
simcausal R Package: Conducting Transparent and
Reproducible Simulation Studies of Causal Effect Estimation
with Complex Longitudinal Data

Oleg Sofrygin,
DOR, Kaiser Permanente Northern California, University of California, Berkeley

Mark J. van der Laan, and
University of California, Berkeley

Romain Neugebauer
DOR, Kaiser Permanente Northern California

Abstract

The simcausal R package is a tool for specification and simulation of complex longitudinal data

structures that are based on non-parametric structural equation models. The package aims to

provide a flexible tool for simplifying the conduct of transparent and reproducible simulation

studies, with a particular emphasis on the types of data and interventions frequently encountered in

real-world causal inference problems, such as, observational data with time-dependent

confounding, selection bias, and random monitoring processes. The package interface allows for

concise expression of complex functional dependencies between a large number of nodes, where

each node may represent a measurement at a specific time point. The package allows for

specification and simulation of counterfactual data under various user-specified interventions (e.g.,

static, dynamic, deterministic, or stochastic). In particular, the interventions may represent

exposures to treatment regimens, the occurrence or non-occurrence of right-censoring events, or of

clinical monitoring events. Finally, the package enables the computation of a selected set of user-

specified features of the distribution of the counterfactual data that represent common causal

quantities of interest, such as, treatment-specific means, the average treatment effects and

coefficients from working marginal structural models. The applicability of simcausal is

demonstrated by replicating the results of two published simulation studies.

Oleg Sofrygin, Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612 and Division of Biostatistics,
School of Public Health, University of California, Berkeley, Berkeley, CA 94720, oleg.sofrygin@gmail.com
Mark J. van der Laan, Division of Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, CA 94720,
laan@berkeley.edu
Romain Neugebauer, Division of Research, Kaiser Permanente Northern California, 2000 Broadway, Oakland, CA 94612,
Romain.S.Neugebauer@kp.org

DISCLAIMER: All statements in this report, including its findings and conclusions, are solely those of the authors and do not
necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI), its Board of Governors or Methodology
Committee.

HHS Public Access
Author manuscript
J Stat Softw. Author manuscript; available in PMC 2018 January 16.

Published in final edited form as:
J Stat Softw. 2017 ; 81: . doi:10.18637/jss.v081.i02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Keywords

causal inference; simulation; marginal structural model; structural equation model; directed
acyclic graph; causal model; R

1. Introduction

1.1. Motivation for simcausal

This article describes the simcausal package (Sofrygin et al. 2015), a comprehensive set of

tools for the specification and simulation of complex longitudinal data structures to study

causal inference methodologies. The package is developed using the R system for statistical

computing (R Core Team 2015) and is available from the Comprehensive R Archive

Network (CRAN) at http://CRAN.R-project.org/package=simcausal. Our package is

intended to provide a flexible tool to facilitate the process of conducting transparent and

reproducible simulation studies, with a particular emphasis on the types of data and

interventions frequently encountered in real-world causal inference problems. For example,

our package simplifies the simulation of observational data based on random clinical

monitoring to evaluate the effect of time-varying interventions in the presence of time-

dependent confounding and sources of selection bias (e.g., informative right censoring). The

package provides a novel user-interface that allows concise and intuitive expression of

complex functional dependencies between a large number of nodes that may represent time-

varying random variables (e.g., repeated measurements over time of the same subject-matter

attribute, such as, blood pressure).

Statisticians often rely on simulation studies for assessing the appropriateness and accuracy

of different statistical methods (Burton et al. 2006). These studies generally help evaluate

and uncover potential problems with a method because the statistician knows and controls

the true data generating distribution, which remains unknown in a real data study (Hill and

Reiter 2006). Hence, a simulation study provides statisticians with a gold standard for

evaluating and comparing the performance of different statistical methods. The artificial

population data is usually drawn according to the specified model and the statistical

procedure is then applied to such data many times. For example, simulations have been

applied to evaluate the bias of an estimator (Porter et al. 2011; Brookhart et al. 2006), study

its asymptotic behavior (Mynbaev and Martins-Filho 2015), diagnose its sensitivity towards

different modeling assumptions (Petersen et al. 2012; Brookhart et al. 2006), and determine

the power of hypothesis tests (Væth and Skovlund 2004). Moreover, it may not only be of

value to find out that the statistical method works when its postulated assumptions are true,

but also to evaluate its robustness towards departures from the required causal and statistical

assumptions (Demirtas 2007). These are some of the common reasons why simulation

studies are increasingly being used in the medical literature (Burton et al. 2006; Kristman et
al. 2004; Væth and Skovlund 2004; Collins et al. 2001). We also note that careful

consideration should be given to a simulation study design (Burton et al. 2006). Indeed,

simulations are of most value when there is some hope that they are capable of capturing the

complexities one might expect to see in real-world data-generating processes. We also argue

that careful attention should be paid to the structure and clarity of the simulation code itself,

Sofrygin et al. Page 2

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://CRAN.R-project.org/package=simcausal

not only to simplify the conduct and presentation of extensive and complex simulation

studies, but also to avoid coding errors which may lead to incorrect conclusions and

difficulty with reproducing the findings of such a simulation study.

In this package, data can be simulated using a broad range of parametric distributions, such

that the resulting user-specified data generating distribution always falls into some non-

parametric structural equation model (NPSEM) (Pearl 1995, 2009, 2010a). An NPSEM

consists of a set of structural equations, which describe the causal mechanisms for

generating independent observations of a user-specified data structure. Each structural

equation is used to describe a single variable (call it ‘X’), which may be latent or observed.

Specifically, the structural equation for X postulates a mechanism in which Nature could

have generated X, as a consequence of other endogenous variables’ values and a random

disturbance (representing the effect of exogenous variables). Thus, defining X in this manner

avoids having to make a commitment to a particular parametric family of distributions or

specific functional form in which X may relate to other variables. As a result, an NPSEM

enforces the separation of the notion of a causal “effect” from its algebraic representation in

a particular parametric family (i.e., a coefficient in a linear causal model), and redefines an

effect as a ‘general capacity to transmit changes among variables’ (Pearl 2010b, 2012). In

particular, the NPSEM framework allows the extension of the capabilities of traditional SEM

methods to problems that involve discrete variables, nonlinear dependencies, and

heterogeneous treatment effects (Elwert 2013). The interventions can then be defined by

replacing some of the equations in NPSEM with their intervened values, which then defines

the counterfactual data.

Our package was developed based on the principles of the NPSEM framework and thus aims

to provide the user with a toolkit for specifying and simulating data based on a very large

collection of parametric distributions with often nonlinear relationships between the

variables. Moreover, simcausal is built around the language and the logic of counterfactuals:

What would happen if a subject received a different treatment? In other words, simcausal
also allows for specification and simulation of counterfactual data under various user-

specified interventions (e.g., static, dynamic, deterministic, or stochastic), which are referred

to as “actions”. These actions may represent exposure to treatment regimens, the occurrence

or non-occurrence of right-censoring events, or of clinical monitoring events (e.g.,

laboratory measurements based on which treatment decisions may be made). Finally, the

package enables the computation of a selected set of “effects” (defined as user-specified

features of the distribution of some counterfactual data) that represent common causal

quantities of interest, referred to as causal target parameters. For instance, treatment-specific

means, the average treatment effects (ATE) (on the multiplicative or additive scale) and

coefficients from working marginal structural model (MSM) (Robins 1998; Neugebauer and

van der Laan 2007) are a few of the causal target parameters that can be evaluated by the

package. The computed value of a particular causal parameter can then serve as the gold

standard for evaluating and comparing different estimation methods, e.g., evaluating finite

sample bias of an estimator. We note that our package also provides a valuable tool for

incorporating and changing various causal independence assumptions and then testing the

Sofrygin et al. Page 3

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

sensitivity or robustness of the studied statistical methods towards departures from those

assumptions.

One of the possible examples of applying simcausal in practice includes simulating the

types of data collected on subjects in the fields of medicine and public health, e.g., electronic

healthrecords data. Specifically, when one is interested in evaluating the utility and

appropriateness of a statistical procedure towards answering causal policy questions about

the effects of different interventions on the exposures of interest (e.g., the average effect of a

treatment for lowering blood pressure vs. placebo). In addition, our package provides tools

for converting simulated and real data between various formats, simplifying the data

processing as it may be required by different estimation R packages (e.g., converting

longitudinal data from wide to long formats, performing forward imputation on right-

censored data). Finally, we note that the simcausal package can be a useful instructional

tool, since it can elucidate understanding of complex causal concepts (Hodgson and Burke

2000), for example, using a simulated setting to demonstrate the validity of complex causal

identifiability results, showing bias due to unmeasured confounding (Fewell et al. 2007),

selection bias (Elwert and Winship 2014), and bias due to positivity violations (Petersen et
al. 2012). In summary, these are just a few of the possible practical applications of

simcausal: (a) Evaluating and comparing the performance of statistical methods and their

sensitivity towards departures from specific modeling assumptions; (b) Modeling

simulations after real data sets and technically validating an implementation of a novel

statistical procedure; (c) Identifying possible issues with statistical algorithms that were not

or could not be predicted from theory; and (d) Serving as an instructional tool for

understanding complex causal theory in practical simulated settings.

1.2. Comparison to other simulation packages

The CRAN system contains several R packages for conducting data simulations with various

statistical applications. We reference some of these packages below. Our review is not

intended to be exhaustive and we focus on two key aspects in which simcausal differ from

these other simulation tools.

First, simulations in the simcausal package are based on data generating distributions that

can be specified via general structural equation models. By allowing the specification of a

broad range of structural equations, the set of possible distributions available to the analyst

for simulating data is meant to be not overly restrictive. For instance, any sampling

distribution that is currently available in R or that can be user-defined in the R programming

environment can be used for defining the conditional distribution of a node given its parents.

Some of the other R packages rely on alternative approaches for specifying and simulating

data. For example, the package gems (Blaser et al. 2015) is based on the generalized

multistate models, and the package survsim (Moriña and Navarro 2014) is based on the

Weibull, log-logistic or log-normal models. Finally, the following R simulation packages

rely on linear structural equation models: lavaan (Rosseel 2012), lavaan.survey (Oberski

2014), sem (Fox 2006; Fox et al. 2014), semPLS (Monecke and Leisch 2012), OpenMx
(Boker et al. 2011, 2014) and simsem (Pornprasertmanit et al. 2015). The latter group of R

packages is traditionally described as being based on the LISREL model (Bollen 1989). We

Sofrygin et al. Page 4

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

note that the purpose and formulation of LISREL framework differs from the NPSEM

framework that we adopt in simcausal, and we use the example in Section 3 to help

highlight some of the differences. However, describing all the technical details of these two

modeling approaches is beyond the scope of this article and we refer the reader to the

following sources for the additional details: Glynn and Quinn (2007); Pearl (2010b);

Matsueda (2012); Pearl (2012); Bollen and Pearl (2013); Shpitser and Pearl (2009).

Second, unlike the simFrame package, which is meant as a general object-oriented tool for

designing simulation studies, the simcausal package is instead tailored to study causal

inference methodologies and is particularly suited to investigate problems based on complex

longitudinal data structures (Robins 1998). Indeed, simcausal provides a single pipeline for

performing the following common steps frequently encountered in simulation studies from

the causal inference literature and described in details later in this article: defining the

observed data distribution, defining intervention/counterfactual distributions, defining causal

parameters, simulating observed and counterfactual data, and evaluating the true value of

causal parameters. In addition, the package introduces an intuitive user-interface for

specifying complex data-generating distributions to emulate realistic real-world longitudinal

data studies characterized by a large number of repeated measurements of the same subject-

matter attributes over time. In particular, the simcausal package was designed to facilitate

the study of causal inference methods for investigating the effects of complex intervention

regimens such as dynamic and stochastic interventions (not just the common static and

deterministic intervention regimens), and summary measures of these effects defined by

(working) marginal structural models. We note, however, that while the package was initially

developed for this particular methodological research purpose, its utility can be extended to

a broader range of causal inference research, e.g., to perform simulation-based power

calculations for informing the design of real-world studies.

1.3. Organization of this article

The rest of this article is organized as follows. In Section 2, we provide an overview of the

technical details for a typical use of the simcausal package. In Section 3, we describe a

template workflow for a simple simulation study with single time point interventions, while

also drawing parallels with the traditional linear SEM framework. In Section 4, we describe

the use of the package for a more realistic and complex simulation study example based on

survival data with repeated measures and dynamic interventions at multiple time points. In

Section 4, we also apply the simcausal package to replicate some of the results of a

previously published simulation study by Neugebauer et al. (2014, 2015). In Section 5, we

apply the simcausal package to replicate results of another published simulation study by

Lefebvre et al. (2008). We conclude with a discussion in Section 6.

2. Technical details

2.1. NPSEM, causal parameter and causal graph

For the sake of clarity, we limit ourselves to describing a non-parametric structural equation

model [NPSEM, Pearl (2009)] for the observed data collected from a simple single-time

point intervention study (no repeated measures on subjects over time) and we note that this

Sofrygin et al. Page 5

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

NPSEM can be easily extended to longitudinal settings with repeated measures. Suppose

that we collect data on baseline covariates, denoted as W, an exposure, denoted as A (e.g.

treatment variable), and an outcome of interest, denoted as Y. An NPSEM is a causal model

that describes how these variables could be generated from a system of equations, such as:

W = fW(UW), A = fA(W, UA) and Y = fY(W, A, UY). We note that an NPSEM is defined by

unspecified (non-random) functions fW, fA, fY, and a model on the probability distribution

PU of random “disturbances” U = (UW, UA, UY). These equations are non-parametric in the

sense that they make no specific statement about the functional form of fW, fA, fY. We define

the observed data1 as O = (W, A, Y), and we note that the allowed set of probability

distributions for O is referred to as the the statistical model and it is implied by the causal
model encoded by the above NPSEM (i.e., by the choice of f and the choice of the

distribution PU). We also note that every parametric data-generating distribution defined in

the simcausal package can be described as an instance of a distribution in some NPSEM.

Such NPSEM encodes the independence assumptions between the endogenous variables.

For instance, the NPSEM described above assumes that the exposure A can depend on all

baseline variables W. As another example, suppose that (W, A, Y) were collected from a

clinical trial in which the exposure A was assigned at random. In this case, A is independent

of W, an assumption that can be encoded in the above NPSEM by removing W from the

above equation fA as follows: A = fA(UA).

The NPSEM also implicitly encodes the definition of counterfactual variables, i.e., variables

which would result from some particular interventions on a set of endogenous variables. For

example, the NPSEM can be modified as follows: W = fW(UW), A = a, Ya = fY(W, a, UY),

where the equation for W was kept unchanged, A was set to a known constant a and Ya

denotes the counterfactual outcome under an intervention that sets A = a. In this article, we

will refer to (W, a, Ya) as counterfactual data and we define our target causal parameter as a

function of such counterfactual data distribution, resulting from one or more exposure

intervention “a”. For example, the average treatment effect (ATE) can be expressed as E [Y1

− Y0]. The fundamental feature of the causal parameter defined in this manner is that it

remains a well-defined quantity under any probability distribution PU for the disturbances

and any choice of functions f, a notion which we also highlight with examples in Section 3.

