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SUMMARY

Most human epithelial tumors harbor numerous alterations, making it difficult to predict which 

genes are required for tumor survival. To systematically identify cancer dependencies, we 

analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. 

We developed DEMETER, an analytical framework that segregates on-from off-target effects of 

RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six 
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standard deviations from the mean. We found predictive models for 426 dependencies (55%) by 

nonlinear regression modeling considering 66,646 molecular features. Many dependencies fall into 

a limited number of classes, and unexpectedly, in 82% of models, the top biomarkers were 

expression-based. We demonstrated the basis behind one such predictive model linking 

hypermethylation of the UBB ubiquitin gene to a dependency on UBC. Together, these 

observations provide a foundation for a cancer dependency map that facilitates the prioritization of 

therapeutic targets.
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INTRODUCTION

Multiple genetic or epigenetic changes are required to program the malignant state. 

Although we now have an initial view of the landscape of genetic alterations that occur in 

cancers, our understanding of the biological impact of these features and how they conspire 

to induce specific tumor vulnerabilities is largely incomplete. As a result, the use of genetic 

information from tumors to enable cancer precision medicine is limited.

One approach to identifying genes essential for cancer cell proliferation/survival is to 

perform systematic loss of function screens in a large number of well-annotated cell lines 

representing the heterogeneity of tumors. We and others have demonstrated that these 

experiments are feasible (Aguirre et al., 2016; Cheung et al., 2011; Cowley et al., 2014; Luo 

et al., 2008; Marcotte et al., 2012; Marcotte et al., 2016), and the interrogation of single or 

multiple lineages has identified new oncogenes and genes essential for cell proliferation or 
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the activity of specific signaling pathways (Aguirre et al., 2016; Barbie et al., 2009; Cheung 

et al., 2011; Cowley et al., 2014; Luo et al., 2008; Marcotte et al., 2012; Marcotte et al., 

2016). However, these RNA interference (RNAi) and CRISPR-Cas9 experiments have been 

limited by off-target effects of such reagents (Aguirre et al., 2016; Birmingham et al., 2006; 

Buehler et al., 2012b; Jackson and Linsley, 2004; Munoz et al., 2016) and also by an 

insufficient number of cell line models to adequately represent the full spectrum of the 

molecular complexity of cancer.

Here we have integrated a large number of genome-scale RNAi-based loss-of-function 

screens to facilitate the interrogation of gene function. Using this dataset, we developed an 

analytical approach that quantifies on- and off-target effects of each RNAi reagent. By 

combining this information with a comprehensive genomic characterization of these cell 

lines, we systematically predicted cancer dependencies, thereby establishing an initial 

framework for a cancer dependencies map.

RESULTS

Overcoming off-target effects of RNAi to accurately infer cancer dependencies

Although RNAi is a powerful technique, microRNA (miRNA) “seed”-based off-target 

effects have been reported to confound experimental interpretation (Birmingham et al., 

2006; Buehler et al., 2012b; Jackson et al., 2006). We hypothesized that explicitly modeling 

onand off-target effects induced by RNAi in a large set of cancer cell lines would provide the 

means to estimate the on-target effects of suppressing genes in these experiments. We first 

built on our previous study of 216 human cancer cell lines (Cowley et al., 2014) by 

screening an additional 285 cell lines. In brief these screens consist of transducing each cell 

line with a genome-scale library of ~100,000 shRNAs at low MOI in ~60M cells for each of 

4 replicates, so that each cell gets one shRNA, passaging the cells for 16 doublings, up to 40 

days, and then assessing by massively parallel sequencing the depletion of each shRNA from 

the cell population versus its relative abundance in the original pooled library of shRNA 

plasmids. The genes targeted by the most depleted shRNAs are inferred to be most essential 

for proliferation/viability (see Methods for details). The resulting compiled dataset of 

genome-scale screens in 501 cell lines includes a wide diversity of cancer types (Figure 1A; 

Table S1).

First, we empirically assessed the prevalence of off-target effects induced by RNAi. 

Essentially all shRNAs in the library (>99.3%) have a seed sequence that is shared by at 

least one other shRNA designed to target a different gene (average 12 shRNAs per seed). We 

found that shRNA depletion scores for pairs of shRNAs that share 7-mer miRNA-like seed 

sequences were significantly more correlated (mean Pearson correlation coefficient r = 0.37) 

than profiles of shRNAs targeting the same gene (mean r = 0.03; P-value < 10−15, Mann-

Whitney U test; Figures 1B and S1B). These observations confirm that miRNA-like seed 

effects are highly prevalent in RNAi in this dataset.

Both on-target and seed-based effects of RNAi are sequence-specific. However, previous 

solutions to overcome seed effects have been incomplete as they focused on reduction of 

false positive results using multiple shRNA constructs targeting each gene (Kampmann et 
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al., 2013; Kampmann et al., 2015), inferring on-target effects by identifying shRNA 

constructs that induce strong concordant on-target effects (Shao et al., 2013), or identifying 

the seed-based effects (Buehler et al., 2012b; Yilmazel et al., 2014). The gespeR approach 

(Schmich et al., 2015) considers both on- and off-target effects but involves a computational 

prediction of seed targets for each reagent. We reasoned that explicitly modeling the 

combined on-target and seed-based effects directly from the empirical screen data would 

improve the estimates of the gene-knockdown effects. We, therefore, developed a 

computational method (DEMETER) that uses the depletion values induced by each shRNA 

construct to infer the effect of suppressing its intended target (on-target) and of expressing a 

given miRNA seed (off-target) in each screened cell line. It models each depletion value as a 

sum of two unobserved quantities: gene knockdown and seed-based effects. It then estimates 

these quantities by fitting the model to the full dataset. This is possible as the shRNA 

libraries we used contain multiple shRNAs designed to target each gene as well as multiple 

shRNAs harboring each seed sequence (Figure 1C; Methods). We applied DEMETER to 

obtain in each of 501 cell lines gene-level differential dependency scores for 17,098 unique 

genes, and seed-sequence effects for 15,142 unique 7-mer sequences (available at 

broadinstitute.org/achilles), as well as performance metrics for each shRNA (Table S2). 

