+ signaling networks 
provoke NO production and endothelium-derived hyperpolariza-
tion (EDH) that are responsible for a prompt vasodilation follow-
ing a brief muscle contraction or during exercise. However, the 
‘ACh spillover’ has been debated and questioned in subsequent 
studies. Blood flow in response to muscle contraction was assessed 
in the absence or presence of atropine (nicotinic receptor antago-
nist) that would not suppress ACh release but would inhibit mus-
cle contraction (Brock et al., 1998). As a consequence, the atro-
pine application did not abolish increased vasodilation and blood 

flow after forearm muscle contraction. Further, pharmacological 
neuromuscular blockade with vecuronium (for inhibition of mus-
cle contraction) profoundly attenuated increases in vasodilation 
and blood flow following a single or repeated muscle contraction 
(Naik et al., 1999). These results suggest that ACh spillover from 
the motor nerves may not be necessary for muscle contraction-in-
duced vasodilation. Preferably, vasoactive substances released/pro-
duced by muscle contraction may play an important role in in-
creasing vasomotor reactivity and blood flow. 

Several criteria have been established to determine whether en-
dogenous molecules act as metabolic vasodilatory factors during 
physiological stresses (Feigl, 1983): (a) the endogenous candidates 
that regulate vasomotor reactivity at rest or during exercise have to 
be measurable; (b) the vasoactive responses similarly or identically 
occur when the candidate agents are exogenously applied; and (c) 
stimulating or inhibiting vascular responses to the vasodilatory 
molecules has to be consistent. On the basis of the criteria, sub-
stantial attention has been paid to intravascular ATP as a potent 
vasodilatory molecule in contracting skeletal muscle. Indeed, ATP 
concentration in venous plasma draining from skeletal muscle was 
progressively and considerably elevated along with increasing in-
tensity of rhythmic handgrip contraction or single-leg knee exten-
sor exercise (Mortensen et al., 2011; Kirby et al., 2012). ATP-me-
diated activation of purinergic (P2) receptors in ECs evokes a roust 
vasodilation during exercise through protein kinase C (PKC)-Akt-
NO signaling pathways (Mortensen et al., 2009a). The increased 
ATP has been identified to be rapidly degraded by ectonucle-
otideases (<1 sec of half-life), implicating that ATP should be lo-
cally released in the microcirculation to promptly cause vasodila-
tion during exercise (Crecelius et al., 2015). Regarding to the cel-
lular sources of ATP, it was conventionally predicted that ATP is 
likely released from sympathetic nerves or contracting skeletal 
muscle itself (Mortensen et al., 2009b). However, exogenous ATP 
administration does not alter interstitial ATP levels (Mortensen et 
al., 2009b). It is implied that sympathetic nerve and/or skeletal 
muscle-released ATP may not be able to pass across the plasma 
membrane of VSMCs and exert endothelial P2 receptor-mediated 
vasodilation (Crecelius et al., 2015). On the other hand, previous 
studies have elucidated that perfusion occlusion markedly dimin-
ishes exercise-induced increase in venous plasma ATP concentra-
tion (Kirby et al., 2013), suggesting that the increased ATP from 
steady-state exercise is closely related to elevated intravascular per-
fusion. As the increased perfusion augments blood supply and 
shear stress, a general belief is that the sources of ATP release 
during exercise may be erythrocytes and/or endothelial cells.
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In general, potassium (K+) is the most abundant ion in cells and 
K+ channels largely regulate the membrane potential (Haddy et 
al., 2006). Since intracellular K+ concentration is much higher 
than one in extracellular space, this chemical gradient result in K+ 
efflux and more negative membrane potential (i.e., hyperpolariza-
tion or repolarization). It is important to note that K+ ions are re-
leased from contracting skeletal muscle fibers for the repolariza-
tion phase of the contraction/relaxation cycle (Clifford, 2007). 
Previous studies support the notion that interstitial K+ levels are 
profoundly increased following a single muscle contraction (Hnik 
et al., 1976) or during exercise (Green et al., 2000; Juel et al., 
2000; Lott et al., 2001). Interestingly, alteration in interstitial K+ 
concentration is dependent of exercise duration (Hnik et al., 1976) 
or intensity (Green et al., 2000) of skeletal muscle contraction. K+ 
released from skeletal muscle fibers is considered a key player for 
vasodilation or exercise hyperaemia by inducing K+ channel acti-
vation-dependent hyperpolarization of VSMCs (Joyner and 
Wilkins, 2007). Specifically, inwardly rectifying K+ (Kir) channels 
are activated by increased extracellular K+ to cause K+ efflux-me-
diated hyperpolarization (Knot et al., 1996). While the relatively 
high K+ provokes vasoconstriction through K+ entry through Kir 
channels expressed in VSMCs (Quayle et al., 1993) based on the 
Nernst equation, Kir channels stimulated by the low K+ level re-
sult in K+ efflux and vasodilation (Knot et al., 1996). It has been 
defined in animal and human studies that vasodilation following a 
single skeletal muscle contraction or during steady-state exercise 
is significantly abrogated in the presence of Kir channel inhibitor 
barium chloride (Armstrong et al., 2007; Crecelius et al., 2014). 
Thus, extracellular K+ and Kir channel-mediated VSMC hyperpo-
larization and vasodilation is a novel and innovative mechanism 
underlying onset and steady-state exercise hyperaemia.