Furthermore, suppose our goal is to evaluate the effect of the exposure with more than two

levels (e.g., categorical or time-varying A), in which case we could evaluate the above ATE

for any two possible combinations of different exposure levels. We could also undertake an

equivalent approach and characterize all such contrast with a saturated model for the mean

counterfactual outcome (E(Ya)), as indexed by the exposure levels a of interest. For

example, for an exposure with levels a ∈ {0, 1, 2}, we may use the following saturated

MSM with three parameters: E(Ya) = α0 + α1I(a = 1) + α2I(a = 2). This model then implies

that each possible contrast (ATE) can be recovered as a function of α = (α0, α1, α2), e.g.,

E(Y1 − Y0) = α1. However, this approach becomes problematic when dealing with small

sample datasets and high dimensional or continuous exposures. That is, suppose our goal is

to characterize the entire causal function of a given by {E(Ya) : a ∈ }, where represents

1We use the term “observed data” to designate the collection of all non-latent endogenous variables. The term “observed data” is
meant to be opposed to the “counterfactual data” defined in the next paragraph.

Sofrygin et al. Page 6

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the support of a highly dimensional or continuous A. An alternative approach is to

approximate the true causal function {E(Ya) : a ∈ } with some low-dimensional working
marginal structural model m(a|α). For example, one may define the working MSM as the

following linear model: m(a|α) = α0 + α1a + α2a2. Note, however, that the term “working

MSM” implies that we are not assuming E(Ya) = m(a|α), but instead we are defining our

causal parameter (α) as the best parametric approximation of the true function E(Ya) with

m(a|α). That is, such a working MSM made no assumptions about the true functional form

of E(Ya) and thus made no additional assumptions about the distribution of U and the

functions f, beyond those already implied by the NPSEM (e.g., independence of (UW, UA,

UY)). We also refer to Neugebauer and van der Laan (2007) for additional details and

examples of working MSMs. Also note that the concept of such working MSMs is easily

extended to arbitrary functions, e.g., we could define m(a|α) as an expit function when the

outcome Y is binary.

We note that the above NPSEM can be equivalently represented as a Directed Acyclic Graph

(DAG) (Pearl 1995), such as the one in Figure 1 (left), by drawing arrows from causes to

their effects. Links in this DAG can be of two kinds: those that involve unmeasured

quantities are represented by dashed arrows and those that only involve measured quantities

by solid arrows. We note that each endogenous node in Figure 1 represents a single equation

in the above NPSEM. The causal assumptions in such a DAG are conveyed by the missing

arrows, i.e., in our second example of the NPSEM, the absence of a variable W from the

right-hand side of the equation for A = fA(UA) would correspond with no direct arrow

between W and A. The disturbances U (also referred to as ‘errors’) are enclosed in circles in

the diagram on the left because they represent unobserved (latent) factors that the modeler

decides to keep unexplained. When the error terms (UW, UA, UY) are assumed to be

independent, the often-used convention is to remove them from the causal DAG (Pearl

2012), as shown in Figure 1 (right), with the implication that each of the remaining variables

is subject to the influence of its own independent error. This is also precisely how the

function plotDAG of the simcausal package will plot the diagram of the user-specified

SEM, that is, omitting the implied independent errors that influence each user-defined latent

and endogenous node. We also refer to the examples in Section 3 for illustrations of this

functionality of simcausal.

We note that simcausal was designed to facilitate simulations from NPSEM with mutually

independent disturbances. However, we also note that one can use simcausal to simulate

dependent errors (U) with an arbitrary correlation structure using one of the following

methods: a) Sample U jointly using a user-specified multivariate distribution with a specific

correlation structure, e.g., multivariate normal or copula (see the documentation and

examples for the node function); b) Create a common (also latent) parent that has a direct

effect of all three variables in U (see the example in Section 3; or c) Perform Cholesky

decomposition of the covariance matrix Σ for a multivariate normal N(μ, Σ), then generate

correlated (UW, UA, UY) distributed as N(μ, Σ) based on the previously sampled

independent standard normal variables (see the example in Appendix A).

2logit(x) = log[x/(1 − x)]

Sofrygin et al. Page 7

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.2. The workflow

Data structures: The following most common types of output are produced by the package.

parameterized causal DAG model - object that specifies the structural equation

model, along with interventions and the causal target parameter of interest.

observed data - data simulated from the (pre-intervention) distribution specified by

the structural equation model.

counterfactual data - data simulated from one or more post-intervention distributions

defined by actions on the structural equation model.

causal target parameter - the true value of the causal target parameter evaluated with

counterfactual data.

Routines: The following routines, also outlined in Figure 2, will be generally invoked by a

user, in the same order as presented below.

DAG.empty initiates an empty DAG object that contains no nodes.

node defines a node in the structural equation model and its conditional distribution,

i.e., the outcome of one equation in the structural equation model and the formula

that links the outcome value to that of earlier covariates, referred to as parent nodes.

A call to node can specify either a single node or multiple nodes at once, with name

and distr being the only required arguments. To specify multiple nodes with a

single node call, one must also provide an indexing vector of integers as an

argument t. In this case, each node shares the same name, but is indexed by distinct

values in t. The simultaneous specification of multiple nodes is particularly relevant

for providing a shorthand syntax for defining a time-varying covariate, i.e., for

defining repeated measurements over time of the same subject-matter attribute, as

shown in the example in Section 4.1.

add.nodes or D + node provide two equivalent ways of growing the structural

equation model by adding new nodes and their conditional distributions. Informally,

these routines are intended to be used to sequentially populate a DAG object with all

the structural equations that make up the causal model of interest. See Sections 3.1

and 4.1 for examples.

set.DAG locks the DAG object in the sense that no additional nodes can be

subsequently added to the structural equation model. In addition, this routine

performs several consistency checks of the user-populated DAG object. In particular,

the routine attempts to simulate observations to verify that all conditional

distributions in the DAG object are well-defined.

sim simulates independent and identically distributed (iid) observations of the

complete node sequence defined by a DAG object. The output dataset is stored as a

data.frame and is referred to as the observed data. It can be structured in one of

two formats, as discussed in Section 4.5.

Sofrygin et al. Page 8

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

add.action or D + action provides two equivalent ways to define one or more

actions. An action modifies the conditional distribution of one or more nodes of the

structural equation model. The resulting data generating distribution is referred to as

the postintervention distribution. It is saved in the DAG object alongside the original

structural equation model. See Sections 3.3 and 4.3 for examples.

sim(…, actions = …) can also be used for simulating independent observations

from one or more post-intervention distributions, as specified by the actions

argument. The resulting output is a named list of data.frame objects, collectively

referred to as the counterfactual data. The number of data.frame objects in this list

is equal to the number of post-intervention distributions specified in the actions

argument, where each data.frame object is an iid sample from a particular post-

intervention distribution.

set.targetE and set.targetMSM define two distinct types of target causal

parameters. The output from these routines is the input DAG object with the definition

of the target causal parameter saved alongside the interventions. See Sections 3.5 and

4.6 for examples defining various target parameters.

eval.target evaluates the causal parameter of interest using simulated

counterfactual data. As input, it can take previously simulated counterfactual data

(i.e., the output of a call to the sim(…, actions = …) function) or, alternatively,

the user can specify the sample size n, based on which counterfactual data will be

simulated first.

2.3. Specifying a structural equation model

The simcausal package encodes a structural equation model using a DAG object. The DAG

object is a collection of nodes, each node represented by a DAG.node object that captures a

single equation of the structural equation model. DAG.node objects are created by calling

the node function. When the node function is used to simultaneously define multiple

nodes, these nodes share the same name, but must be indexed by distinct user-specified

integer values of the time variable t, as shown in the example in Section 4.1. We will refer

to a collection of nodes defined simultaneously in this manner as a time-varying node and

we will refer to each node of such a collection as a measurement at a specific time point.

Each node is usually added to a growing DAG object by using either the add.nodes

function or equivalently the ’+’ function, as shown in the example in Sections 3.1 and 4.1.

Each new node added to a DAG object must be uniquely identified by its name or the

combination of a name and a value for the time variable argument t.

The user may explicitly specify the temporal ordering of each node using the order

argument of the node()function. However, if this argument is omitted, the add.nodes

function assigns the temporal ordering to a node by using the actual order in which this node

was added to the DAG object and, if applicable, the value of the time variable that indexes

this node (earlier added nodes receive a lower order value, compared to those that are added

Sofrygin et al. Page 9

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

later; nodes with a lower value for the t argument receive a lower order value, compared to

those with a higher value of t).

The node function also defines the conditional distribution of a node, given its parents, with

a combination of the sampling distribution specified by the distr argument and the

distributional parameters specified as additional named arguments to the node()function.

This distr argument can be set to the name of any R function that accepts an integer

argument named n and returns a vector of size n. Examples of such distribution functions

are provided in Section 3.6.

The distributional parameters are specified as additional named arguments of the

node()function and can be either constants or some summary measures of the parent nodes.

Their values can be set to any evaluable R expressions that may reference any standard or

user-specified R function, and also, may invoke a novel and intuitive shorthand syntax for

referencing specific measurements of time-varying parent nodes, i.e., nodes identified by the

combination of a node name and a time point value t. The syntax for identifying specific

measurements of time-varying nodes is based on a re-purposed R square-bracket vector

subsetting function ’[’: e.g., writing the expression sum(A[0:5]) , where A is the name

of a previously defined time-varying node, defines the summary measure that is the sum of

the node values over time points t = 0,…, 5. This syntax may also be invoked to

simultaneously define the conditional distribution of the measurements of a time-varying

node over multiple time points t at once. For example, defining the conditional distribution

of a time-varying node with the R expression sum(A[max(0, t - 5):t]) + t will

resolve to different node formulas for each measurement of the time-varying node,

depending on the value of t:

1. A[0] at t = 0;

2. sum(A[0:1]) + 1 at t = 1, …, sum(A[0:5]) + 5 at t = 5;

3. sum(A[1:6]) + 6 at t = 6, …, sum(A[5:10]) + 10 at t = 10.

Concrete applications of this syntax are described in Section 4.1, as well as in the

documentation of the node()function (?node).

Note that the user can also define a causal model with one or more nodes that represent the

occurrence of end of follow-up (EFU) events (e.g., right-censoring events or failure events of

interest). Such nodes are defined by calling the node()function with the EFU argument

being set to TRUE. The EFU nodes encode binary random variables whose value of 1

indicates that, by default, all of the subsequent nodes (i.e., nodes with a higher temporal

order value) are to be replaced with a constant NA (missing) value. As an alternative, the

user may choose to impute missing values for the time-varying node that represents the

failure event of interest using the last time point value carried forward (LTCF) imputation

method. This imputation procedure consists in replacing missing values for measurements of

a time-varying node at time points t after an end of follow-up event with its last known

measurement value prior to the occurrence of an end of follow-up event. Additional details

Sofrygin et al. Page 10

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

about this imputation procedure are provided in the simcausal package vignette Section 4.6

(Sofrygin et al. 2015).

Finally, we note that the package includes pre-written wrapper functions for random

sampling from some commonly employed distributions. These routines can be passed

directly to the distr argument of the node function with the relevant distributional

parameters on which they depend. These built-in functions can be listed at any time by

calling distr.list(). In particular, the routines “rbern”, “rconst”, and “rcat.b1”

can be used for specifying a Bernoulli distribution, a degenerate distribution (constant at a

given value), and a categorical distribution, respectively. One can also use any of the

standard random generating R functions, e.g., “rnorm” for sampling from the normal

distribution and “runif” for sampling from the uniform distribution, as demonstrated in

Sections 3.1 and 3.6.

2.4. Specifying interventions

An intervention regimen (also referred to as action regimen) is defined as a sequence of

conditional distributions that replace the original distributions of a subset of nodes in a DAG

object. To specify an intervention regimen, the user must identify the set of nodes to be

intervened upon and provide new node distributions for them. The user may define a static,

dynamic, deterministic or stochastic intervention on any given node, depending on the type

of distributions specified. A deterministic static intervention is characterized by replacing a

node distribution with a degenerate distribution such that the node takes on a constant value.

A deterministic dynamic intervention is characterized by a conditional degenerate

distribution such that the node takes on a value that is only a function of the values of its

parents (i.e., a decision rule). A stochastic intervention is characterized by a non-degenerate

conditional distribution. A stochastic intervention is dynamic if it is characterized by a non-

degenerate conditional distribution that is defined as a function of the parent nodes and it is

static otherwise. Note that a particular intervention may span different types of nodes and

consist of different types of distributions, e.g., an intervention on a monitoring node can be

static, while the intervention on a treatment node from the same structural equation model

may be dynamic.

To define an intervention the user must call D + action(A, nodes = B) (or

equivalently add.action(D, A, nodes = B)), where D is a DAG object, A is a unique

character string that represents the intervention name, and B is a list of DAG.node objects

defining the intervention regimen. To construct B the user must first aggregate the output

from one or more calls to node (using c(…, …)), with the name argument of the node

function call set to node names that already exist in the locked DAG object D. The example

in Section 4.3 demonstrates this functionality. Alternatively, repeated calls to add.action

or D+action with the same intervention name, e.g., A = “A1”, allow the incremental

definition of an intervention regimen by passing each time a different node object, enabling

iterative build-up of the collection B of the intervened nodes that define the intervention

regimen. Note, however, that by calling D + action or add.action(D, …) with a new

action name, e.g., action(“A2”, …), the user initiates the definition of a new intervention

regimen.

Sofrygin et al. Page 11

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.5. Specifying a target causal parameter

The causal parameter of interest (possibly a vector) is defined by either calling the function

set.targetE or set.targetMSM. The function set.targetE defines causal

parameters as the expected value(s) of DAG node(s) under one post-intervention distribution

or the contrast of such expected value(s) from two post-intervention distributions. The

function set.targetMSM defines causal parameters based on a working marginal

structural model (Neugebauer and van der Laan 2007). In both cases, the true value of the

causal parameter is defined by one or several post-intervention distributions and can thus be

approximated using counterfactual data.

The following types of causal parameters can be defined with the function set.targetE:

• The expectation of an outcome node under an intervention regimen denoted by d,

where the outcome under d is denoted by Yd. This parameter can be naturally

generalized to a vector of measurements of a time-varying node, i.e., the

collection of nodes Yd(t) sharing the same name, but indexed by distinct time

points t that represents a sequence of repeated measurements of the same

attribute (e.g., a CD4 count or the indicator of past occurrence of a given failure

event):

• The difference between two expectations of an outcome node under two

interventions, d1 and d0. This parameter can also be naturally generalized to a

vector of measurements of a time-varying node:

• The ratio of two expectations of an outcome node under two interventions. This

parameter can also be naturally generalized to a vector of measurements of a

time-varying node:

Note that if the DAG object contains nodes of type EFU = TRUE other than the outcome

nodes of interest Yd(t), the target parameter must be defined by intervention regimens that

set all such nodes that precede all outcomes of interest Yd(t) to 0. Also note that with such

intervention regimens, if the outcome node is time-varying of type EFU = TRUE then the

nodes Yd(t) remain well defined (equal to 1) even after the time point when the simulated

value for the outcome jumps to 1 for the first time. The nodes Yd(t) can then be interpreted

as indicators of past failures in the absence of right-censoring events. The specification of

these target parameters is covered with examples in Sections 3.5.1 and 4.6.1.