When we subtracted inferred seed-effects from each shRNA and recomputed the correlation 

coefficient between shRNA constructs targeting the same gene, we found that gene-targeting 

shRNA pairs were now substantially more correlated (P-value < 10−15, Mann-Whitney test; 

Figure 1B), validating our approach.

To determine whether DEMETER facilitates the use of RNAi to identify biological 

relationships, we assessed three parameters. First, we reasoned that non-expressed genes 

were unlikely to be required for viability. Indeed, the fraction of the highest (top 0.1%) 

DEMETER dependency scores that represented gene-cell line combinations where the gene 

was non-expressed was 9-fold lower than for the most dependent shRNA-level readouts 

(Figure 1D). This finding is consistent with our prediction that DEMETER effectively 

corrects for off-target effects of shRNAs. Second, we compared the dependency profiles 

corresponding to a subset of genes encoding physically interacting proteins and found a 43-

fold increase in highly correlated (Pearson r z-score > 3) dependency profiles amongst 

20,466 pairs of gene products annotated to be in the same physical complex as compared to 

random gene pairs (P-value < 10−15, Fisher’s exact test; Figure S1A, Methods). This 

represents a 3-fold improvement over the performance of a correlation-based method (Shao 

et al., 2013). Third, by extending this finding to members of the same pathway, we 

confirmed that we were able to discover known biological relationships directly from 

correlated dependency profiles (Methods; Table S3). We note three representative examples: 

(i) PIK3CA dependency profiles were tightly correlated with known pathway members 

(MTOR, PDPK1, AKT1 and ERBB3) (Figure 1E), (ii) cell lines that were more dependent 

on the expression of the PTK2 tyrosine kinase were also more dependent on specific 

members of integrin/focal adhesion, and actin cytoskeleton regulating pathways (Figure 1F), 

and (iii) cell lines dependent on MED12 were correlated with members of the mediator 

complex (Figure 1G). These cases were among many other examples such as members of 

the PRC2, SWI/SNF complexes and mitochondrial respiratory genes were one or more 

members of complex were identified (Figure S1C).
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Furthermore, we noted that cells that depend on PIK3CA also required the expression of the 

key splicing mediators CPSF3 and SRRM1 (Figure 1E), and cells that depend on PTK2 
required the transcription factor TEAD1 and the glycosyltransferase RPN2 (Figure 1F). 

Finally, cells that required MED12 also depended on specific members of the cohesin, 

splicing, 20S proteasome and RNA polymerase complex (Figure 1G), suggesting that this 

approach also permits the discovery of new co-dependency relationships. Together, these 

observations demonstrate that DEMETER provides a rigorous approach to distinguishing 

on- and off-target effects of RNAi and facilitates the discovery of novel cancer dependencies 

and biology.

Systematic identification of differential dependencies

We next undertook a census of cancer dependencies. To define those more likely to be 

cancer-specific, we focused on genes with a robust differential dependency identified in a 

minority of the 501 cancer cell lines (DEMETER gene dependency scores that are multiple 

standard deviations beyond the mean) (Figure 2A).

The number of differential dependencies identified in this census is a function of both the 

magnitude of the differential dependency and its prevalence in our cell line collection 

(Figure 2B). Across the 501 cell lines, we identified a set of 769 strong differential gene 

dependencies for which the DEMETER scores of at least one cell line were six standard 

deviations (6σ) or greater from the mean across all cell lines (Table S4). Using a stringent 

threshold provides high confidence that these are true differential dependencies rather than 

false positive results. We found that 92% of the cell lines (n = 460) harbored at least one 

such 6σ dependency (Figure 2C). Overall, these 769 genes represent many different classes 

of proteins including transcription factors and kinases (Figure 2D), and 20% of these (n = 

152) have been annotated as potentially druggable (Figure 2E). Furthermore, 53 of the 6σ 
dependencies are common to at least 5% of the cell lines (n = 25). Consistent with these 

observations, we found that as few as 76 genes represent 6σ dependencies in 92% of the cell 

lines, and indeed we found multiple gene sets of this size. Similarly, sets of only 10 genes 

captured 6σ dependencies in 58% the cell lines. This observation suggests that a modest 

number of therapeutic targets might be relevant across a disproportionately large number of 

tumors. Indeed, 74% of the cell lines had at least one 6σ dependency representing a readily 

druggable target (Figure 2F, Table S4).

Predicting dependencies from molecular features

The ability to predict cancer dependencies from tumor features may provide insights into 

mechanism and opportunities for patient stratification. Thus, we next asked whether we 

could identify features that predict these 6σ dependencies. To achieve this goal, we 

developed a nonlinear regression model (ATLANTIS) that is based on conditional inference 

trees (Hothorn et al., 2006), an adaptation of the random forest model (see Methods). We 

used it to create predictive models for gene dependency scores from 66,646 molecular 

features (somatic gene mutations, gene copy number, gene expression) measured at baseline 

as part of the Cancer Cell Line Encyclopedia (CCLE) project (Barretina et al., 2012) (see 
Methods). We initially focused on non-hematopoietic cell lines because they represented the 
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majority of the cell lines (455/501) and because they have substantially different gene 

expression patterns than hematopoietic cell lines (Barretina et al., 2012).