             

FUNCTIONAL SYMPATHOLYSIS 

Skeletal muscle blood flow increases significantly during whole-
body maximal exercise, which exceeds the pumping capacity of the 
heart and causes excessive vasodilation-mediated hypotension 
(Hearon and Dinenno, 2016). Thus, during high intensity exercise, 
sympathetic nerve activity has to be markedly enhanced to elevate 
cardiac output and peripheral vasoconstriction through the binding 
of norepinephrine to α1- and α2-adrenergic receptors in VSMCs 
(Thomas, 2015). The increased sympathetic nerve activity contrib-
utes to regulation of systemic blood pressure and redistribution of 
cardiac output towards contracting skeletal muscle (Hearon and 
Dinenno, 2016). However, in contrast to inactive tissues, peripheral 

vasoconstriction signaling in response to sympathetic nerve activity 
should be attenuated in vascular beds of contracting skeletal muscle 
to optimize blood flow and oxygen delivery during exercise, which 
is termed ‘functional sympatholysis’ (Remensnyder et al., 1962).

Although the exact mechanisms underlying functional sym-
patholysis remain unclear, mounting evidence has shown that it is 
regulated by a number of local vasoactive substances including 
NO, prostaglandins, ATP, and K+ ions (Clifford and Hellsten, 
2004; Saltin and Mortensen, 2012). In addition, functional sym-
patholysis is directly proportional to exercise intensity (Thomas 
and Segal, 2004) and primarily occurs in the small distal arterioles 
compared to the proximal arteries or feed arteries in the skeletal 
muscle microcirculation (VanTeeffelen and Segal, 2003). This het-
erogeneity in functional sympatholysis leads the distal arterioles 
to ensure adequate blood flow to the most metabolically active 
skeletal muscle (Thomas, 2015). Meanwhile, impaired functional 
sympatholysis is associated with vascular diseases such as hyper-
tension (Thomas, 2015) and sympathetic overactivity consider-
ably abolishes skeletal muscle vasodilation during exercise (Calbet 
and Lundby, 2012). Taken together, appropriate functional sym-
patholysis contributes to regulating blood flow distribution in 
contracting skeletal muscle.

MECHANICAL COMPRESSION 

A large number of studies have investigated vasodilatory mech-
anisms during steady-state muscle contraction. However, these 
mechanisms do not account for a fundamental question as to how 
the vasodilation of skeletal muscle feed arteries or arterioles are 
initiated at the onset of muscle contraction. With respect to this 
interesting issue, emphasis has been placed on external compres-
sion (elicited by muscle contraction) on intramuscular arterioles. 
It has been reported that intramuscular pressures of 270 or 600 
mmHg are observed during moderate-intensity running or maxi-
mal muscle contraction, respectively (Ballard et al., 1998; Sejerst-
ed et al., 1984). As ECs and VSMCs are mechanosensitive to shear 
stress, stretch, tension, or pressure, it is conceivable that muscle 
contraction-evoked mechanical compression may activate mecha-
nosensors in ECs or VSMCs to initiate vasodilation following a 
brief muscle contraction.

Clifford et al. (2006) attempted to directly explore this intrigu-
ing hypothesis by manipulating extravascular pressure in a cus-
tom-designed chamber that mimics mechanical compression 
caused by skeletal muscle activity. Pressure pulses of 600 mmHg 
were applied on isolated rat soleus feed arteries for 1 sec, 5 sec, or a 
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series of 5 repetitions with 1-sec duration. While the skeletal mus-
cle feed arteries were entirely collapsed during the extravascular 
pressure application, release of the pressure immediately led to a 
significant vasodilation (Clifford et al., 2006). The degree of vaso-
dilation was independent of the duration of compression, whereas 
increasing the number of compressions markedly augmented vaso-
dilation in soleus feed arteries (Clifford et al., 2006). Consistently, 
it has been shown in human studies that elevation in extravascular 
pressure significantly increases blood flow and vascular conduc-
tance in forearm brachial arteries (Kirby et al., 2007). Recent work 
has mechanistically identified that blockade of integrins (mecha-
nosensors in ECs and VSMCs) with antibodies against α5β1 αvβ3 
integrins significantly diminishes mechanical compression-evoked 
vasodilation of intramuscular arteries (Lu and Kassab, 2015).