Sofrygin et al. Page 12

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

When the definition of the target parameter is based on a working marginal structural model,

the vector of coefficients (denoted by α) of the working model defines the target parameter.

The definition of these coefficients relies on the specification of a particular weighting

function when the working model is not a correct model (see Neugebauer and van der Laan

(2007) for details). This weighting function is set to the constant function of 1 in this

package. The corresponding true value of the coefficients α can then be approximated by

running a standard (unweighted) regression routines applied to simulated counterfactual data

observations. The following types of working models, denoted by m(), can be defined with

the function set.targetMSM:

• The working linear or logistic model for the expectation of one outcome node

under intervention d, possibly conditional on baseline node(s) V, where a

baseline node is any node preceding the earliest node that is intervened upon,

i.e., E(Yd | V):

Such a working model can, for example, be used to evaluate the effects of HIV

treatment regimens on the mean CD4 count measured at one point in time.

• The working linear or logistic model for the expectation vector of measurements

of a time-varying outcome node, possibly conditional on baseline node(s) V, i.e.,

E(Yd(t) | V):

Such a working model can, for example, be used to evaluate the effects of HIV

treatment regimens on survival probabilities over time.

• The logistic working model for discrete-time hazards, i.e., for the probabilities

that a measurement of a time-varying outcome node of type EFU=TRUE is equal

to 1 under intervention d, given that the previous measurement of the time-

varying outcome node under intervention d is equal to 0, possibly conditional on

baseline node(s) V, i.e., E(Yd(t) | Yd(t − 1) = 0, V):

Such a working model can, for example, be used to evaluate the effects of HIV

treatment regimens on discrete-time hazards of death over time.

Examples of the specification of the above target parameters are provided in Sections 3.5.2

and 4.6.2. As shown above, the working MSM formula m() can be a function of t, V and d,

where d is a unique identifier of each intervention regimen. In Sections 3.5.2 and 4.6.2 we

describe in detail how to specify such identifiers for d as part of the action function call.

Also note that the working MSM formula, m, may reference time-varying nodes using the

square-bracket syntax introduced in Section 2.3, as long as all such instances are embedded

Sofrygin et al. Page 13

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

within the syntax S(…). Example use of this syntax is provided in Section 4.6.2 (Example 2

of set.targetMSM).

2.6. Simulating data and evaluating the target causal parameter

The simcausal package can simulate two types of data: 1) observed data, sampled from the

(pre-intervention) distribution specified by the structural equation model and 2)

counterfactual data, sampled from one or more post-intervention distributions defined by

actions on the structural equation model. Both types of data are simulated by invoking the

sim function and the user can set the seed for the random number generator using the

argument rndseed. The examples showing how to simulate observed data are provided in

Sections 3.2 and 4.2, whereas the examples showing how to simulate counterfactual data are

provided in Sections 3.4 and 4.4.

We note that two types of structural equation models can be encoded with the DAG object:

1) models where some or all nodes are defined by specifying the “time” argument t to the

node function, or 2) models where the argument t is not used for any of the nodes. For the

first type of structural equation models, the simulated data can be structured in either long or

wide formats. A dataset is considered to be in wide format when each simulated observation

of the complete sequence of nodes is represented by only one row of data, with each time-

varying node represented by columns spanning distinct values of t. In contrast, for a dataset

in long format, each simulated observation is typically represented by multiple rows of data

indexed by distinct values of t and each time-varying node represented by a single column.

The format of the output data is controlled by setting the argument wide of the sim

function to TRUE or FALSE. The default setting for sim is to simulate data in wide format,

i.e., wide = TRUE. An example describing these two formats is provided in Section 4.5.

In addition, as previously described, for nodes representing the occurrence of end of follow-

up events (i.e., censoring or outcome nodes declared with EFU = TRUE), the value of 1

indicates that, during data simulation, by default, all values of subsequent nodes (including

the outcome nodes) are set to missing (NA). To instead impute these missing values after a

particular end of follow-up event occurs (typically the outcome event) with the last time
point value carried forward (LTCF) method, the user must set the argument LTCF of the sim

function to the name of the EFU-type node that represents the end of follow-up event of

interest. This will result in carrying forward the last observed measurement value for all

time-varying nodes, after the value of the EFU node whose name is specified by the LTCF

argument is observed to be 1. For additional details see the package documentation for the

function sim.

In the last step of a typical workflow, the function eval.target is generally invoked for

estimation of the true value of a previously defined target causal parameter. The true value is

estimated using counterfactual data simulated from post-intervention distributions. The

function eval.target can be called with either previously simulated counterfactual data,

specified by the argument data or a sample size value, specified by the argument n. In the

latter case, counterfactual data with the user-specified sample size will be simulated first.

Sofrygin et al. Page 14

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3. Simulation study with single time point interventions

The following examples describe a typical workflow for specifying a structural equation

model, defining various interventions, simulating observed and counterfactual data, and

calculating various causal target parameters. The structural equation model chosen here

illustrates a common point treatment problem in which one is interested in evaluating the

effect of an intervention on one treatment node on a single outcome node using

observational data with confounding by baseline covariates. In addition, these examples

demonstrate the plotting functionality of the simcausal package that builds upon the igraph
R package (Csardi and Nepusz 2006) to visualize the Directed Acyclic Graph (DAG) (Pearl

1995, 2009, 2010a) implied by the structural equation model encoded in the DAG object.

We also undertake an approach similar to the one described in (Elwert 2013) and use the

following examples to highlight some of the differences between the non-parametric

structural equation models (Pearl 2009) and the traditional linear structural equation models

based on the LISREL framework (Bollen 1989). Many traditional applications of structural

equation modeling are devoted to addressing the problem of the measurement in the

exposure, and more precisely, to address problems in which the true exposure of interest is a

latent variable, such as talent, motivation or political climate that cannot be observed

directly, but that is instead measured via some noisy and correlated proxies. Hence, the

LISREL framework is frequently applied to formally assess the causal effects of such latent

variables. However, the primary intended goal of simcausal is not to simulate such

measurement error data, even though one could adapt simcausal for that purpose. Instead,

our package specifically focuses on data simulation for the purpose of evaluating estimation

methods for assessing the effect of exposures that can be observed directly. Additionally, one

may also use simcausal to simulate data problems with latent variables that might impact

the observed exposures of interest.

3.1. Specifying parametric structural equation models in simcausal

Suppose that we want to simulate data that could be generated in a hypothetical study

evaluating the effect of receiving school vouchers on mean test scores based on a sample of

students. We start by assuming that a latent covariate I represents the level of subject’s true

and unobserved intelligence, where I is categorical and its distribution is defined by the node

named “I” in the code example below. We also assume that I directly influences the values

of the three observed baseline covariates W = (W1, W2, W3) (nodes “W1”, “W2” and “W3”

below) and we define the distribution of each W conditional on I. That is, the observed

baseline covariates in W will be correlated, since all three depend on a common and latent

parent I. We now let A (node “A” below) define the observed binary exposure (receiving

school vouchers), where the probability of success for A is defined as the following logit-

linear function2 of W:

for W = (W1, W2, W3)t, α0 = 4.2 and γA = (−0.5, 0.1, 0.2).

Sofrygin et al. Page 15

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

That is, the above model assumes that A is directly influenced by the observed variable W,

while the latent I has no direct influence on A. We also emphasize that we want to study the

effect of intervening on the observed variable(s), such as A, whereas in the traditional

measurement error model the focus might have been on modeling the effect of the latent

varible I on some observed outcome(s). The following example code defines the

distributions of (I, W, A). Specifically, we use the pre-defined R functions rcat.b1, rnorm,

runif and rbern to define the latent categorical node I, normal node W1, uniform node

W2 and Bernoulli nodes W3 and A, respectively3. We also note that implicit in the

specification of these nodes is the specification of independent exogenous errors

(disturbances), whose distributions are defined by the distr arguments as shown below.

R> library(“simcausal”)

R> D <- DAG.empty()

R> D <- D +

+ node(“I”, distr = “rcat.b1”,

+ probs = c(0.1, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1)) +

+ node(“W1”, distr = “rnorm”,

+ mean = ifelse(I == 1, 0, ifelse(I == 2, 3, 10)) + 0.6 * I, sd = 1) +

+ node(“W2”, distr = “runif”,

+ min = 0.025*I, max = 0.7*I) +

+ node(“W3”, distr = “rbern”,

+ prob = plogis(-0.5 + 0.7*W1 + 0.3*W2 - 0.2*I)) +

+ node(“A”, distr = “rbern”,

+ prob = plogis(+4.2 - 0.5*W1 + 0.1*W2 + 0.2*W3))

Similarly, we assume that the outcome Y is influenced by an independent latent error UY ~

N(0, 1), and we use the following code example to show how one might explicitly define UY

using a node named “U.Y”4:

R> D <- D + node(“U.Y”, distr = “rnorm”, mean = 0, sd = 1)

3For details and examples on writing sampling functions for arbitrary distributions see Section 3.6. We also refer to Section 3.6 for a
description on how to specify node formulas (distributional parameters), such as, the R expressions specified by the probs, mean,
sd, min, max and prob arguments to node function.
4In simcausal, such disturbances would typically be defined implicitly as representing mutually independent exogenous variables, as
shown in the previous examples of node specification. We can however also define them explicitly as endogenous variables. For
example, this can be done for the purpose of defining non-independent error terms. For simplicity here, we demonstrate how such
error terms can be defined explicitly and refer the reader to the previous Section 2.1 and help files for a descriptions of 3 alternative
methods for defining non-independent errors.

Sofrygin et al. Page 16

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The following example defines the outcome Y (node named “Y”) by using the following

linear structural equation:

where β0 = −0.5, β1 = 1.2, β2 = 0.2 and γY = (0.1, 0.3, 0.2).

Note that in this example, we are assuming that the effect of exposure A on Y is the same for

every strata of W and I (i.e., homogeneous treatment effect). We also note that the

distribution of the node Y is defined below as degenerate (distr = “rconst”), since we

explicitly define its error term with the above node U.Y. That is, the following example uses

a predefined R function rconst, which puts mass one on the value of the node function

argument const:

R> D <- D + node(“Y”, distr = “rconst”,

+ const = -0.5 + 1.2*A + 0.2*I + 0.1*W1 + 0.3*W2 + 0.2*W3 + U.Y)

Note that the names of all user-defined endogenous latent nodes must be specified within the

set.DAG function via the argument latent.v, as shown in this example:

R> Dset1 <- set.DAG(D, latent.v = c(“I”, “U.Y”))

Running the code above results in implicitly assigning a sampling order (temporal order) to

each node - based on the order in which the nodes were added to the DAG object D.

Alternatively, one can use the optional node()argument order to explicitly specify the

integer value of the sampling order of each node, as described in more detail in the

documentation for the node function. The resulting internal representation of the structural

equation model encoded by the DAG object Dset1 can be examined as follows:

R> str(Dset1)

In the example above, we are interested in the causal target parameter defined as the average

treatment effect (ATE) of school vouchers on mean test scores, which is generally defined in

the NPSEM framework as E(Y1 − Y0). Analytically, one can show that in the simple SEM

defined above, the ATE is equal to the coefficient β1 (Pearl 2012).

Sofrygin et al. Page 17

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Our example so far illustrates a scenario typical of the linear SEM literature in which the

effect of interest corresponds with a coefficient from one of the structural equations. We now

illustrate other more complex scenarios in which the effect of interest (ATE) is not equal to

one particular structural equation coefficient. In the following example, we modify the above

SEM for Y and allow for the effect of treatment on Y to vary by strata of W3:

where β0 = −0.5, β1 = 1.2, , β2 = 0.2 and γY = (0.2, 0.2, 0.2). Note that in this

example we moved away from the classical linear structural model for Y, specifically, we

allowed for the causal effect of A on Y to vary by subject depending on their value of W3.

Finally, we note that whenever the node named “Y” is added again to the same DAG object

D, simcausal automatically overwrites the previously defined distribution of Y with the one

given by the new node function call, as demonstrated below.

R> D <- D + node(“Y”, distr = “rconst”, + const = -0.5 + 1.2*A - 0.5*(A

* W3) + 0.2*I + 0.2*(W1 + W2 + W3) + U.Y) R> Dset2 <- set.DAG(D, latent.v =

c(“I”, “U.Y”))

Note that for the above data generating distribution specified by the object Dset2, the ATE

(E(Y1 − Y0)) is no longer equal to β1, but is rather equal to (proof not shown,

but easily derived by following the same logic as in the previous example).

For our final example shown below, we re-define Y as a nonlinear function of the same

parent nodes used in the previous two examples:

where hY(UY, W) = I(|1/sin(UYW2)| ≤ 10), β1 = 1.2, β2 = 0.05, β3 = 0.7, β4 = 0.002, β5 =

0.02 and β6 = 5. Note that in this model for the outcome Y, the analytic derivation of the

ATE becomes intractable. However, one can use simcausal to find a Monte-Carlo

approximation of the ATE from simulated counterfactual data, as shown in Section 3.5.

R> D <- D + node(“Y”, distr = “rconst”,

+ const =

+ +1.2*A + 0.05*(W1ˆ2 + W2ˆ3 / 10 + W3) + 0.7*abs(U.Y) + 0.002*Iˆ2 +

+ +0.02*abs(1 / sin(U.Y * W2 + A)) * (abs(1/sin(U.Y * W2)) <= 10) +

+ +5*(abs(1/sin(U.Y * W2)) > 10))

Sofrygin et al. Page 18

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R> Dset3 <- set.DAG(D, latent.v = c(“I”, “U.Y”))

We note that all three of the above structural equations for Y depend on exactly the same

variables, namely, (A, W, I). Therefore, the three parameterizations of the SEM specified by

the above objects Dset1, Dset2 and Dset3 are all represented by the same NPSEM and

the same DAG in Figure 3. The DAG in Figure 3 was automatically generated by calling the

function plotDAG. The plotting is accomplished by using the visualization functionality

from the igraph package (Csardi and Nepusz 2006). The directional arrows (solid and

dashed) represent the functional dependencies in the structural equation model. Specifically,

the node of origin of each arrow is an extracted node name from the node formula(s). The

user-specified latent nodes are surrounded by circles, and each functional dependency that

originates at a latent node is displayed via a dashed directional arrow5.

The above alternative examples for specifying the outcome variable Y also demonstrate how

simcausal can be applied for defining a variety of functional and distributional relationships

between the model variables, including those that can be specified by the traditional linear

structural equation models. We have also demonstrated that our package can be used for

defining the SEM with endogenous latent variables. The above examples also highlight the

merit of defining the target causal parameters in a way that remains meaningful for any

parametric specification of the SEM. As we demonstrate in Section 3.3 below, our package

provides exactly this type of functionality, allowing the user to define and evaluate various

causal target parameters as functions of the counterfactual data distribution.

3.2. Simulating observed data (sim)

Simulating observed data is accomplished by calling the function sim and specifying its

arguments DAG and n that indicate the causal model and sample size of interest. Below is

an example of how to simulate an observed dataset with 10,000 observations using the

causal model defined in the previous section. The output is a data.frame object.

R> Odat <- sim(DAG = Dset3, n = 10000, rndseed = 123)

The format of the output dataset is easily understood by examining the first row of the

data.frame returned by the sim function. Note that the latent variables ‘ I’ and ‘ U.Y’

are absent from the simulated data, as shown below.