Using this approach, we generated predictive models (Marker-Dependency Pairs; MDP) 

with statistically significant accuracy (FDR<0.05; permutation test) for 289 (38%) of the 

769 6σ dependencies (see Methods, Figures 3A–B). An unbiased approach utilizing a large 

number of candidate predictive features (66,646) is useful for finding unexpected marker-

dependency relationships but it also creates a very high bar for statistical significance. To 

address this, we also employed an alternative approach whereby the feature space was 

reduced based on prior biological knowledge. Specifically, for each target dependency, we 

used molecular features of genes representing direct physical interaction, membership in 

protein complexes, or membership in known signaling pathways (named collectively 

“related features”, see below and Methods). These metrics yielded 361 significant MDPs, 

of which 251 overlap with the unbiased approach (Figures 3A–B). Having discovered MDPs 

for high-confidence 6σ dependencies, we next applied them to 5,536 candidate dependencies 

at lower confidence levels (between a threshold of 2σ and 6σ from the mean). These 

additional analyses netted significant MDPs for 741 additional genes, a rate (13.4%) much 

lower than observed for 6σ dependencies (51.8%), reflecting the lower signal in this 

candidate dependencies set (Figures 3B and S2A).

We next examined the nature of the biomarkers that led to predictive models of dependency. 

Specifically, we asked whether DNA mutation, copy number or RNA expression were 

particularly informative with respect to predicting dependencies. Surprisingly, the vast 

majority of predictable differential dependencies (82%) were best predicted by RNA 

expression levels, whereas DNA mutation accounted for only 16% and DNA copy number 

only 2% (Figure 3C). This observation is in concordance with the observation that small-

molecule cancer dependencies are similarly most commonly predicted by gene expression 

(Seashore-Ludlow et al., 2015).

While these MDPs included many previously-described relationships (Figures 3D and 6B), 

additional markers were discovered in most cases. For example, we found that mutations in 

KRAS or BRAF were anticorrelated with dependency on PTPN11, an activator of the RAS 

pathway (Figure 3D). Likewise, expression of known TP53 transcriptional targets (RPS27L, 
CDKN1A and EDA2R) as well as the ELMSAN1, and ACER2 genes predicted MDM4 
dependency, consistent with MDM4 functioning as a negative regulator of TP53. Novel 

biological relationships were also discovered, suggesting new mechanistic hypotheses. For 

instance, strong dependency on the actin-regulating CYFIP1 gene was predicted by 

expression of integrin and membrane raft proteins (ICAM4, ITGB4, MALL) (Figure 3D). In 

many cases, multivariate predictive models, which use multiple features, held greater 

predictive power than those restricted to single features (Figure 3E). Together, these results 

support the notion that the ability to predict a cancer dependency provides helpful insight 

into the mechanistic underpinnings driving differential dependencies in cancer.
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Classification of differential dependencies

Having found a large number of dependencies (many of which are accompanied by 

predictive biomarkers), we asked whether they could be classified into distinct biological 

classes.

One class of MDPs, where somatic mutation or copy number gain of a gene predicts a 

dependency on the same gene for survival, includes known oncogenes. To identify such 

MDPs, we attempted to build models that would predict each dependency using only the 

gene’s own mutation and amplification features, however, we noted that in some cases few 

cell lines existed harboring each mutation, limiting our statistical power. Thus, for 

completeness, we also searched for cases in which cell lines differentially dependent on a 

gene were enriched for mutations in that gene (Table S5, see Methods). In total, we 

discovered 47 such mutation-driven MDPs, including 18 corresponding to 6σ dependencies 

(Figure 3F, Table S6).

While these dependencies included the known oncogenes KRAS, NRAS, HRAS, BRAF, 

PIK3CA, MET, MCL1, MDM2 and ESR1, they also included multiple novel dependencies 

including SOX10, DOCK2 and GNAI2. Interestingly, the two diffuse large B-cell lymphoma 

cell lines with a 6σ dependency on the small GTPase GNAI2 (Morin et al., 2013) both 

harbored the same in-frame deletion (p.K272del), suggesting that such mutations are 

activating and that targeting GNAI2 in GNAI2-mutant cancers might be an effective 

therapeutic strategy (Figure 3F top-left).

By contrast, 399 (30%) of the dependencies with biomarkers, including 184 6σ 
dependencies, represented genes for which hemizygous copy number loss and/or reduction 

in expression levels were predictive of increased dependency. These findings extend our 

previous report describing this class of cancer dependencies which we termed CYCLOPS 

genes (Nijhawan et al., 2012) (Figure 3F bottom-left; Table S6; Methods). This class of 

MDPs includes the previously validated dependencies PSMC2 (Nijhawan et al., 2012) and 

POLR2A(Liu et al., 2015) as well as novel candidates such as members of the kinetochore 

associated complex (SKA1), SET1 complex (WDR82), or mediator complex (MED9).

We next evaluated a third distinct class of MDPs, representing genes whose elevated 

expression is associated with dependency. Such expression-driven dependencies include 

lineage-specifying transcription factors such as SPDEF, NKX2-1 and PAX8 (Buchwalter et 

al., 2013; Cheung et al., 2011; Weir et al., 2007). In all, we discovered 123 (9%) such 

dependencies, including 33 6σ dependencies (see Methods). Indeed, 49 (45%) of such 

dependencies were transcription factors (Figure 4A), many known to act as master regulators 

in the specification and survival of particular tissue lineages (Buchwalter et al., 2013; Laury 

et al., 2011).

We next investigated in greater detail the relationships between specific cancer types and 

master transcription factor dependencies. Since targeting such transcription factors may also 

induce cell death in normal tissues expressing those factors, we paid particular attention to 

transcription factor dependencies restricted to specific cell lineages. Indeed, while multiple 

lineages were dependent on transcription factors such as TEAD1, several cancer lineages 
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were specifically dependent on particular master transcription factors (Figure 4B), including 

ESR1, TFAP2C, GATA3, SPDEF and FOXA1 in breast cancer and HOXB13 in prostate 

cancer, as previously reported (Buchwalter et al., 2013; Marcotte et al., 2016; Pomerantz et 

al., 2015), as well as novel candidates including SATB2 in colorectal cancer and LYL1 in 

acute myeloid leukemia (AML). Particularly interesting among these lineage-related 

dependencies are those involved in cell types or organs that are not essential for adult 

survival (e.g. prostate, breast, thyroid, ovary, melanocytes, plasma cells). Examples of 6σ 
dependencies in dispensable lineages include ESR1, FOXA1, GATA3, IRF4, SOX10 and 

SPDEF; the strength of such dependencies was comparable to mutation-driven dependencies 

(Figure 4C). Together, these observations suggest that these strong lineage-specific cancer 

dependencies represent potential cancer targets as evidenced by the success of estrogen 

receptor inhibitors in breast cancer.