ENDOTHELIUM-DERIVED 
HYPERPOLARIZATION AND CONDUCTED 
VASODILATION

Endothelial Ca2+ signaling plays an essential role in regulating 
vascular diameter and blood flow by changing membrane poten-
tial in ECs and VSMCs (Garland et al., 2011). ACh-dependent ac-
tivation of endothelial muscarinic receptors stimulates phospholi-
pase C to induce cleavage of phosphatidylinositol 4,5-bisphos-
phate into diacylglycerol and inositol 1,4,5-trisphosphate (IP3). 
The binding of the second messenger to IP3 receptors (IP3Rs) in 
ER results in Ca2+ release from the ER. The released Ca2+ activates 
intermediate/small conductance Ca2+-sensitive K+ channels (IKCa/
SKCa) and leads to K+ efflux. The K+ loss elicits EDH that is trans-
ferred to VSMCs through myoendothelial gap junctions (MEGJs). 
MEGJs are indispensable for EC-SMC heterocellular communica-
tion that allows the movement of ionic charges between those cells 
(Figueroa and Duling, 2009). The hyperpolarization to VSMCs 
causes vasodilation by suppressing Ca2+ influx through voltage de-
pendent calcium channels (VDCCs) that are required for vasocon-
striction. ACh-induced VSMC hyperpolarization and vasodilation 
in small-sized arteries or arterioles were not significantly abolished 
in the presence of inhibitors of NO, guanylyl cyclase, or prosta-
glandins (Garland and McPherson, 1992). In contrast, ACh-de-
pendent vasodilation was completely abrogated when IKCa and 
SKCa were simultaneously inhibited (Holzmann et al., 1994). 
These previous results indicate that vasodilatory mechanisms are 
primarily dependent of EDH in small-sized resistance arteries.

Arteriolar networks in skeletal muscle are typically comprised of 
feed arteries and branch arterioles including first-, second-, 

third-order, and terminal arterioles. While distal branch arterioles 
are embedded in skeletal muscle, proximal feed arteries are not di-
rectly involved in blood flow delivery necessary for muscle contrac-
tion. However, vasodilation along and among feed arteries and 
branches of vascular resistance network has to be coordinated to 
supply substantial blood flow into active skeletal muscle during 
exercise (Segal and Duling, 1986; Segal and Jacobs, 2001). It 
should be recognized that vasomotor reactivity of intramuscular 
distal arterioles are regulated by metabolic vasoactive factors, 
blunted sympathetic nerve activity, and dilatory mechanisms elic-
ited by mechanical compression. From this perspective, a compel-
ling question has been suggested: how are proximal feed arteries 
dilated to provide appropriate blood flow during skeletal muscle 
contraction? Regarding to this, the concept of ‘ascending or con-
ducted vasodilation’ has shed novel insight into the coordinated 
vasodilation of skeletal muscle vasculature. In brief, vasodilation 
originating from the microcirculation embedded in skeletal muscle 
ascends into proximal feed arteries to increase total blood flow en-
tering the skeletal muscle (Bagher and Segal, 2011). Accumulating 
evidence has shown that ascending vasodilation is attributed to the 
conduction of electrical signaling including EDH between EC-EC 
and EC-SMC through gap junctions (Segal and Duling, 1986; Se-
gal and Jacobs, 2001). EDH initiated from the intramuscular vas-
culature is bi-directionally (i.e., up- and downstream) conducted 
from EC to EC through homocellular gap junctions (Domeier and 
Segal, 2007; Milkau et al., 2010). EDH is also transmitted to adja-
cent VSMCs through MEGJs, which in turn induces ascending va-
sodilation by inhibiting Ca2+ influx through VDCCs (Figueroa and 
Duling, 2008; Segal and Duling, 1986). Taken together, it is sug-
gested that EDH-mediated conducted (or ascending) vasodilation 
from terminal arterioles to feed arteries is a major determinant for 
achieving appropriate muscle blood flow during exercise. 

CONCLUSIONS

An ability to elevate blood flow within the skeletal muscle mi-
crocirculation plays a vital role in matching metabolic demands 
and eliminating waste products of muscle metabolism. As blood 
flow is related to the fourth power of arterial diameter (the Pou-
iselle’s Law), we have sought to summarize multiple vasodilatory 
mechanisms including metabolic, neuronal, mechanical, and con-
ducted responses of intramuscular vasculature to muscle contrac-
tion. However, while the individual mechanism has been well de-
fined, the mechanisms by which those contributors to vasodilation 
are coordinated each other to achieve optimal blood flow during 
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dynamic exercise have not been fully delineated. Therefore, fur-
ther studies have to be done to address integrative dilatory mech-
anisms in the microcirculation of skeletal muscle tissue.
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