R> Odat[1,]

5Note that the appearance of the resulting diagram can be customized with additional arguments, as demonstrated in the simcausal
package vignette (Sofrygin et al. 2015).

Sofrygin et al. Page 19

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 ID W1 W2 W3 A Y

1 1 3.705826 0.1686546 1 1 7.080206

3.3. Specifying interventions (+ action)

The example below defines two actions on the treatment node. The first action named “A1”

consists in replacing the distribution of the treatment node A with the degenerate

distribution at value 1. The second action named “A0” consists in replacing the distribution

of the treatment node A with the degenerate distribution at value 0. As shown below, these

interventions are defined by invoking the + action syntax on the existing DAG object.

This syntax automatically adds and saves the new intervention object within the original DAG

object, without overwriting it.

R> A1 <- node(“A”, distr = “rbern”, prob = 1)

R> Dset3 <- Dset3 + action(“A1”, nodes = A1)

R> A0 <- node(“A”, distr = “rbern”, prob = 0)

R> Dset3 <- Dset3 + action(“A0”, nodes = A0)

The added actions can be examined by looking at the result of the call A(Dset) . Note that

A(Dset) returns a list of DAG.action objects, with each DAG.action encoding a

particular post-intervention distribution, i.e., it is a modified copy of the original DAG object,

where the original distribution of the node A is replaced with the degenerate distribution at

value 0 or 1, for actions “A0” and “A1”, respectively.

R> names(A(Dset3))

R> class(A(Dset3)[[“A0”]])

3.4. Simulating counterfactual data (sim)

Simulating counterfactual data is accomplished by calling the function sim and specifying

its arguments DAG, actions and n to indicate the causal model, interventions, and sample

size of interest. Counterfactual data can be simulated for all actions stored in the DAG object

or a subset by setting the actions argument to the vector of the desired action names.

The example below shows how to use the sim function to simulate 100,000 observations

for each of the two actions, “A1” and “A0”. These actions were defined as part of the DAG

object Dset above. The call to sim below produces a list of two named data.frame

objects, where each data.frame object contains observations simulated from the same

post-intervention distribution defined by one particular action only.

Sofrygin et al. Page 20

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R> Xdat1 <- sim(DAG = Dset3, actions = c(“A1”, “A0”), n = 100000, rndseed =

123)

R> names(Xdat1)

R> nrow(Xdat1[[“A1”]])

R> nrow(Xdat1[[“A0”]])

The format of the output list is easily understood by examining the first row of each

data.frame object:

R> Xdat1[[“A1”]][1,]

R> Xdat1[[“A0”]][1,]

3.5. Defining and evaluating various causal target parameters

Causal parameters defined with set.targetE—The first example below defines the

causal quantity of interest as the expectation of node Y under action “A1”, i.e., E(Y1):

R> Dset3 <- set.targetE(Dset3, outcome = “Y”, param = “A1”)

The true value of the above causal parameter is now evaluated by calling the function

eval.target and passing the previously simulated counterfactual data object Xdat1.

R> eval.target(Dset3, data = Xdat1)$res

Alternatively, eval.target can be called without the simulated counterfactual data,

specifying the sample size argument n instead. In this case a counterfactual dataset with the

user-specified sample size is simulated first.

R> eval.target(Dset3, n = 100000, rndseed = 123)$res

Sofrygin et al. Page 21

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The example below defines the causal target parameter as the ATE on the additive scale, i.e.,

the expectation of Y under action “A1” minus its expectation under action “A0”, given by

E(Y1 − Y0):

R> Dset3 <- set.targetE(Dset3, outcome = “Y”, param = “A1-A0”)

R> eval.target(Dset3, data = Xdat1)$res

 Diff_Y

1.281203

Similarly, the ATE on the multiplicative scale given by E(Y1)/E(Y0) can be evaluated as

follows:

R> Dset3 <- set.targetE(Dset3, outcome = “Y”, param = “A1/A0”)

R> eval.target(Dset3, data = Xdat1)$res

Causal parameters defined with set.targetMSM—To specify MSM target causal

parameter, the user must provide the following arguments to set.targetMSM: (1) the DAG

object that contains all and only the actions of interest; (2) outcome, the name of the

outcome node (possibly time-varying); (3) for a time-varying outcome node, the vector of

time points t that index the outcome measurements of interest; (4) form, the regression

formula defining the working MSM; (5) family, the working model family that is passed

on to glm, e.g., family = “binomial” or family = “gaussian” for a logistic or a

linear working model; and (6) for time-to-event outcomes, the logical flag hazard that

indicates whether the working MSM describes discrete-time hazards (hazard = TRUE) or

survival probabilities (hazard = FALSE).

In the examples above, the two actions “A1” and “A0” are defined as deterministic static

interventions on the node A, setting it to either constant 0 or 1. Thus, each of these two

interventions is uniquely indexed by the post-intervention value of the node A itself. In the

following example, we instead introduce the variable d ∈ {0, 1} to explicitly index each of

the two post-intervention distributions when defining the two actions of interest. We then

define the target causal parameter as the coefficients of the following linear marginal

structural model m(d | α) = α0 +α1d. As expected, the estimated true value for α1 obtained

below corresponds exactly with the estimated value for the ATE on the additive scale

obtained above by running set.targetE with the parameter param = “A1-A0”.

As just described, we now redefine the actions “A1” and “A0” by indexing the intervention

node formula (the distributional parameter prob) with parameter d before setting its values

to 0 or 1 by introducing an additional new argument named d into the action function

Sofrygin et al. Page 22

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

call. This creates an action-specific attribute variable d whose value uniquely identifies each

of the two actions and that will be included as an additional column variable to the

simulating counterfactual data sets.

R> newA <- node(“A”, distr = “rbern”, prob = d)

R> Dset3 <- Dset3 + action(“A1”, nodes = newA, d = 1)

R> Dset3 <- Dset3 + action(“A0”, nodes = newA, d = 0)

Creating such an action-specific attribute d allows it to be referenced in the MSM

regression formula as shown below:

R> msm.form <- “Y ∼ d”

R> Dset3 <- set.targetMSM(Dset3, outcome = “Y”, form = msm.form,

+ family = “gaussian”)

R> msm.res <- eval.target(Dset3, n = 100000, rndseed = 123)

R> msm.res$coef

(Intercept) d

 7.385276 1.281203

3.6. Defining node distributions

To facilitate the comprehension of this subsection, we note that, in the simcausal package,

simulation of observed or counterfactual data follows the temporal ordering of the nodes that

define the DAG object and is vectorized. More specifically, the simulation of a dataset with

sample size n is carried out by first sampling the vector of all n observations of the first

node, before sampling the vector of all n observations of the second node and so on, where

the node ranking is defined by the temporal ordering that was explicitly or implicitly

specified by the user during the creation of the DAG object (see Section 2.3 for a discussion

of temporal ordering).

The distribution of a particular node is specified by passing the name of an evaluable R

function to the distr argument of the function node. Such a distribution function must

implement the mapping of n independent realizations of the parent nodes into n

independent realizations of this node. In general, any node with a lower temporal ordering

can be defined as a parent. Thus, such a distribution function requires an argument n, but

will also typically rely on additional input arguments referred to as distributional parameters.

In addition, the output of the distribution function must also be a vector of length n.

Distributional parameters must be either scalars or vectors of n realizations of summary

measures of the parent nodes. The latter types of distributional arguments are referred to as

the node formula(s) because they are specified by evaluable R expressions. Distributional

Sofrygin et al. Page 23

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

parameters are passed as named arguments to the node function so they can be mapped

uniquely to the relevant argument of the function that is user-specified by the distr

argument of the node function call. The node formula(s) of any given node may invoke the

name(s) of any other node(s) with a lower temporal order value. The parents of a particular

node are thus defined as the collection of nodes that are referenced by its node formula(s).

Note that unlike the values of distributional parameters, the value of the argument n of the

distr function is internally determined during data simulation and is set to the sample size

value passed to the sim function by the user.

For example, as shown below, the pre-written wrapper function for the Bernoulli distribution

rbern is defined with two arguments, n and prob. When defining a node with the distr

argument set to “rbern”, only the second argument must be explicitly user-specified by a

distributional parameter named prob in the call to the node function, e.g., node(“N1”,

distr=“rbern”, prob = 0.5). The argument prob can be either a numeric constant as

in the previous example or an evaluable R expression. When prob is a numeric constant,

the distribution function rbern returns n iid realizations of the Bernoulli random variable

with probability prob. When prob is an R expression (e.g., see the definition of node W3

in Section 3.1) that involves parent nodes, the prob argument passed to the rbern function

becomes a vector of length n. The value of each of its component is determined by the R

expression evaluated using one of the n iid realizations of the parent nodes simulated

previously. Thus, the resulting simulated independent observations of the child node (e.g.,

W3 in Section 3.1) are not necessarily identically distributed if the vector prob contains

distinct values. We note that the R expression in the prob argument is evaluated in the

environment containing the simulated observations of all previous nodes (i.e., nodes with a

lower temporal order value).

To see the names of all pre-written distribution wrapper functions that are specifically

optimized for use as distr functions in the simcausal package, invoke distr.list(), as

shown below:

R> distr.list()

[1] “rbern” “rcat.b0” “rcat.b1” “rcat.factor”

[5] “rcategor” “rcategor.int” “rconst” “rdistr.template”

For a template on how to write a custom distribution function, see the documentation ?

rdistr.template and rdistr.template, as well as any of the pre-written distribution

functions above. For example, the rbern function below simply wraps around the standard

R function rbinom to define the Bernoulli random variable generator:

R> rbern

Sofrygin et al. Page 24

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

function (n, prob)

{

 rbinom(n = n, prob = prob, size = 1)

}

<environment: namespace:simcausal>

Another example on how to write a custom distribution function to define a custom left-

truncated normal distribution function based on the standard R function rnorm with

arguments mean and sd is demonstrated below. The truncation level is specified by an

additional distributional parameter minval, with default value set to 0.

R> rnorm_trunc <- function(n, mean, sd, minval = 0) {

+ out <- rnorm(n = n, mean = mean, sd = sd)

+ minval <- minval[1]

+ out[out < minval] <- minval

+ out

+ }

The example below makes use of this function to define the outcome node Y with positive

values only:

R> Dmin0 <- DAG.empty()

R> Dmin0 <- Dmin0 +

+ node(“W”, distr = “rbern”,

+ prob = plogis(-0.5)) +

+ node(“A”, distr = “rbern”,

+ prob = plogis(-0.5 - 0.3 * W)) +

+ node(“Y”, distr = “rnorm_trunc”,

+ mean = -0.1 + 1.2 * A + 0.3 * W,

+ sd = 10)

R> Dmin0set <- set.DAG(Dmin0)

In the next example, we overwrite the previous definition of node Y to demonstrate how

alternative values for the truncation parameter minval may be passed by the user as part of

the node function call:

Sofrygin et al. Page 25

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R> Dmin0 <- Dmin0 +

+ node(“Y”, distr = “rnorm_trunc”,

+ mean = -0.1 + 1.2 * A + 0.3 * W,

+ sd = 10,

+ minval = 10)

R> Dmin10set <- set.DAG(Dmin0)

Finally, we illustrate how the minval argument can also be defined as a function of parent

node realizations:

R> Dmin0 <- Dmin0 +

+ node(“Y”, distr = “rnorm_trunc”,

+ mean = -0.1 + 1.2 * A + 0.3 * W,

+ sd = 10,

+ minval = ifelse(A == 0, 5, 10))

R> Dminset <- set.DAG(Dmin0)

As just described, the distributional parameters defining a particular node distribution can be

evaluable R expressions, referred to as node formulas. These expressions can contain any

built-in or user-defined R functions. By default, any user-defined function inside such an R

expression is assumed non-vectorized, except for functions on the simcausal built-in list of

known vectorized functions (this list can be printed by calling vecfun.all.print()). We

note that the simulation time can often be significantly improved by using vectorized user-

defined node formula functions. For example, to register a new user-defined vectorized

function “funname”, which is not part of the built-in vectorized function list, the user may

call vecfun.add(“funname”). We refer to the package vignette (Sofrygin et al. 2015) for

additional details and examples on how to write custom vectorized node formula functions.

We also refer to the same vignette for a simulation demonstrating the performance gains as a

result of vectorization.

4. Simulation study with multiple time point interventions

In this example we replicate results from the longitudinal data simulation protocol used in

two published manuscripts Neugebauer et al. (2014, 2015). We first describe the structural

equation model that implies the data generating distribution of the observed data, with time-

to-event outcome, as reported in Section 5.1 of Neugebauer et al. (2015). We then show how

to specify this model using the simcausal R interface, simulate observed data, define static

and dynamic intervention, simulate counterfactual data, and calculate various causal

parameters based on these interventions. In particular, we replicate estimates of true

counterfactual risk differences under the dynamic interventions reported in Neugebauer et al.

Sofrygin et al. Page 26

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(2014), as shown in Section 4.6 (Example 1 for set.targetE and Example 1 for

set.targetMSM).

4.1. Specifying the structural equation model

In this section, we demonstrate how to specify the structural equation model described by

the following longitudinal data simulation protocol (Section 5.1 of Neugebauer et al.
(2015)):

1. L2(0) ~ ℬ(0.05) where ℬ denotes the Bernoulli distribution (e.g., L2(0) represents

a baseline value of a time-dependent variable such as low versus high A1c)

2. If L2(0) = 1 then L1(0) ~ ℬ(0.5), else L1(0) ~ ℬ(0.1) (e.g., L1(0) represents a

time-independent variable such as history of cardiovascular disease at baseline)

3. If (L1(0), L2(0)) = (1, 0) then A1(0) ~ ℬ(0.5), else if (L1(0), L2(0)) = (0, 0) then

A1(0) ~ ℬ(0.1), else if (L1(0), L2(0)) = (1, 1) then A1(0) ~ ℬ(0.9), else if (L1(0),

L2(0)) = (0, 1) then A1(0) ~ ℬ(0.5) (e.g., A1(0) represents the binary exposure to

an intensified type 2 diabetes pharmacotherapy)

4. for t = 1, …, 16 and as long as Y (t − 1) = 0 (by convention, Y (0) = 0):

a.
 (e.g., Y(t)

represents the indicator of failure such as onset or progression of

albuminuria)

b. If A1(t − 1) = 1 then L2(t) ~ ℬ(0.1), else if L2(t − 1) = 1 then L2(t) ~

ℬ(0.9), else L2(t) ~ ℬ(min(1, 0.1 + t/16))

c. If A1(t − 1) = 1 then A1(t) = 1, else if (L1(0), L2(t)) = (1, 0) then A1(t) ~

ℬ(0.3), else if (L1(0), L2(t)) = (0, 0) then A1(t) ~ ℬ(0.1), else if (L1(0),

L2(t)) = (1, 1) then A1(t) ~ ℬ(0.7), else if (L1(0), L2(t)) = (0, 1) then

A1(t) ~ ℬ(0.5).