Finally, we observed a fourth prominent class of 87 dependencies (7%), including 27 6σ 
ones, for which the functional loss of one paralog is associated with a dependency on 

another. While previous reports have noted examples of such paralog deficiency 

dependencies (Aksoy et al., 2014; D’Antonio et al., 2013; Helming et al., 2014; Muller et 

al., 2012; Wilson et al., 2014), here we systematically identified over 80 such dependencies 

using ATLANTIS (Table S6). For example, we identified low FERMT2 expression as a 

marker for FERMT1 dependency, a gene involved in integrin and cytoskeleton regulation 

(Figure 3F, bottom-right). Focusing only on solid tumor lineages, where FERMT2 is mostly 

expressed (Figure S2B), we found that very few cell lines expressed neither FERMT1 nor 

FERMT2 and the subset of cells with no FERMT2 expression were exquisitely dependent 

on FERMT1 (Figures S2C-D). These results indicate that epithelial cells require either 

FERMT1 or FERMT2 for survival.

Together these observations demonstrate that a large fraction (45.8%) of the dependencies, 

for which a predictive model was found, fall into at least one of these four classes (Figures 

3A and 3F). Moreover, mutation-driven dependencies represented only a small minority of 

these dependencies, suggesting that there exist a large number of unexpected, strong 

differential dependencies that may serve as therapeutic targets.

Mechanistic investigation of UBC dependency

Dependency on the UBC ubiquitin gene was one of the most highly predictable 6σ paralog 

deficiency dependencies (Table S6), with low expression of UBB as the top marker (Figure 

S3A). Indeed, we found that all 20 cell lines (100%) with low expression of the UBB 
ubiquitin gene were highly dependent on the UBC ubiquitin gene (Figure 5A).

Since UBB expression is uniform across the majority of normal tissues (Figure S3B; 

GTEx), we hypothesized that somatic loss of UBB expression in cancer occurred through 

gene deletion or epigenetic silencing. While no relationship was observed with copy-number 

(Figure S3C), we found that loss of UBB expression and UBB promoter hypermethylation 

was frequent in ovarian and uterine tumors (Figures S3D-E). UBB expression was correlated 

with promoter hypermethylation, as assessed by reduced-representation bisulfite sequencing 

(RRBS) in both cell lines and ovarian tumors (Figures 5B–C).
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We next validated the DEMETER-inferred UBC dependency in ovarian cancer cell lines. 

Indeed, 4 cell lines expressing low levels of UBB were highly dependent on UBC in contrast 

to 3 cell lines expressing average UBB levels (P-value < 0.03, Mann-Whitney U test; Figure 

5D). As expected, the degree of UBC effect inversely correlated with DEMETER gene 

values (Figures S4A). Moreover, RNAi reagents that contained matched seed sequences but 

do not target UBC failed to induce cell death (see Methods (C911 controls), Figure S4B) 

(Buehler et al., 2012a), confirming that the observed effects were due to on-target activities 

of these shRNAs.

We further explored the UBB-UBC dependency relationship. First, we found that UBB and 

UBC are co-regulated, since cancer cell lines that express low levels of UBB expressed 

higher levels of UBC (Figure S4D). We also found that UBC suppression induced UBB 
expression (Figures S4C). Exogenous expression of monoubiquitin from a UBB ORF in cell 

lines with low UBB levels alleviated the requirement for UBC expression (P-value = 0.026, 

F-test)(Figure 5E and Figure S4E). Finally, we found that suppression of UBC expression 

resulted in a decrease in total levels of conjugated ubiquitin in UBBlow but not UBBhigh cell 

lines (Figures 5F and S4F).

Taken together, these results confirm that cells require either UBB or UBC for survival, 

suggesting that these proteins may functionally buffer each other. The recent elucidation of 

protein degradation as the mechanism by which lenalidomide induces cell death in myeloma 

suggests that targeting this and other MDPs may prove useful (Kronke et al., 2014; Lu et al., 

2014). In addition, these observations demonstrate that MDPs may not only have diagnostic 

potential but also facilitate rapid insights into the mechanistic basis of dependencies in 

cancer.

Progress towards a Cancer Dependency Map

A consensus visualization of the results described above produced an initial map of cancer 

dependencies and predictive power (Figures 6A and S5A-F). As a final step, we took two 

complementary approaches to determine the completeness of this map. First, we curated a 

list of 39 oncogene addictions from the literature, including validated drug responses (Table 

S7, see Methods). Our dataset identified a differential dependency on 33 (85%) of these 

genes and returned the “concordant” marker in 20 (51%) instances (Figure 6B). For the 

other 13 cases (33%), either distinct, yet biologically meaningful markers were discovered 

(5) or the dataset did not include cell lines that harbored the validated marker (6).

In 6 (15%) of the remaining cases the dataset did not include cell lines that harbored the 

validated marker. Accordingly, we successfully derived predictive models for 86% of the 6σ 
dependencies present in over 20 cell lines, but only 45% of the 6σ dependencies present in 

only one cell line (Figure 6C). These observations suggest that more cellular contexts are 

needed to both observe and predict each dependency.

Leveraging these concepts, we performed a down-sampling analysis to evaluate how scaling 

the number of cell line contexts relates to the ability to observe dependencies. In this 

analysis, we first determined the sensitivity of smaller datasets to observe dependencies 

discovered in the complete dataset (Figure 6D, blue line). These results show an inflection 
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point in the rate of 6σ dependency discovery at a dataset size of 200–300 cell lines. While 

exact extrapolation is difficult due to cell line contexts that are completely absent, these 

results are consistent with a prediction that approximately 1,000 cell lines may be needed to 

observe most 6σ dependencies in cancer at least once. However, given the result that 

observing a dependency in >20 cell lines is required to predict >80% of 6σ dependencies 

(Figure 6C), we noted that at least an order of magnitude increase in scale beyond the 

present 501 cell lines (>5,000) is likely to be needed to fully predict most cancer 

dependencies from cell features (Figure 6D, green and red lines).