First, the example below shows how to define the nodes L2, L1 and A1 at time point t = 0

as Bernoulli random variables, using the distribution function “rbern”:

R> library(“simcausal”)

R> D <- DAG.empty()

R> D <- D +

+ node(“L2”, t = 0, distr = “rbern”,

+ prob = 0.05) +

+ node(“L1”, t = 0, distr = “rbern”,

+ prob = ifelse(L2[0] == 1, 0.5, 0.1)) +

+ node(“A1”, t = 0, distr = “rbern”,

+ prob =

+ ifelse(L1[0] == 1 & L2[0] == 0, 0.5,

+ ifelse(L1[0] == 0 & L2[0] == 0, 0.1,

Sofrygin et al. Page 27

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

+ ifelse(L1[0] == 1 & L2[0] == 1, 0.9, 0.5))))

Second, the example below shows how one may use the node function with node formulas

based on the square bracket function ’[’ to easily define the time-varying nodes Y, L1 and

A1 simultaneously for all subsequent time points t ranging from 1 to 16:

R> t.end <- 16

R> D <- D +

+ node(“Y”, t = 1:t.end, distr = “rbern”,

+ prob =

+ plogis(-6.5 + L1[0] + 4 * L2[t-1] +

+ 0.05 * sum(I(L2[0:(t-1)] == rep(0, t)))),

+ EFU = TRUE) +

+ node(“L2”, t = 1:t.end, distr = “rbern”,

+ prob =

+ ifelse(A1[t-1] == 1, 0.1,

+ ifelse(L2[t-1] == 1, 0.9, min(1, 0.1 + t / 16)))) +

+ node(“A1”, t = 1:t.end, distr = “rbern”,

+ prob =

+ ifelse(A1[t-1] == 1, 1,

+ ifelse(L1[0] == 1 & L2[t] == 0, 0.3,

+ ifelse(L1[0] == 0 & L2[t] == 0, 0.1,

+ ifelse(L1[0] == 1 & L2[t] == 1, 0.7, 0.5)))))

R> lDAG <- set.DAG(D)

Note that the node formulas specified with the prob argument above use the generic time

variable t both outside and inside the square-bracket vector syntax. For example, the

conditional distribution of the time-varying node Y is defined by an R expression that

contains the syntax sum(I(L2[0:(t - 1)] == rep(0, t))) , which evaluates to

different R expressions, as t ranges from 0 to 16:

1. sum(I(L2[0] == 0)) , for t = 1; and

2. sum(I(L2[0:1] == c(0, 0))) , for t = 2, …, sum(I(L2[0:16] ==

c(0, …, 0))) , for t = 16.

For more details on the specification of node formulas, see Section 3.6.

One can visualize the observed data generating distribution defined in the lDAG object as

shown in Figures 4 by calling plotDAG. Note that the appearance of the resulting diagram

can be customized with additional arguments, as demonstrated in the package vignette

(Sofrygin et al. 2015).

Sofrygin et al. Page 28

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4.2. Simulating observed data (sim)

Simulating observed data is accomplished by calling the function sim and specifying its

arguments DAG and n that indicate the causal model and sample size of interest. Below is

an example of how to simulate an observed dataset with 10, 000 observations using the

causal model defined previously. The output is a data.frame object.

R> Odat <- sim(DAG = lDAG, n = 10000, rndseed = 123)

R> Odat[1,]

4.3. Specifying interventions (+ action)

Dynamic interventions—The following two dynamic interventions on the time-varying

node A1 of the structural equation model encoded by the previously defined lDAG object

were studied in Neugebauer et al. (2014): ‘Initiate treatment A1 the first time t that the
covariate L2 is greater than or equal to θ and continue treatment thereafter (i.e., Ā1(t − 1) = 0

and A(t) = 1, A(t + 1) = 1, …)’, for θ = 0, 1. The example below demonstrates how to

specify these two dynamic interventions.

First, we define the list of intervention nodes and their post-intervention distributions. Note

that these distributions are indexed by the attribute theta, whose value is not yet defined:

R> act_theta <-c(

+ node(“A1”, t = 0, distr = “rbern”,

+ prob = ifelse(L2[0] >= theta, 1, 0)),

+ node(“A1”, t = 1:(t.end), distr = “rbern”,

+ prob = ifelse(A1[t-1] == 1, 1, ifelse(L2[t] >= theta, 1, 0))))

Second, we add the two dynamic interventions to the lDAG object while defining the value

of theta for each intervention:

R> Ddyn <- lDAG

R> Ddyn <- Ddyn + action(“A1_th0”, nodes = act_theta, theta = 0)

R> Ddyn <- Ddyn + action(“A1_th1”, nodes = act_theta, theta = 1)

We refer to the argument theta passed to the +action function as an action attribute.

Sofrygin et al. Page 29

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

One can select and inspect particular actions saved in a DAG object by invoking the function

A():

R> class(A(Ddyn)[[“A1_th0”]])

R> A(Ddyn)[[“A1_th0”]]

The distribution of some or all of the the intervention nodes that define an action saved

within a DAG object can be modified by adding a new intervention object with the same

action name to the DAG object. The new intervention object can involve actions on only a

subset of the original intervention nodes for a partial modification of the original action

definition. For example, the code below demonstrates how the existing action “A1_th0”

with the previously defined dynamic and deterministic intervention on the node A1[0] is

partially modified by replacing the intervention distribution for the node A1[0] with a

deterministic and static intervention defined by a degenerate distribution at value 1. Note

that the other intervention nodes previously defined as part of the action “A1_th0” remain

unchanged.

R> A(Ddyn)[[“A1_th0”]]$A1_0

R> Ddyntry <- Ddyn +

+ action(“A1_th0”, nodes = node(“A1”, t = 0, distr = “rbern”, prob = 0))

R> A(Ddyntry)[[“A1_th0”]]$A1_0

Similarly, some or all of the action attributes that define an action saved within a DAG object

can be modified by adding a new intervention object with the same action name but a

different attribute value to the DAG object. This functionality is demonstrated with the

example below in which the previous value 0 of the action attribute theta that defines the

action named “A1_th0” is replaced with the value 1 and in which a new attribute

newparam is simultaneously added to the previously defined action “A1_th0”:

R> A(Ddyntry)[[“A1_th0”]]

R> Ddyntry <- Ddyntry +

+ action(“A1_th0”, nodes = act_theta, theta = 1, newparam = 100)

R> A(Ddyntry)[[“A1_th0”]]

Static interventions—Here we diverge from the replication of simulation results

presented in Neugebauer et al. (2014). Instead, we build on the structural equation model

Sofrygin et al. Page 30

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

introduced in that paper to illustrate the specification of static interventions on the treatment

nodes A1. These static interventions are defined by more or less early treatment initiation

during follow-up followed by subsequent treatment continuation. Each of these static

interventions is thus uniquely identified by the time when the measurements of the time-

varying node A1 switch from value 0 to 1. The time of this value switch is represented by

the parameter tswitch in the code below. Note that the value tswitch = 16 identifies

the static intervention corresponding with no treatment initiation during follow-up in our

example while the values 0 through 15 represent 16 distinct interventions representing

increasingly delayed treatment initiation during follow-up.

First, we define the list of intervention nodes and their post-intervention distributions. Note

that these distributions are indexed by the attribute tswitch, whose value is not yet defined:

R> ‘%+%’ <- function(a, b) paste0(a, b)

R> Dstat <- lDAG

R> act_A1_tswitch <- node(“A1”,t = 0:(t.end), distr = “rbern”,

+ prob = ifelse(t >= tswitch, 1, 0))

Second, we add the 17 static interventions to the lDAG object while defining the value of

tswitch for each intervention:

R> tswitch_vec <- (0:t.end)

R> for (tswitch_i in tswitch_vec) {

+ abar <- rep(0, length(tswitch_vec))

+ abar[which(tswitch_vec >= tswitch_i)] <- 1

+ Dstat <- Dstat + action(“A1_ts”%+%tswitch_i,

+ nodes = act_A1_tswitch,

+ tswitch = tswitch_i,

+ abar = abar)

+ }

Note that in addition to the action attribute tswitch, each intervention is also indexed by an

additional action attribute abar that also uniquely identifies the intervention and that

represents the actual sequence of treatment decisions that defines the intervention, i.e.,

ā(tswitch − 1) = 0, a(tswitch) = 1, …:

Sofrygin et al. Page 31

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R> A(Dstat)[[“A1_ts3”]]

The purpose of this additional action attribute abar will become clear when we illustrate

the definition of target parameters defined by working MSMs based on these 17 static

interventions in Section 4.6.2 (Example 2 of set.targetMSM).

4.4. Simulating counterfactual data (sim)

Simulating counterfactual data is accomplished by calling the function sim and specifying

its arguments DAG, actions and n to indicate the causal model, interventions, and sample

size of interest. The counterfactual data can be simulated for all actions stored in the DAG

object or a subset by setting the actions argument to the vector of the desired-action

names.

The example below shows how to use the sim function to simulate 200,000 observations

for each of the two dynamic actions, “A1_th0” and “A1_th1”, defined in Section 4.3.1.

The call to sim below produces a list of two named data.frame objects, where each

data.frame object contains observations simulated from the same post-intervention

distribution defined by one particular action only.

R> Xdyn <- sim(Ddyn, actions = c(“A1_th0”, “A1_th1”),

+ n = 200000, rndseed = 123)

The default format of the output list generated by the sim function is easily understood by

examining the first row of each data.frame object:

R> Xdyn[[“A1_th0”]][1,]

R> Xdyn[[“A1_th1”]][1,]

4.5. Converting a dataset from wide to long format (DF.to.long)

The specification of structural equation models based on time-varying nodes such as the one

described in Section 4.1 allows for simulated (observed or counterfactual) data to be

structured in either long or wide formats. Below, we illustrate these two alternatives. We

note that, by default, simulated (observed or counterfactual) data from the sim function are

stored in wide format. The data output format from the sim function can, however, be

changed to the long format by setting the wide argument of the sim function to FALSE or,

equivalently, by applying the function DF.to.long to an existing simulated dataset in wide

format.

Sofrygin et al. Page 32

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The following code demonstrates the default data formatting behavior of the sim function

and how this behavior can be modified to generate data in the long format:

R> Odat.wide <- sim(DAG = lDAG, n = 1000, wide = TRUE, rndseed = 123)

R> Odat.wide[1:2, 1:16]

 ID L2_0 L1_0 A1_0 Y_1 L2_1 A1_1 Y_2 L2_2 A1_2 Y_3 L2_3 A1_3 Y_4 L2_4 A1_4

1 1 0 0 0 0 0 0 0 0 0 0 1 0

1 NA NA

2 2 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

R> Odat.long <- sim(DAG = lDAG, n = 1000, wide = FALSE, rndseed = 123)

R> Odat.long[1:7,]

 ID L1 t L2 A1 Y

1 1 0 0 0 0 NA

2 1 0 1 0 0 0

3 1 0 2 0 0 0

4 1 0 3 1 0 0

5 1 0 4 NA NA 1

6 2 0 0 0 0 NA

7 2 0 1 0 0 0

Note that the first observation in Odat.wide contains NAs following Y_4. As described in

Section 2.3, this is due to the fact that the node Y was defined earlier as an end of follow-up

(EFU) event (using argument EFU=TRUE). That is, Y_4=1 indicates that the first subject has

reached the end of the follow-up at time point t = 4 (i.e., was right-censored), therefore, all

of the subsequent columns following Y_4 are replaced with NA (missing) value. This is also

the reason why we only see 5 rows of data on subject with ID=1 in the above long format

dataset Odat.long. Also note that in Odat.long, the value of Y is always NA (missing)

for t=0, since the node Y was only defined for time-points t > 0.

4.6. Defining and evaluating various causal target parameters

Causal parameters defined with set.targetE

Example 1: In the example below, we first define two causal target parameters as two

vectors, each containing the expectations of the node Y[t] , for time points t=1, …, 16,

under the post-intervention distribution defined by one of the two dynamic interventions

“A1_th0” and “A1_th1” defined in Section 4.3.1. Second, we evaluate these target

parameters using the counterfactual data simulated previously in Section 4.4 and we map the

resulting estimates of cumulative risks into estimates of survival probabilities. We also plot

the corresponding two counterfactual survival curves using the simcausal routine

Sofrygin et al. Page 33

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

plotSurvEst as shown in Figure 5. Finally, we note that Figure 5 replicates the simulation

study results reported in Figure 4 of Neugebauer et al. (2014).

R> Ddyn <- set.targetE(Ddyn, outcome = “Y”, t = 1:16, param = “A1_th1”)

R> surv_th1 <- 1 - eval.target(Ddyn, data = Xdyn)$res

R> Ddyn <- set.targetE(Ddyn, outcome = “Y”, t = 1:16, param = “A1_th0”);

R> surv_th0 <- 1 - eval.target(Ddyn, data = Xdyn)$res

R> plotSurvEst(surv = list(d_theta1 = surv_th1, d_theta0 = surv_th0),

+ xindx = 1:17,

+ ylab = “Counterfactual survival for each intervention”,

+ ylim = c(0.75, 1.0))

Example 2: In the example below, we first define the causal target parameter as the ATE on

the additive scale (cumulative risk differences) for the two dynamic interventions

(“A1_th1” and “A1_th0”) defined in Section 4.3.1 at time point t = 12. Second, we

evaluate this target parameter using the previously simulated counterfactual data from

Section 4.4.

ATE on the additive scale:

R> Ddyn <- set.targetE(Ddyn, outcome = “Y”, t = 12, param = “A1_th1-A1_th0”)

R> (psi <- round(eval.target(Ddyn, data = Xdyn)$res, 3))

Diff_Y_12

 0.053

We also note that the above result for the ATE (0.053) replicates the simulation result

reported for ψ in Section 5.1 and Figure 4 of Neugebauer et al. (2014), where ψ was defined

as the difference between the cumulative risks of failure at t0 = 12 for the two dynamic

interventions d1 and d0.

Causal parameters defined with set.targetMSM—In Section 3.5.2, we described the

arguments of the function set.targetMSM that the user must specify to define MSM target

causal parameters. They include the specification of the argument form which encodes the

working MSM formula. This formula can only be a function of the time index t, action

attributes that uniquely identify each intervention of interest, and baseline nodes (defined as

nodes that precede the earliest intervention node). Both baseline nodes that are

measurements of time-varying nodes and time-varying action attributes must be referenced

in the R expression passed to the form argument within the wrapping syntax S(…)as

illustrated in several examples below.

Sofrygin et al. Page 34

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Example 1. Working dynamic MSM for survival probabilities over time: Here, we

illustrate the evaluation of the counterfactual survival curves E(Ydθ(t)) for t = 1, …, 16 under

the dynamic interventions dθ for θ = 0, 1 introduced in Section 4.3.1 using the following

pooled working logistic MSM (MSM 1):

where the true values of the coefficients (αi, i = 0, …, 3) define the target parameters of

interest. First, we define these target parameters:

R> msm.form <- “Y ∼ theta + t + I(theta*t)”

R> Ddyn <- set.targetMSM(Ddyn, outcome = “Y”, t = 1:16, form = msm.form,

+ family = “binomial”, hazard = FALSE)

Note that when the outcome is a time-varying node of type EFU, the argument hazard =

FALSE indicates that the working MSM of interest is a model for survival probabilities. The

argument family = “binomial” indicates that the working model is a logistic model.