DISCUSSION

Using RNAi-based, loss of function genetic screens in 501 cancer cell lines, we identified 

genes whose expression is required for the proliferation or survival of subsets of these cell 

lines and developed an approach to identifying features that predict these gene 

dependencies. This cancer dependency map provides an approach to defining and predicting 

genes that are essential for cell viability, thereby facilitating the identification of cancer 

targets. We have made all of these data and analysis results available at http://depmap.org/

rnai.

The off-target effects of shRNAs have become increasingly recognized, and this has led to 

skepticism about the utility of RNAi-based screens. To the contrary, we show here that such 

off-target effects can be distinguished from on-target effects resulting in highly reproducible 

and biologically meaningful results. We previously reported the use of the ATARiS 

algorithm to integrate across often discordant measurements obtained from different 

shRNAs targeting the same gene (Shao et al., 2013). While somewhat effective, residual off-

target shRNA effects remained. Related approaches to minimize off-target effects have 

similarly been described (Cheung et al., 2011; Konig et al., 2007; Marcotte et al., 2016; 

Zhang et al., 2011). The DEMETER method introduced here, however, leverages the 

observation that the majority of shRNA off-target effects are attributable to miRNA seed 

sequences. We hypothesized that explicitly modeling such seed effects would improve the 

performance of algorithms such as ATARiS, that are based solely on correlation. Indeed, 

DEMETER dramatically outperformed ATARiS in our analysis of 501 cancer cell lines. 

Notably, in contrast to other approaches that attempt to model RNAi seed effects (Schmich 

et al., 2015), DEMETER requires no prior knowledge of the off-target effects of a given 

shRNA; DEMETER automatically identifies seed effects for any collection of shRNAs.

An alternative way to address the off-target effects of shRNA is to use other loss-of-function 

approaches. Specifically, genome editing through the use of CRISPR-Cas9 technology has 

emerged as a promising complementary method to RNAi to identify essential genes. 

Although CRISPR-Cas9 mediated gene editing exhibits a high degree of specificity in gene 

targeting, we and others have recently reported that Cas9 endonuclease activity induces a 

gene-independent cell cycle arrest, likely due to DNA damage (Aguirre et al., 2016; Munoz 

et al., 2016; Wang et al., 2015). In addition, we recently showed that gene suppression rather 

than gene deletion permits the identification of gene dependencies, such as CYCLOPS genes 

(Rosenbluh et al., 2016). Taken together, these observations suggest that the information 

from CRISPR-Cas9 and RNAi screens are complementary.

Tsherniak et al. Page 10

Cell. Author manuscript; available in PMC 2018 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://depmap.org/rnai
http://depmap.org/rnai


The cancer dependencies identified in these studies represent targets for therapeutic efforts. 

Although this initial report allowed us to define several classes of gene dependencies, we 

recognize that this approach is focused on biological processes essential for cell-autonomous 

cell survival. Moreover, we defined cancer dependencies based on cell proliferation and 

survival. Future studies using analogous approaches will be necessary to interrogate cell-cell 

interactions and other cancer phenotypes, which may expand the number and types of cancer 

dependencies.

Although we identified both known and novel oncogenes, genes that are somatically mutated 

and/or focally amplified represent a minority of the cancer dependencies. Indeed, gene 

expression emerged as the molecular feature that best predicted differential dependency. 

Since most therapeutic targeting efforts have focused on mutated oncogenes, these efforts 

suggest that a large number of cancer targets remain to be tested for efficacy when targeted 

therapeutically. Although defining and validating these dependencies will require substantial 

further validation, these observations suggest that targeting these gene dependencies may 

allow the identification of a larger set of cancer targets suitable for therapeutic targeting. 

Moreover, expanding these types of studies to a larger set of cancer cell lines and 

phenotypes provides a path to defining a comprehensive map of cancer dependencies as well 

as the context (genetic, cell-cell interactions, etc.) that drive these MDP relationships.

Our observations indicate that the comprehensive identification and prediction of 

dependencies will require a substantial increase in the number and diversity of cell lines 

analyzed (Figures 6C–D). Thus, we propose that a concerted, international effort should be 

launched to create a definitive cancer dependency map. Such a map would serve as a 

foundation for the entire field, leading to a blueprint for targeted therapeutic development, 

and to an acceleration of cancer precision medicine.

STAR METHODS

CONTACT FOR REAGENTS AND RESOURCE SHARING

As Lead Contact, William Hahn (william_hahn@dfci.harvard.edu) is responsible for all 

reagent and resource requests.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines—Cell lines were obtained from the Cancer Cell Line Encyclopedia 

(www.broadinstitute.org/ccle) unless otherwise indicated. Cell line information, including 

source is listed in Table S1. Information on tissue, tumor type and growth media conditions, 

(used to grow the cells and also for screening) were obtained from the CCLE project or 

source laboratory and are listed in Table S1. All cell lines were fingerprinted multiple times 

using one of two genotyping platforms, Sequenom or Fluidigm.