Second, we evaluate the coefficients of the working model:

R> MSMres1 <- eval.target(Ddyn, n = 10000, rndseed = 123)

R> MSMres1$coef

We also note that no previously simulated counterfactual data were passed as argument to

the function eval.target above. Instead, the sample size argument n was specified and

the routine will thus first sample n = 10,000 observations from each of the two post-

intervention distributions before fitting the working MSM with these counterfactual data to

derive estimates of the true coefficient values. Alternatively, the user could have passed the

previously simulated counterfactual data. Note however that in this case, the user must either

simulate counterfactual data by calling the sim function with the argument LTCF = “Y”

or convert the previously simulated counterfactual data with the last time point value carried
forward imputation function doLTCF. Both approaches are described in the simcausal
package vignette Section 4.7 (Sofrygin et al. 2015).

The resulting coefficient estimates for MSM 1 can be mapped into estimates of the two

counterfactual survival curves and plotted as shown on the left in Figure 6 using the

simcausal plotSurvEst function.

Sofrygin et al. Page 35

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Next, we modify the previous working model formula by specifying a saturated MSM to

directly replicate the results reported in Figure 4 of Neugebauer et al. (2014) that are based

on a non-parametric MSM approach (MSM 2):

R> msm.form <- “Y ∼ theta + as.factor(t) + as.factor(t):theta”

R> Ddyn <- set.targetMSM(Ddyn, outcome = “Y”, t = 1:16, formula = msm.form,

+ family = “binomial”, hazard = FALSE)

R> MSMres2 <- eval.target(Ddyn, n = 200000, rndseed = 123)

R> MSMres2$coef

Finally, we plot the resulting survival curves obtained from MSM 2 as shown on the right in

Figure 6. The resulting estimates of the survival curves replicate those reported in Figure 4

of Neugebauer et al. (2014).

Example 2. Working static MSM for discrete-time hazards over time: Here, we illustrate

the evaluation of discrete-time hazards E(Yā(t))|Yā(t−1) = 0), for t = 1, …, 16 under the 17

static interventions introduced in Section 4.3.2 using the following pooled working logistic

MSM:

where we use the notation ā = (a(0), a(1), …, a(16)) to denote the 17 static intervention

regimens on the time-varying treatment node A1. Note that the time-varying action attribute

abar introduced in Section 4.3.2 directly encodes the 17 treatment regimens values ā
referenced in the MSM working model above. To evaluate the target parameters αj above,

for j = 0, …, 3, we first simulate counterfactual data for the 17 static interventions of interest

as follows:

R> Xts <- sim(Dstat, actions = names(A(Dstat)), n = 1000, rndseed = 123)

Second, we define the target parameters and estimate them using the counterfactual data just

simulated as follows:

R> msm.form_1 <- “Y ∼ t +

+ S(mean(abar[0:(t-1)])) + I(t*S(mean(abar[0:(t-1)])))”

R> Dstat <- set.targetMSM(Dstat, outcome = “Y”, t = 1:16, form = msm.form_1,

Sofrygin et al. Page 36

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

+ family = “binomial”, hazard = TRUE)

R> MSMres <- eval.target(Dstat, data = Xts)

R> MSMres$coef

Note that the working MSMformulas can reference arbitrary summary measures (functions)

of time-varying action attributes such as abar. The square-bracket ’[’ syntax can then be

used to identify specific elements of the time-varying action attributes in the same way it can

be used in node formulas to reference particular measurements of time-varying nodes. For

example, the term sum(abar[0:t]) indicates a summation over the elements of the action

attribute abar indexed by time points lower than or equal to value t and the syntax

S(abar[max(0, t - 2)]) creates a summary measure representing time-lagged values

of abar that are equal to abar[0] if t< 2 and to abar[t-2] if t≥ 2. Note also that

references to time-varying action attributes in the working MSM formula must be wrapped

within a call to the S(…)function, e.g., Y~t + S(mean(abar[0:t])) .

The eval.target function returns a list with the following named attributes: the working

MSM fit returned by a glm function call (msm), the coefficient estimates (coef), the

mapping (S.msm.map) of the formula terms defined by expressions enclosed within the

S(…)function into the corresponding variable names in the design matrix that was used to

implement the regression, and the design matrix (df_long) stored as a list of data.table

objects from the R package data.table (Dowle et al. 2014). Each of these data.table

objects contains counterfactual data indexed by a particular intervention. These

counterfactual data are stored in long format with possibly additional new columns

representing terms in the working MSM formula defined by expressions enclosed with the

S()function. The design matrix can be derived by row binding these data.table objects.

R> names(MSMres)

R> MSMres$S.msm.map

R> names(MSMres$df_long)

R> MSMres$df_long[[“A1_ts2”]]

Finally, we plot the resulting counterfactual survival curve estimates using the function

survbyMSMterm (source code provided in a supplementary R script), as shown in Figure 7:

R> survMSMh_wS <- survbyMSMterm(MSMres = MSMres, t_vec = 1:16,

+ MSMtermName = “mean(abar[0:(t - 1)])”)

R> print(plotsurvbyMSMterm(survMSMh_wS))

Sofrygin et al. Page 37

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Additional examples of working MSMs are available in the package vignette (Sofrygin et al.
2015), which includes the examples of dynamic MSM for discrete-time hazards and

dynamic MSMs that evaluate effect modification by a baseline covariate.

5. Replication study of the impact of misspecification of propensity score

models

In this section, we use the simcausal package for replicating a simulation study from

Lefebvre et al. (2008). Specifically, we replicate the results reported in Tables II and IV of

that paper. We first specify the observed data generating distribution using the two structural

equation models corresponding with Scenarios 1 and 3 described in Lefebvre et al. (2008).

Second, for each scenario, we evaluate the true values of the coefficients of the MSM using

counterfactual data and compare them to those reported by Lefebvre et al. (2008). Finally,

for each scenario, we implement the same inverse probability weighting (IPW) estimators of

these MSM coefficients and evaluate their performances using the same two metrics (bias

and mean squared error) as in Lefebvre et al. (2008). We refer to Appendix A for the

description of the details on how the simcausal package was used to conduct this replication

study. The R code that fully reproduces the tables presented in this section is provided as a

supplementary R script.

Our replication results for Scenarios 1 and 3 are reported in Table 1 and Table 3,

respectively. The simulation results, as they were originally reported by Lefebvre et al.
(2008), are presented in Table 2 and Table 4. We note that our results closely match those

originally reported in Lefebvre et al. (2008).

6. Discussion

In this article we described how our simulation package can be used for creating a wide

range of artificial datasets often encountered in medical and public health applications of

causal inference methods. Specifically, we demonstrated that the simcausal R package is a

flexible tool that facilitates the conduct of transparent and reproducible simulation studies.

The package allows the user to simulate complex longitudinal data structures based on

structural equation models using a novel interface which allows concise and intuitive

expression of complex functional dependencies for a large number of nodes. We also argued

that such complex simulations are often necessary when one tries to conduct a realistic

simulation study that attempts to replicate a large variety of scenarios one might expect to

see from a true data-generating process. The package allows the user to specify and simulate

counterfactual data under various interventions (e.g., static, dynamic, deterministic, or

stochastic). These interventions may represent exposures to treatment regimens, the

occurrence or non-occurrence of right-censoring events, or of specific monitoring events.

The package also enables the computation of a selected set of user-specified features of the

distribution of the counterfactual data that represent common causal target parameters (the
gold standards), such as, treatment-specific means, average treatment effects and coefficients

from working marginal structural models. In addition, the package provides a flexible

graphical component that produces plots of directed acyclic graphs (DAGs) for observed (or

post-intervention) data generating distributions.

Sofrygin et al. Page 38

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We note that one of the distinguishing features of simcausal is that it allows the user to

define and evaluate a causal target parameter, such as the ATE, that can then serve as the

model-free gold standard. That is, the causal parameter is always the same functional of the

counterfactual data distribution, regardless of the user-selected parameterization of the SEM.

For example, the gold standard defined in this manner provides an objective measure of bias

that does not depend on the modeling assumptions of a specific statistical method.

Furthermore, coupled with a wide variety of possible data generating distributions that may

be specified in simcausal, this package provides statisticians with a powerful tool for testing

the validity and accuracy of various statistical methods. For example, one may use our

package for validating an implementation of a novel statistical method, using the simulated

data with the known truth (the true value of the causal parameter), prior to applying such an

algorithm to real data, in which this truth is unknown. As another example, one may use

simcausal to simulate data from a large variety of data-generating distributions and conduct

a simulation study comparing the properties of different statistical procedures (e.g., bias,

mean-squared error (MSE), asymptotic confidence interval coverage), using the user-

selected causal parameter as the gold standard.

We also demonstrated the functionality of the package with a single time point intervention

simulation study in Section 3 and a complex multiple time point simulation study in Section

4. Moreover, we also showed two real-world applications of the simcausal package in

Sections 4 and 5, by replicating some of results of the two previously published simulation

studies (Neugebauer et al. 2014, 2015; Lefebvre et al. 2008). The first simulation study by

Neugebauer et al. (2014) was initially conducted as a complement to a real data analysis in

order to validate the claimed theoretical benefits of a new estimator in a simulated setting

that was designed to resemble the data structure collected and used in the real-world study.

The second simulation study by Lefebvre et al. (2008) evaluated the impact of the model

misspecification of the treatment mechanism on the MSE for the inverse probability-
weighting (IPW) estimator, where the coefficients of the marginal structural model were
used as the tar- get causal quantity. We note that in both of these instances, we were able to

use simcausal to specify the desired data-generating distribution, then simulate repeated

observed data samples, and finally, specify and evaluate the different causal parameters that

were used in these simulation studies. We also note that the simcausal package vignette

(Sofrygin et al. 2015) contains additional replication results of the simulation study

described by Neugebauer et al. (2014) that evaluated the comparative performance of

targeted minimum loss based estimation (TMLE) and IPW estimation of a causal risk

difference between two dynamic treatment regimens.

Finally, we note that the simcausal package is being actively developed and contains several

new features that are beyond the scope of this paper. In particular, recently implemented

functionality allows one to simulate dependent observations using networks (Eckles et al.
2014). We refer to the forthcoming simcausal network vignette for details describing this

new feature. We also note that the implementation of additional functionalities in future

releases of the simcausal package should further expand its utility for methods research.

Among such possible improvements is the evaluation of additional causal parameters, e.g.,

the average treatment effect on the treated (Holland 1986; Imbens 2004; Shpitser and Pearl

Sofrygin et al. Page 39

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2009), survivorship causal effects (Joffe et al. 2007; Greene et al. 2013) and direct/indirect

effects (Pearl 2001; Petersen et al. 2006; VanderWeele 2009; VanderWeele and Vansteelandt

2014; Hafeman and VanderWeele 2011).

Acknowledgments

FUNDING ACKNOWLEDGEMENT: This study was partially funded through internal operational funds
provided by the Kaiser Permanente Center for Effectiveness & Safety Research (CESR). This work was also
partially supported through a Patient-Centered Outcomes Research Institute (PCORI) Award (ME-1403-12506) and
an NIH grant (R01 AI074345-07).

References

Blaser N, Salazar Vizcaya L, Estill J, Zahnd C, Kalesan B, Egger M, Keiser O, Gsponer T. gems: An R
Package for Simulating from Disease Progression Models. Journal of Statistical Software. 2015;
64(10):1–22. URL http://www.jstatsoft.org/v64/i10/.

Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny S, Bates T, et
al. OpenMx: An Open Source Extended Structural Equation Modeling Framework. Psychometrika.
2011; 76(2):306–317. [PubMed: 23258944]

Boker, SM., Neale, MC., Maes, HH., Spiegel, M., Brick, TR., Estabrook, R., Bates, TC., Gore, RJ.,
Hunter, MD., Pritikin, JN., Zahery, M., Kirkpatrick, RM. OpenMx: Multipurpose Software for
Statistical Modeling. 2014. R package version 2.0.1http://openmx.psyc.virginia.edu

Bollen, KA. Structural Equations with Latent Variables. John Wiley & Sons; 1989.

Bollen, KA., Pearl, J. Handbook of Causal Analysis for Social Research. Springer; 2013. Eight Myths
About Causality and Structural Equation Models; p. 301-328.

Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T. Variable Selection for
Propensity Score Models. American Journal of Epidemiology. 2006; 163(12):1149–1156. [PubMed:
16624967]

Burton A, Altman DG, Royston P, Holder RL. The Design of Simulation Studies in Medical Statistics.
Statistics in Medicine. 2006; 25(24):4279–4292. [PubMed: 16947139]

Collins LM, Schafer JL, Kam CM. A Comparison of Inclusive and Restrictive Strategies in Modern
Missing Data Procedures. Psychological Methods. 2001; 6(4):330–351. [PubMed: 11778676]

Csardi, G., Nepusz, T. The igraph Software Package for Complex Network Research. InterJournal,
Complex Systems, 1695. 2006. http://igraph.org

Demirtas H. The Design of Simulation Studies in Medical Statistics by Andrea Burton, Douglas G.
Altman, Patrick Royston and Roger L. Holder, Statistics in Medicine 2006; 25:4279–4292.
Statistics in Medicine. 2007; 26(20):3818–3821. [PubMed: 17357991]

Dowle, M., Short, T., Lianoglou, S. data.table: Extension of data.frame. 2014. with contributions from
R Saporta AS, Antonyan ER package version 1.9.4, http://CRAN.R-project.org/package=data.table

Eckles D, Karrer B, Ugander J. Design and Analysis of Experiments in Networks: Reducing Bias from
Interference. 2014 arXiv preprint arXiv:1404.7530.

Elwert, F. Handbook of Causal Analysis for Social Research. Springer; 2013. Graphical Causal
Models; p. 245-273.

Elwert F, Winship C. Endogenous Selection Bias: The Problem of Conditioning on a Collider Variable.
Annual Review of Sociology. 2014; 40:31–53.

Fewell Z, Davey Smith G, Sterne JAC. The Impact of Residual and Unmeasured Confounding in
Epidemiologic Studies: A Simulation Study. American Journal of Epidemiology. 2007; 166(6):
646–655. [PubMed: 17615092]

Fox J. Teacher’s Corner: Structural Equation Modeling with the sem Package in R. Structural equation
modeling. 2006; 13(3):465–486.

Fox, J., Nie, Z., Byrnes, J. sem: Structural Equation Models. 2014. R package version 3.1http://
CRAN.R-project.org/package=sem

Glynn A, Quinn K. Non-parametric Mechanisms and Causal Modeling. Technical report. 2007

Sofrygin et al. Page 40

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.jstatsoft.org/v64/i10/
http://openmx.psyc.virginia.edu
http://igraph.org
http://CRAN.R-project.org/package=data.table
http://CRAN.R-project.org/package=sem
http://CRAN.R-project.org/package=sem

Greene T, Joffe M, Hu B, Li L, Boucher K. The Balanced Survivor Average Causal Effect. The
International Journal of Biostatistics. 2013; 9(2):291–306. [PubMed: 23658214]

Hafeman DM, VanderWeele TJ. Alternative Assumptions for the Identification of Direct and Indirect
Effects. Epidemiology. 2011; 22(6):753–764. [PubMed: 20502339]

Hill J, Reiter JP. Interval Estimation for Treatment Effects Using Propensity Score Matching. Statistics
in Medicine. 2006; 25(13):2230–2256. [PubMed: 16220488]

Hodgson T, Burke M. On Simulation and the Teaching of Statistics. Teaching Statistics. 2000; 22(3):
91–96.

Holland PW. Statistics and Causal Inference. Journal of the American Statistical Association. 1986;
81(396):945–960.