METHODS DETAILS

Screening and deconvolution using next-generation sequencing—We extended 

our previous study of 216 cell lines (Cowley et al., 2014) by performing genome-wide 

pooled loss of function screening on additional 285 cancer cell lines across approximately 
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100k shRNAs (final files include 107,523 shRNA values in Achilles_v2.19.2 to produce 

17,098 DEMETER gene solutions in Achilles_v2.20.2). Each cell line was infected with the 

shRNA pool by lentivirus, in quadruplicate and propagated for at least 16 population 

doublings or 40 days, whichever came first. To determine the viral volume needed to achieve 

the desired transduction rate of ~40%, each cell line was titrated with 6 volumes of virus (0–

500 ul) in a 12 well plate at a concentration of 3E6 cells/well. Then cells were cultured in 

the presence or absence of puromycin in 6 well dishes before infection rates were 

determined. Cells were expanded for infection in quadruplicate with a target of 3.7E7 

infected cells. Before infection, cells were filtered through a 40 um cell strainer to remove 

clumps, then resuspended in media containing 4 ug/ml polybrene, and the appropriate 

volume of 98K library lentivirus to achieve a cell concentration of 1.5E6 cells/ml. This cell 

suspension was seeded into 12 well plates at 2 ml/well and centrifuged for 2 hours at 930xg 

at 30 degrees C. After the spin infection, 2 ml of fresh media was added to each well. After 

24 hours, the cells from each replicate infection were pooled into T225 flasks with 60ml 

medium containing puromycin. To provide an in-line assessment of transduction rate, 150k 

of infected and uninfected cells were cultured in 6 well dishes in the presence or absence of 

puromycin. After 96 hours, both the in-line assay wells and the screen replicates were 

trypsinized. The infection rate was determined by calculating the number of viable cells 

selected in puromycin divided by the number of viable cells without puromycin selection.

Screening was continued if the infection rates were within the range of 30–65% so that the 

selected cells were nearly all MOI = 1 and so that there was a sufficient number of cells to 

provide adequate representation of each shRNA. For each of the replicates, 6E7 cells were 

plated into new T225 flasks in 60ml of media with puromycin. For the remaining passages, 

only 3E7 cells per replicate were carried over, and the remaining cells were spun down and 

resuspended in PBS for genomic DNA isolation. Passaging for each cell line was continued 

for at least 16 population doublings or 28 days, whichever was longer. Puromycin selection 

was maintained until day 7. At the end of passaging, genomic DNA from the screen 

endpoints were used to measure the abundance of shRNAs in comparison to the initial DNA 

plasmid pool. Samples were sequenced using a custom sequencing primer using standard 

Illumina conditions. Deconvolution was performed similar to that described in Ashton et al 

(Ashton et al., 2012) and all steps are described more completely in Cowley et al (Cowley et 

al., 2014), with the following alterations. A total of 280 μg gDNA was used as template for 

PCR from each replicate. Thermal cycler PCR conditions consisted of heating samples to 

95 °C for 5 min; 28 cycles of 94 °C for 30 s, 53 °C for 30 s, and 72 °C for 20 s; and 72 °C 

for 10 min. PCR reactions were then pooled per sample. After PCR and additional of sample 

barcodes, 20 replicates were multiplexed into a single Illumina sample, and run on multiple 

lanes to achieve a minimum of 27 reads per replicate. PCR sequences are listed in Key 

Resources Table. Cell line specific information is listed in Table S1. Cell doubling time was 

calculated from the lentivirally infected cells during the course of the screens. Days in 

culture represent the days from the day of infection until the date of the harvest. Passage 

number represents the number of cell splits during during the screen and refer to the time 

point of the sample that was used for data collection specific to each cell line.
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Cloning of C911 shRNAs—C911 shRNAs were designed by changing the nucleotides at 

positions 9 through 11 of the corresponding experimental shRNA to their complement base 

and appending an AgeI recognition site at the 5′ end and an EcoRI recognition site at the 3′ 
end with appropriate overhang sequences. Oligonucleotides were purchased from Integrated 

DNA Technologies. Complementary oligos were annealed and ligated to the 

pLKO_TRC005 vector cut with restriction enzymes AgeI and EcoRI. Ligation products 

were transformed into DH5a chemically competent cells (Invitrogen) according to 

manufacturer’s instructions and plated on agar plates containing 100ug/mL carbenicillin 

incubated for 16 hrs at 37°C. Single colonies were used for DNA preparation (Qiagen). All 

clones were verified by sequencing.

Viral production—293T cells were seeded in 96 well plates at 2.2*104 per well (100uL 

volume) 24 hrs pretransfection. Transfection was performed using TransIT-LTI Transfection 

Reagent (Mirus). Briefly, two solutions were prepared in different 96-well plates for each 

construct. One solution contained 0.6uL of LT1 diluted in 10uL of Opti-Mem (Corning) for 

each well incubated at room temperature for 5 minutes. For the second solution, a master 

mix that contained 100ng/well psPAX2 (Addgene 12260), 10ng/well pCMV-VSVG 

(Addgene 8454), and Opti-MEM for a total volume of 10uL/well was added to a plate that 

contained 100ng of the transfer vector diluted in 10uL of sterile water. The two final 

solutions were combined and incubated at room temperature for 30 minutes. The 

transfection mixture was then added to the plate of cells and incubated at standard cell 

culture conditions (37°C, 5% CO2) until the following morning. At least 18 hours post 

transfection, media on the cells was changed to 170uL high-BSA growth media (DMEM 

+ 10% FBS + 1% BSA). Virus was harvested 24 hrs after the media change, the media was 

replenished, and a second harvest occurred at 48 hrs after the media change. Virus from both 

harvests was pooled, aliquoted, and stored at −80°C until use in the experiments.

GFP competition assay—All infections were performed by centrifuging freshly seeded 

plates containing cells with lentiviral particles per well and 4ug/mL polybrene for two hours 

at 2000 rpm. Cell lines stably expressing GFP were generated using a lentiviral expression 

vector (pLKO_047). shRNAs were introduced to non-GFP expressing cells in duplicate and 

selected for 2–3 days with 3–6μg/ml of puromycin before starting the co-culture. Co-

cultures were created by mixing GFP expressing cells with shRNA-infected non-GFP cells 

at a ratio of 75 GFP negative to 25 GFP positive. Time-points quantifying the ratio of GFP to 

non-GFP population were taken using flow cytometry (BD Biosciences BD Accuri C6) each 

time the co-culture was split (every three to four days) for 9–12 days post selection. Log2 

fold change of percentage GFP negative cells remaining for each experimental construct 

compared to the average of the percentage GFP negative in negative controls 

(pLKO_TRC005-nullT, shGFP, shRFP, shLuciferase) was calculated for each time-point. 