Imbens GW. Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review.
Review of Economics and Statistics. 2004; 86(1):4–29.

Joffe MM, Small D, Hsu CY, et al. Defining and Estimating Intervention Effects for Groups That Will
Develop an Auxiliary Outcome. Statistical Science. 2007; 22(1):74–97.

Kristman V, Manno M, Cote P. Loss to Follow-Up in Cohort Studies: How Much is Too Much?
European Journal of Epidemiology. 2004; 19(8):751–760. [PubMed: 15469032]

Lefebvre G, Delaney JA, Platt RW. Impact of Mis-Specification of the Treatment Model on Estimates
from a Marginal Structural Model. Statistics in Medicine. 2008; 27(18):3629–3642. [PubMed:
18254127]

Matsueda, RL. Key Advances in the History of Structural Equation Modeling. In: Hoyle, R., editor.
Handbook of Structural Equation Modeling. Guilford; New York: 2012.

Monecke A, Leisch F. semPLS: Structural Equation Modeling Using Partial Least Squares. Journal of
Statistical Software. 2012; 48(3):1–32. URL http://www.jstatsoft.org/v48/i03/.

Moriña D, Navarro A. The R Package survsim for the Simulation of Simple and Complex Survival
Data. Journal of Statistical Software. 2014; 59(1):1–20. URL http://www.jstatsoft.org/
index.php/jss/article/view/v059i02. [PubMed: 26917999]

Mynbaev K, Martins-Filho C. Consistency and Asymptotic Normality for a Nonparametric Prediction
under Measurement Errors. Journal of Multivariate Analysis. 2015; 139:166–188.

Neugebauer R, Schmittdiel JA, van der Laan MJ. Targeted Learning in Real-World Comparative
Effectiveness Research with Time-Varying Interventions. Statistics in Medicine. 2014; 33(14):
2480–2520. [PubMed: 24535915]

Neugebauer R, Schmittdiel JA, Zhu Z, Rassen JA, Seeger JD, Schneeweiss S. High-Dimensional
Propensity Score Algorithm in Comparative Effectiveness Research with Time-Varying
Interventions. Statistics in Medicine. 2015; 34(5):753–781. [PubMed: 25488047]

Neugebauer R, van der Laan M. Nonparametric Causal Effects Based on Marginal Structural Models.
Journal of Statistical Planning and Inference. 2007; 137(2):419–434.

Oberski D. lavaan.survey: An R Package for Complex Survey Analysis of Structural Equation
Models. Journal of Statistical Software. 2014; 57(1):1–27. URL http://www.jstatsoft.org/v57/i01/.
[PubMed: 25400517]

Pearl J. Causal Diagrams for Empirical Research. Biometrika. 1995; 82(4):669–688.

Pearl, J. Direct and Indirect Effects. Proceedings of the Seventeenth Conference on Uncertainty in
Artificial Intelligence, UAI’01; San Francisco, CA, USA: Morgan Kaufmann Publishers Inc; 2001.
p. 411-420.

Pearl, J. Causality: Models, Reasoning and Inference. 2. Cambridge University Press; New York, NY,
USA: 2009.

Pearl J. An Introduction to Causal Inference. The International Journal of Biostatistics. 2010a; 6(2)

Pearl J. The Foundations of Causal Inference. Sociological Methodology. 2010b; 40(1):75–149.

Pearl, J. The Causal Foundations of Structural Equation Modeling. In: Hoyle, R., editor. Handbook of
Structural Equation Modeling. Guilford; New York: 2012.

Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ. Diagnosing and Responding to
Violations in the Positivity Assumption. Statistical Methods in Medical Research. 2012; 21(1):31–
54. [PubMed: 21030422]

Sofrygin et al. Page 41

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.jstatsoft.org/v48/i03/
http://www.jstatsoft.org/index.php/jss/article/view/v059i02
http://www.jstatsoft.org/index.php/jss/article/view/v059i02
http://www.jstatsoft.org/v57/i01/

Petersen ML, Sinisi SE, van der Laan MJ. Estimation of Direct Causal Effects. Epidemiology. 2006;
17(3):276–284. [PubMed: 16617276]

Pornprasertmanit, S., Miller, P., Schoemann, A. simsem: SIMulated Structural Equation Modeling.
2015. R package version 0.5,http://CRAN.R-project.org/package=simsem

Porter KE, Gruber S, van der Laan MJ, Sekhon JS. The Relative Performance of Targeted Maximum
Likelihood Estimators. The International Journal of Biostatistics. 2011; 7(1):1–34.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing; Vienna, Austria: 2015. http://www.R-project.org/

Robins, JM. Marginal Structural Models; 1997 proceedings of the American Statistical Association,
section on Bayesian statistical science. 1998. p. 1-10.http://www.biostat.harvard.edu/~robins/
research.html

Rosseel Y. lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software.
2012; 48(2):1–36. URL http://www.jstatsoft.org/v48/i02/.

Shpitser, I., Pearl, J. Effects of Treatment on the Treated: Identification and Generalization.
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence; Montreal,
Quebec: AUAI Press; 2009. p. 514-521.

Sofrygin, O., van der Laan, MJ., Neugebauer, R. simcausal: Simulating Longitudinal Data with Causal
Inference Applications. 2015. R package version 0.5.1http://CRAN.R-project.org/
package=simcausal

VanderWeele TJ. Marginal StructuralModels for the Estimation of Direct and Indirect Effects.
Epidemiology. 2009; 20(1):18–26. [PubMed: 19234398]

VanderWeele TJ, Vansteelandt S. Mediation Analysis with Multiple Mediators. Epidemiologic
methods. 2014; 2(1):95–115. [PubMed: 25580377]

Væth M, Skovlund E. A Simple Approach to Power and Sample Size Calculations in Logistic
Regression and Cox Regression Models. Statistics in Medicine. 2004; 23(11):1781–1792.
[PubMed: 15160408]

Appendix A: Replicating the simulation study by Lefebvre et al. (2008)

A number of IPW estimators were considered in this simulation study, each estimator

defined by a distinct model for the propensity scores P(A(0)|L(0)) and P(A(1)|A(0), L(1)).

To estimate these propensity scores we used the same models presented in Table I of

Lefebvre et al. (2008) for Scenarios 1 and 3. We considered three sample sizes N = 300; 1,

000; and 10, 000, and we report the bias of each IPW estimator, multiplied by 10 (Bias*10)

and the mean-squared error, also multiplied by 10 (MSE*10) in Tables 1 and 3.

Replicating Scenario 1

To carry out the simulation study, we first define a new distribution function rbivNorm for

simulating observations from a bivariate normal distribution with a user-specified mean

vector (specified by the argument mu) and a user-specified covariance matrix (specified by

the arguments var1, var2, and rho to represent the diagonal and off-diagonal scalars,

respectively). This new distribution function is based on Cholesky decomposition of the

covariance matrix and independent observations simulated from the standard normal

distribution which are provided by the input argument norms. The argument whichbiv

indicates whether the function should return independent observations from the first or

second element of the bivariate normal vector.

Sofrygin et al. Page 42

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://CRAN.R-project.org/package=simsem
http://www.R-project.org/
http://www.biostat.harvard.edu/~robins/research.html
http://www.biostat.harvard.edu/~robins/research.html
http://www.jstatsoft.org/v48/i02/
http://CRAN.R-project.org/package=simcausal
http://CRAN.R-project.org/package=simcausal

R> rbivNorm <- function(n, whichbiv, norms, mu, var1 = 1, var2 = 1, rho =

0.7) {

+ whichbiv <- whichbiv[1]; var1 <- var1[1]; var2 <- var2[1]; rho <- rho[1]

+ sigma <- matrix(c(var1, rho, rho, var2), nrow = 2)

+ Scol <- chol(sigma)[, whichbiv]

+ bivX <- (Scol[1] * norms[, 1] + Scol[2] * norms[, 2]) + mu

+ bivX

+ }

Second, using this distribution function, we define the structural equation model specified

for data simulation according to Scenario 1 in Lefebvre et al. (2008).

R> ‘%+%’<- function(a, b) paste0(a, b)

R> Lnames <- c(“LO1”, “LO2”, “LO3”, “LC1”)

R> D <- DAG.empty()

R> for (Lname in Lnames) {

+ D <- D +

+ node(Lname%+%“.norm1”, distr = “rnorm”, mean = 0, sd = 1) +

+ node(Lname%+%“.norm2”, distr = “rnorm”, mean = 0, sd = 1)

+ }

R> D <- D +

+ node(“LO1”, t = 0:1, distr = “rbivNorm”, whichbiv = t + 1,

+ norms = c(LO1.norm1, LO1.norm2),

+ mu = 0) +

+ node(“LO2”, t = 0:1, distr = “rbivNorm”, whichbiv = t + 1,

+ norms = c(LO2.norm1, LO2.norm2),

+ mu = 0) +

+ node(“LO3”, t = 0:1, distr = “rbivNorm”, whichbiv = t + 1,

+ norms = c(LO3.norm1, LO3.norm2),

+ mu = 0) +

+ node(“LC1”, t = 0:1, distr = “rbivNorm”, whichbiv = t + 1,

+ norms = c(LC1.norm1, LC1.norm2),

+ mu = {if (t == 0) {0} else {-0.30 * A[t-1]}}) +

+ node(“alpha”, t = 0:1, distr = “rconst”,

+ const = {if(t == 0) {log(0.6)} else {log(1.0)}}) +

+ node(“A”, t = 0:1, distr = “rbern”,

+ prob =

+ plogis(alpha[t] +

+ log(5)*LC1[t] + {if(t == 0) {0} else {log(5)*A[t-1]}})) +

+ node(“Y”, t = 1, distr = “rnorm”,

+ mean = (0.98 * LO1[t] + 0.58 * LO2[t] + 0.33 * LO3[t] +

+ 0.98 * LC1[t] - 0.37 * A[t]),

Sofrygin et al. Page 43

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

+ sd = 1)

R> DAGO.sc1 <- set.DAG(D)

Third, we define the target parameter as the coefficients β1 and β2 of the following correctly

specified marginal structural model:

defined by the following four possible static and deterministic interventions (a(0), a(1)) on

the treatment process (A(0), A(1)): (0, 0), (1, 0), (0, 1), and (1, 1).

R> defAct <- function (Dact) {

+ act.At <- node(“A”, t = 0:1, distr = “rbern”, prob = abar[t])

+ Dact <- Dact +

+ action(“A00”, nodes = act.At, abar = c(0, 0)) +

+ action(“A10”, nodes = act.At, abar = c(1, 0)) +

+ action(“A01”, nodes = act.At, abar = c(0, 1)) +

+ action(“A11”, nodes = act.At, abar = c(1, 1))

+ return(Dact)

+ }

R> Dact.sc1 <- defAct(DAGO.sc1)

R> msm.form <- “Y ∼ S(abar[0]) + S(abar[1])”

R> Dact.sc1 <- set.targetMSM(Dact.sc1, outcome = “Y”, t = 1,

+ form = msm.form, family = “gaussian”)

Fourth, we evaluate the true values of these MSM coefficients using the eval.target

function and note that our results closely match the true value of the MSM coefficients

reported in Table II of Lefebvre et al. (2008):

R> repstudy2.sc1.truetarget <- function() {

+ trueMSMreps.sc1 <- NULL

+ reptrue <- 50

+ for (i in (1:reptrue)) {

+ res.sc1.i <- eval.target(Dact.sc1, n = 500000)$coef

+ trueMSMreps.sc1 <- rbind(trueMSMreps.sc1, res.sc1.i)

+ }

+ return(trueMSMreps.sc1)

+ }

R> f1name <- “replication_dat/trueMSMreps.sc1.Rdata”

Sofrygin et al. Page 44

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R> if (file.exists(f1name)) {

+ load(f1name)

+ } else {

+ trueMSMreps.sc1 <- repstudy2.sc3.truetarget()

+ save(list = “trueMSMreps.sc1”, file = f1name)

+ }

R> trueMSM.sc1 <- apply(trueMSMreps.sc1, 2, mean)

R> print(trueMSM.sc1)

 (Intercept) S(abar[0]) S(abar[1])

0.0001540635 -0.2941187264 -0.3700397969

Note that the true values of the MSM coefficients above were obtained from the averages of

coefficient estimates obtained from several simulated counterfactual data sets. This approach

was implemented to avoid the memory limitation that can be encountered when trying to

simulate a single very large counterfactual data set. Finally, using the R code provided as a

supplementary script file, we replicate the IPW estimation results for Scenario 1 as presented

originally in Table II of Lefebvre et al. (2008).

Replicating Scenario 3

Next, using the same approach described above, we replicate the simulation results for

Scenario 3 reported in Table IV of Lefebvre et al. (2008). We start by defining the structural

equation model specified for data simulation according to Scenario 3 in Lefebvre et al.
(2008) as follows:

R> ‘%+%’<- function(a, b) paste0(a, b)

R> Lnames <- c(“LO1”, “LO2”, “LO3”, “LE1”, “LE2”, “LE3”, “LC1”, “LC2”, “LC3”)

R> D <- DAG.empty()

R> for (Lname in Lnames) {

+ D <- D +

+ node(Lname%+%“.norm1”, distr = “rnorm”) +

+ node(Lname%+%“.norm2”, distr = “rnorm”)

+ }

R> coefAi <- c(-0.10, -0.20, -0.30)

R> sdLNi <- c(sqrt(1), sqrt(5), sqrt(10))

R> for (i in (1:3)) {

+ D <- D +

+ node(“LO”%+%i, t = 0:1, distr = “rbivNorm”, whichbiv = t + 1,

+ mu = 0,

+ params = list(norms = “c(LO”%+%i%+%“.norm1, LO”%+%i%+%“.norm2)”)) +

+ node(“LE”%+%i, t = 0:1, distr = “rbivNorm”, whichbiv = t + 1,

+ mu = 0, var1 = 1, var2 = 1, rho = 0.7,

Sofrygin et al. Page 45

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

+ params = list(norms = “c(LE”%+%i%+%“.norm1, LE”%+%i%+%“.norm2)”)) +

+ node(“LC”%+%i, t = 0:1, distr = “rbivNorm”, whichbiv = t + 1,

+ mu = {if (t == 0) {0} else {.(coefAi[i]) * A[t-1]}},

+ params = list(norms = “c(LC”%+%i%+%“.norm1, LC”%+%i%+%“.norm2)”)) +

+ node(“LN”%+%i, t = 0:1, distr = “rnorm”,

+ mean = 0, sd = .(sdLNi[i]))

+ }

R> D <- D +

+ node(“alpha”, t = 0:1, distr = “rconst”,

+ const = {if(t == 0) {log(0.6)} else {log(1.0)}}) +

+ node(“A”, t = 0:1, distr = “rbern”,

+ prob = plogis(alpha[t] +

+ log(5) * LC1[t] + log(2) * LC2[t] + log(1.5) * LC3[t] +

+ log(5) * LE1[t] + log(2) * LE2[t] + log(1.5) * LE3[t] +

+ {if (t == 0) {0} else {log(5) * A[t-1]}})) +

+ node(“Y”, t = 1, distr = “rnorm”,

+ mean = 0.98 * LO1[t] + 0.58 * LO2[t] + 0.33 * LO3[t] +

+ 0.98 * LC1[t] + 0.58 * LC2[t] + 0.33 * LC3[t] - 0.39 * A[t],

+ sd = 1)

R> DAGO.sc3 <- set.DAG(D)

Similar to Scenario 1, we then define the same four actions on the new DAG object before

defining and evaluating the causal target parameter of interest. We note that our results

match the true value of the MSM coefficients reported in Table IV of Lefebvre et al. (2008).