Since different cell lines grow at different rates, for comparison between cell lines the time-

point of maximal depletion (median of shUBC-1, 3 and 7) was selected per cell line. Results 

are representative of two independent experiments.

UBB Rescue experiments—An exogenous ORF fragment from UBB (NM_018955.3, 

844-1083) encoding for ubiquitin- V5 (ccsbBroad304_14873) was overexpressed in SNU8 
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cells using lentivirus. Ubiquitin overexpressing or parental cells were seeded in a 96-well 

plate at 1000 cells/well and infected on the same day with lentivirus expressing shUBC, 

shGFP, shPSMD2, shRPS6 or pLKO_TRC005-nullT in individual wells. Viability was 

measured 24h after infection and every 48h over a 7 day time-course using CellTiterGlo 

(Promega) on a Perkin Elmer EnVision. Three separate infection replicates were used for 

each time point. Average raw luminescent signal for each condition was normalized to the 

average of the pLKO_TRC005-nullT signal. Fold-change to day 1 was calculated from the 

normalized signal. Data is representative of two independent experiments.

Western Blots—Cells were infected with lentivirus expressing shUBC-3 or 

pLKO_TRC005-nullT and selected with puromycin at a concentration of 4ug/mL for 48–

72hr or until all uninfected cells were dead. Cells were stored as pellets at −80°C. Whole 

cell lysates were prepared using RIPA buffer (Sigma-Aldrich) supplemented with EDTA-

free Protease Inhibitor Cocktail (Roche), 1mM Sodium Orthovanadate (NEB), and 5mM 

Sodium Fluoride (NEB). Protein levels were quantified using the Pierce BCA assay kit 

(Thermo Fisher Scientific #23225). Immunoblots were run using 4–12% Bis-Tris Pre-Cast 

gels (Thermo Fisher Scientific NuPAGE Novex #NP0335) and transferred to a membrane 

using the iBlot 2 system (Thermo Fisher Scientific). Ubiquitin levels were detected using a 

monoclonal mouse anti-Ubiquitin Antibody at 1:1000 dilution (Cell Signaling P4D1 #3936) 

and a LICOR-compatible anti-mouse IR secondary antibody (LICOR #926-68020) at 1:5000 

dilution. GAPDH levels were detected using a monoclonal rabbit GAPDH antibody (Cell 

Signaling 14C10 #2118) at 1:1000 and a LICOR-compatible anti-rabbit IR secondary 

antibody (#926-32211) at 1:5000 dilution. Western blots shown are representative of two 

independent experiments.

RT-PCR—COV434 cells were infected with lentivirus expressing shRNAs targeting UBB, 

UBC or shLuciferase and selected with puromycin at a concentration of 4ug/mL for 48 hr. 

Cells were stored as pellets at −80°C. Total RNA was isolated using Qiagen RNeasy Plus 

Mini Kits (Qiagen #74134). Reverse transcription for RNA samples was performed using 

Thermo Fisher Superscript III First-Strand Synthesis System (Thermo Fisher #18080-051). 

RT-PCR was performed on the QuantStudio 6 Flex (Applied Biosystems) using Thermo 

Fisher Power SYBR Green Master Mix (Thermo Fisher # 4367659) with probes against 

UBB, UBC and Actin (See Key Resources Table). Each measurement was taken in triplicate. 

Comparative CT (Delta Delta CT) was used for quantification analysis. Actin was used as 

reference for normalization. Results are representative of two independent experiments.

DEMETER—The main goal of DEMETER is to infer gene knockdown viability effects 

(“gene dependency scores”) for each gene and cell line screened by an shRNA (or siRNA) 

library containing multiple reagents designed to target the same gene. Given the observed 

phenotypic effects produced by shRNAs and knowledge of which shRNAs share a common 

‘seed sequence’ and which target a common gene, DEMETER deconvolves the effects of 

each shRNA into a linear combination of the effects due to knockdown of the target gene 

and the effects associated with the seed sequence. In addition, we expect a batch effect due 

to variation in the initial abundance of shRNA in each library. We remove that batch effect 

by modeling those gene and seed effects as relative to the mean for each batch.
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We assign two seed sequences to each shRNA – positions 1–7 and 2–8 on the antisense 

strand (corresponding to positions 12–18 and 11–17 on the sense strand). These two regions 

were chosen as those that maximized intra-group correlation of fold-change depletion when 

grouping the shRNAs by any 7-mer subsequence (Figure S1C). The seed sequences present 

in shRNA i are denoted as seed(i). Similarly, we assign one or more genes targeted by each 

shRNA by aligning the sequence to the reference genome. The genes targeted by shRNA i 
are denoted as gene(i).

Given a dataset consisting of p shRNAs and n cell lines, we define an observation matrix H, 

where each element Hij represents the readout resulting from perturbing cell line j (j = 1,2,

…, n) by shRNA i (i = 1,2,…, p). We decompose Hij into, Glj, the effect of knocking down 

gene l in cell line j, and Skj, the effect of an shRNA with seed k on cell line j. Both effects 

are relative to the mean readout for shRNA i within each batch bj, denoted as μibj. Relative 

effects were sufficient because we focused on discovering differential dependencies. Non-

differential dependencies have the potential to be generally essential and non-selective.

Formally, the DEMETER model for each observed data point Hij is defined as:

subject to

In addition to the effects discussed above, the coefficients αik and βil scale the seed effect, 

Skj, of seed k on cell line j and the gene effect, Glj, of gene l on cell line j for the specific 

shRNA i.

We only fit gene, Gkj and seed effects, Skj, supported by two or more measurements. We 

explicitly remove those corresponding Gkj and Skj terms from the objective function that are 

only used to compute a single Hij. This can occur when a gene or seed is supported by a 

single shRNA or when all but one shRNA for that gene in the cell line are missing values. 

Additionally, H may have missing values for an shRNA across all cell lines screened in a 

particular library due to that shRNA being only included in another library.