Finally, using the R code provided as a supplementary script file, we replicate the IPW

estimation results for Scenario 3 as presented originally in Table IV of Lefebvre et al.
(2008).

R> Dact.sc3 <- defAct(DAGO.sc3)

R> msm.form <- “Y ∼ S(abar[0]) + S(abar[1])”

R> Dact.sc3 <- set.targetMSM(Dact.sc3, outcome = “Y”, t = 1,

+ form = msm.form, family = “gaussian”)

R> repstudy2.sc3.truetarget <- function() {

+ trueMSMreps.sc3 <- NULL

+ reptrue <- 50

+ for (i in (1:reptrue)) {

+ res.sc3.i <- eval.target(Dact.sc3, n = 500000)$coef

+ trueMSMreps.sc3 <- rbind(trueMSMreps.sc3, res.sc3.i)

+ }

+ return(trueMSMreps.sc3)

+ }

R> f2name <- “replication_dat/trueMSMreps.sc3.Rdata”

Sofrygin et al. Page 46

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

R> if (file.exists(f2name)) {

+ load(f2name)

+ } else {

+ trueMSMreps.sc3 <- repstudy2.sc3.truetarget()

+ save(list = “trueMSMreps.sc3”, file = f2name)

+ }

R> trueMSM.sc3 <- apply(trueMSMreps.sc3, 2, mean)

R> print(trueMSM.sc3)

 (Intercept) S(abar[0]) S(abar[1])

0.0001690372 -0.3134283871 -0.3901595327

Sofrygin et al. Page 47

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
Two alternative ways to graphically represent the same structural equation model (SEM)

using directed acyclic graphs (DAGs). The left figure shows the independent (latent) errors,

while the right figure doesn’t.

Sofrygin et al. Page 48

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Schematic of simcausal routines and the order in which one would usually call such

routines in a typical simulation study.

Sofrygin et al. Page 49

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Graphical representation of the structural equation model using a DAG, where the latent

nodes I and U.Y are enclosed in circles.

Sofrygin et al. Page 50

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
Graphical representation of a portion of the structural equation model using a DAG. Only

the nodes indexed by time points lower than or equal to 3 are represented.

Sofrygin et al. Page 51

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5.
Estimates of the true survival curves under the two dynamic interventions.

Sofrygin et al. Page 52

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6.
Survival curve estimates evaluated based on working MSM 1 (left) and saturated MSM 2

(right).

Sofrygin et al. Page 53

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7.
Survival curve estimates evaluated based on working MSM 2.

Sofrygin et al. Page 54

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sofrygin et al. Page 55

Ta
b

le
 1

R
ep

lic
at

io
n

of
 th

e
si

m
ul

at
io

n
re

su
lts

 f
ro

m
 L

ef
eb

vr
e

et
 a

l.
(2

00
8)

 f
or

 S
ce

na
ri

o
1.

C
ov

ar
ia

te
s

in
 P

(A
|L

)
N

A
(0

)
B

ia
s*

10
A

(0
)

M
SE

*1
0

A
(1

)
B

ia
s*

10
A

(1
)

M
SE

*1
0

C
on

fo
un

de
r(

s)
 o

nl
y

30
0

0.
57

6
1.

80
3

0.
75

2
1.

69
0

10
00

0.
27

8
0.

72
5

0.
37

4
0.

68
8

10
00

0
0.

06
2

0.
13

9
0.

06
9

0.
14

7

C
on

fo
un

de
r(

s)
 &

 r
is

k
fa

ct
or

s
30

0
0.

57
2

1.
71

4
0.

78
5

1.
48

9

10
00

0.
25

0
0.

76
4

0.
30

4
0.

66
5

10
00

0
0.

07
1

0.
12

1
0.

07
7

0.
12

0

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sofrygin et al. Page 56

Ta
b

le
 2

Si
m

ul
at

io
n

re
su

lts
 f

or
 S

ce
na

ri
o

1
as

 r
ep

or
te

d
in

 T
ab

le
 I

I
of

 L
ef

eb
vr

e
et

 a
l.

(2
00

8)
.

C
ov

ar
ia

te
s

in
 P

(A
|L

)
N

A
(0

)
B

ia
s*

10
A

(0
)

M
SE

*1
0

A
(1

)
B

ia
s*

10
A

(1
)

M
SE

*1
0

L
ef

eb
vr

e
et

 a
l.:

 C
on

fo
un

de
r(

s)
 o

nl
y

30
0

0.
76

8
1.

76
1

0.
88

9
1.

72
8

10
00

0.
26

5
0.

76
1

0.
31

2
0.

72
3

10
00

0
0.

05
7

0.
14

6
0.

08
6

0.
12

0

L
ef

eb
vr

e
et

 a
l.:

 C
on

fo
un

de
r(

s)
 &

 r
is

k
fa

ct
or

s
30

0
0.

75
7

1.
64

2
0.

83
6

1.
50

5

10
00

0.
28

3
0.

71
8

0.
33

0
0.

63
8

10
00

0
0.

05
6

0.
13

9
0.

08
1

0.
11

4

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sofrygin et al. Page 57

Ta
b

le
 3

R
ep

lic
at

io
n

of
 th

e
si

m
ul

at
io

n
re

su
lts

 f
ro

m
 L

ef
eb

vr
e

et
 a

l.
(2

00
8)

 f
or

 S
ce

na
ri

o
3.

C
ov

ar
ia

te
s

in
 P

(A
|L

)
N

A
(0

)
B

ia
s*

10
A

(0
)

M
SE

*1
0

A
(1

)
B

ia
s*

10
A

(1
)

M
SE

*1
0

C
on

fo
un

de
r(

s)
 o

nl
y

30
0

−
0.

17
9

1.
23

8
0.

15
7

1.
10

2

10
00

−
0.

34
1

0.
41

3
−

0.
13

7
0.

36
3

10
00

0
−

0.
34

7
0.

05
4

−
0.

17
7

0.
04

6

C
on

fo
un

de
r(

s)
 &

 r
is

k
fa

ct
or

s
30

0
−

0.
15

1
1.

15
6

0.
11

0
0.

89
0

10
00

−
0.

26
6

0.
34

8
−

0.
09

3
0.

27
1

10
00

0
−

0.
35

4
0.

05
0

−
0.

19
0

0.
03

4

C
on

fo
un

de
r(

s)
 &

 I
V

s
30

0
1.

39
7

3.
96

6
2.

01
4

3.
85

4

10
00

0.
91

9
2.

01
6

1.
20

0
1.

98
9

10
00

0
0.

43
8

0.
60

5
0.

45
7

0.
59

5

C
on

fo
un

de
r(

s)
, I

V
s

&
 r

is
k

fa
ct

or
s

30
0

1.
30

4
4.

01
0

1.
96

6
3.

84
1

10
00

0.
93

6
2.

08
2

1.
20

8
2.

02
7

10
00

0
0.

37
5

0.
64

4
0.

42
2

0.
62

6

M
is

-s
pe

ci
fi

ed
30

0
2.

74
2

3.
20

3
5.

54
2

5.
43

7

10
00

2.
59

8
1.

73
7

5.
18

8
3.

73
9

10
00

0
2.

40
7

0.
80

9
5.

00
9

2.
73

0

Fu
ll

M
od

el
30

0
1.

38
3

4.
02

8
2.

10
9

3.
92

4

10
00

0.
93

4
2.

02
0

1.
28

5
1.

92
6

10
00

0
0.

41
7

0.
60

7
0.

43
5

0.
60

9

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sofrygin et al. Page 58

Ta
b

le
 4

Si
m

ul
at

io
n

re
su

lts
 f

or
 S

ce
na

ri
o

3
as

 r
ep

or
te

d
in

 T
ab

le
 I

V
 o

f
L

ef
eb

vr
ee

t a
l.

(2
00

8)
.

C
ov

ar
ia

te
s

in
 P

(A
|L

)
N

A
(0

)
B

ia
s*

10
A

(0
)

M
SE

*1
0

A
(1

)
B

ia
s*

10
A

(1
)

M
SE

*1
0

L
ef

eb
vr

e
et

 a
l.:

 C
on

fo
un

de
r(

s)
 o

nl
y

30
0

−
0.

08
0

1.
17

0
0.

09
9

1.
15

5

10
00

−
0.

37
1

0.
38

5
−

0.
03

5
0.

33
1

10
00

0
−

0.
36

8
0.

05
6

−
0.

20
3

0.
04

3

L
ef

eb
vr

e
et

 a
l.:

 C
on

fo
un

de
r(

s)
 &

 r
is

k
fa

ct
or

s
30

0
−

0.
11

0
1.

09
2

0.
11

2
0.

86
5

10
00

−
0.

33
0

0.
34

0
−

0.
10

8
0.

24
5

10
00

0
−

0.
37

8
0.

05
1

−
0.

20
7

0.
03

7

L
ef

eb
vr

e
et

 a
l.:

 C
on

fo
un

de
r(

s)
 &

 I
V

s
30

0
1.

61
1

3.
53

8
2.

06
9

3.
84

1

10
00

0.
82

4
2.

06
3

1.
24

5
2.

18
8

10
00

0
0.

24
1

0.
68

4
0.

37
9

0.
62

2

L
ef

eb
vr

e
et

 a
l.:

 C
on

fo
un

de
r(

s)
, I

V
s

&
 r

is
k

fa
ct

or
s

30
0

1.
60

0
3.

47
7

2.
14

3
3.

59
8

10
00

0.
86

7
2.

05
3

1.
17

0
2.

04
3

10
00

0
0.

23
5

0.
67

6
0.

37
2

0.
62

5

L
ef

eb
vr

e
et

 a
l.:

 M
is

-s
pe

ci
fi

ed
30

0
3.

14
6

3.
32

6
5.

59
1

5.
49

4

10
00

2.
46

0
1.

70
0

5.
25

8
3.

85
1

10
00

0
2.

36
4

0.
83

2
4.

94
3

2.
70

5

L
ef

eb
vr

e
et

 a
l.:

 F
ul

l M
od

el
30

0
1.

52
4

3.
64

8
2.

22
1

3.
90

7

10
00

0.
87

8
2.

09
9

1.
18

5
2.

09
9

10
00

0
0.

24
0

0.
67

9
0.

37
7

0.
63

0

J Stat Softw. Author manuscript; available in PMC 2018 January 16.

	Abstract
	1. Introduction
	1.1. Motivation for simcausal
	1.2. Comparison to other simulation packages
	1.3. Organization of this article

	2. Technical details
	2.1. NPSEM, causal parameter and causal graph
	2.2. The workflow
	Data structures: The following most common types of output are produced by the package.parameterized causal DAG model - object that specifies the structural equation model, along with interventions and the causal target parameter of interest.observed data - data simulated from the (pre-intervention) distribution specified by the structural equation model.counterfactual data - data simulated from one or more post-intervention distributions defined by actions on the structural equation model.causal target parameter - the true value of the causal target parameter evaluated with counterfactual data.Routines: The following routines, also outlined in Figure 2, will be generally invoked by a user, in the same order as presented below.DAG.empty initiates an empty DAG object that contains no nodes.node defines a node in the structural equation model and its conditional distribution, i.e., the outcome of one equation in the structural equation model and the formula that links the outcome value to that of earlier covariates, referred to as parent nodes. A call to node can specify either a single node or multiple nodes at once, with name and distr being the only required arguments. To specify multiple nodes with a single node call, one must also provide an indexing vector of integers as an argument t. In this case, each node shares the same name, but is indexed by distinct values in t. The simultaneous specification of multiple nodes is particularly relevant for providing a shorthand syntax for defining a time-varying covariate, i.e., for defining repeated measurements over time of the same subject-matter attribute, as shown in the example in Section 4.1.add.nodes or D + node provide two equivalent ways of growing the structural equation model by adding new nodes and their conditional distributions. Informally, these routines are intended to be used to sequentially populate a DAG object with all the structural equations that make up the causal model of interest. See Sections 3.1 and 4.1 for examples.set.DAG locks the DAG object in the sense that no additional nodes can be subsequently added to the structural equation model. In addition, this routine performs several consistency checks of the user-populated DAG object. In particular, the routine attempts to simulate observations to verify that all conditional distributions in the DAG object are well-defined.sim simulates independent and identically distributed (iid) observations of the complete node sequence defined by a DAG object. The output dataset is stored as a data.frame and is referred to as the observed data. It can be structured in one of two formats, as discussed in Section 4.5.add.action or D + action provides two equivalent ways to define one or more actions. An action modifies the conditional distribution of one or more nodes of the structural equation model. The resulting data generating distribution is referred to as the postintervention distribution. It is saved in the DAG object alongside the original structural equation model. See Sections 3.3 and 4.3 for examples.
sim(…, actions = …) can also be used for simulating independent observations from one or more post-intervention distributions, as specified by the
actions argument. The resulting output is a named list of
data.frame objects, collectively referred to as the counterfactual data. The number of
data.frame objects in this list is equal to the number of post-intervention distributions specified in the
actions argument, where each
data.frame object is an iid sample from a particular post-intervention distribution.
set.targetE and
set.targetMSM define two distinct types of target causal parameters. The output from these routines is the input
DAG object with the definition of the target causal parameter saved alongside the interventions. See Sections 3.5 and 4.6 for examples defining various target parameters.
eval.target evaluates the causal parameter of interest using simulated counterfactual data. As input, it can take previously simulated counterfactual data (i.e., the output of a call to the
sim(…, actions = …) function) or, alternatively, the user can specify the sample size
n, based on which counterfactual data will be simulated first.
	Data structures
	Routines

	2.3. Specifying a structural equation model
	2.4. Specifying interventions
	2.5. Specifying a target causal parameter
	2.6. Simulating data and evaluating the target causal parameter

	3. Simulation study with single time point interventions
	3.1. Specifying parametric structural equation models in simcausal
	3.2. Simulating observed data (
sim)
	3.3. Specifying interventions (
+ action)
	3.4. Simulating counterfactual data (
sim)
	3.5. Defining and evaluating various causal target parameters
	Causal parameters defined with
set.targetE
	Causal parameters defined with
set.targetMSM

	3.6. Defining node distributions

	4. Simulation study with multiple time point interventions
	4.1. Specifying the structural equation model
	4.2. Simulating observed data (
sim)
	4.3. Specifying interventions (
+ action)
	Dynamic interventions
	Static interventions

	4.4. Simulating counterfactual data (
sim)
	4.5. Converting a dataset from wide to long format (
DF.to.long)
	4.6. Defining and evaluating various causal target parameters
	Causal parameters defined with
set.targetE
	Example 1
	Example 2

	Causal parameters defined with
set.targetMSM
	Example 1. Working dynamic MSM for survival probabilities over time
	Example 2. Working static MSM for discrete-time hazards over time

	5. Replication study of the impact of misspecification of propensity score models
	6. Discussion
	References
	Appendix A: Replicating the simulation study by Lefebvre et al. (2008)
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2
	Table 3
	Table 4