After all parameters have been fit, we make gene effects comparable to one another by 

dividing Glj by maxi βil|l ∈ gene (i). Since the objective function only includes the product of 

βilGlj, and not Glj we can apply an arbitrary scale to βil as long as we also divide Glj by that 

scale. As a result, the scaled elements in β can be thought of as the strength of the gene 

effect relative to the shRNA with the strongest gene effect.

The objective function: To fit the parameters for this model, we formulate the following 

optimization problem:
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where Ĥij is the prediction of the effect of perturbing cell line j by reagent i:

We regularize the model parameters by the penalty preg:

and penalize by pcon to enforce constraints α ≥ 0, β ≥ 0.

Stochastic gradient descent was used to minimize the objective function.

Initial solution for gradient descent: To determine the initial parameter values from which 

the gradient descent starts, we compute μ̂b as the mean of all measurements for cell lines in 

batch b.

Then, S and G are computed as the marginal means of H after subtracting μ̂bj where μ̂bj is 

the mean for the batch that contains cell line j.

And

Finally, to determine an initial α and β, we fit the linear model for each shRNA i across all 

cell lines:
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Update step for stochastic gradient descent: Computing the gradient for a given Hij we 

get:

We update each parameter by the gradient, scaling by a learning rate γ:

We iterate through the elements Hij in random order, performing the update for each 

element. We chose a learning rate of γ = 0.005 for all parameters. To strongly discourage 

constraint violations we set λp = 10. To choose the remaining hyperparameters, we 

randomly sampled parameters, and chooses those that minimized the mean out-of-sample 

RMSE based on three rounds of cross validation, where 1% of the elements in Hij are held 

out in each round. After the hyperparameters were chosen, we re-ran DEMETER on all of 

the data, iterating through the elements in Hij the same number of passes required to achieve 

the minimum out-of-sample RMSE during the cross-validation procedure.

Assessing shRNA performance—We assess individual shRNA performance by 

looking at the variance explained by the contribution of the gene effect and seed effect per 

shRNA. We computed the variance explained, , using only the 

contribution of the seed or gene to predict the observed values. That is to say sc and gc, the 

shRNA’s seed effect and gene effect contribution respectively were computed as:

Data processing pipeline—Raw Illumina reads were normalized across replicates to 

alleviate the variable read depth of each replicate. Normalized shRNA value = log2([(Raw 

read value for shRNA)/(Total raw read value for replicate) × 1e6] +1). Normalized and log2 

transformed read counts were processed in a GenePattern pipeline separately each shRNA 

library dataset, starting with modules that remove undesirable shRNAs and failing QC 

replicate samples (‘FilterLowshRNAs’, ‘shRNAremoveOverlap’ and ‘removeSamples’). 

Fold change values are next calculated (‘shRNAfoldChange’) using an appropriate pDNA 

reference sample, based on both shRNA library (55k, 98k) and sequencing chemistry kits 
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(cBotV7/sbsv2, cBOTv8/sbsv3) and then quantile normalized per replicate cell line 

(‘NormLines’). Replicate cell lines values are then collapsed (‘shRNAcollapseReps’) and 

shRNAs are mapped to the newest gene transcriptome mapping/HUGO gene symbols 

(‘shRNAmapGenes’). The previous 55k library data (Achilles_2.4.3, (Cowley et al., 2014)) 

was also remapped using these newest gene mappings and subsequently renamed 

Achilles_v2.4.6. Gene summarization was performed using the DEMETER algorithm (next 

section), which also combined the data from each shRNA library dataset (55k library: 

Achilles_v2.4.6, 216 cell lines and 98k library: Achilles_v2.19.2, 285 cell lines) to produce 

the final gene level data (Achilles_v2.20.2, 501 cell lines). All steps, including quality 

control steps and sample fingerprinting are described in detail in Cowley et al (Cowley et al., 

2014) and GP modules are available from the GenePattern Archive: http://gparc.org/. Data 

can be downloaded from the Project Achilles Portal (http://www.broadinstitute.org/achilles).

Applying DEMETER to 501 RNAi screens—DEMETER was run separately on the 

Achilles data divided into three batches: the Achilles 2.4.6 lines divided into a batch for cell 

lines processed with cBotV7/sbsv2 kits and a batch for the cBOTv8/sbsv3 kit, and a final 

batch containing all of the lines comprising Achilles 2.19.2.

Sixty-five shRNAs, those targeting more than 10 genes, were removed because we suspected 

the interactions would be too complex to derive meaningful information from those 

shRNAs. Those shRNAs whose gene label starts with “NO_CURRENT” are not known to 

target any gene, but are present in the library due to the reference genome changing after the 

library was designed. Even without a targeted gene, these shRNAs were included because 

they contributed to the estimation of seed effects.

A pair of genes targeted by identical shRNAs cannot be distinguished from one another and 

left untreated would result in half of the total gene effect being attributed each gene. 

Therefore, we created a “gene family” for which the total effect is derived. Overall, 399 

genes were collapsed into 172 such families. After the deconvolution was complete, the 

estimated effect for a gene family was reported for each gene in the family.

Next, hyperparameter optimization was performed by random search and λα = λβ = 0.9 and 

λg = λs = 4e – 5 were chosen. These parameters achieved a mean out-of-sample RMSE of 

0.67 and in-sample RMSE 0.53.

Afterwards, DEMETER was run on the full data, without holding any data out, resulted in 

an in-sample RMSE of 0.54. DEMETER next transformed elements in G into z-scores using 

the global mean and standard deviation of G. The final set of z-scores values was obtained 

after expanding the gene families and removing the records corresponding to labels prefixed 

with “NO_CURRENT”. In addition, performance metrics for each shRNA are summarized 

in table S2.

Benchmarking DEMETER against ATARiS—In comparing the performance of 

DEMETER and ATARiS, we limited ourselves to data which could be processed by both 

methods. ATARiS does not support multiple batches, so we only used data from largest 

batch, the Achilles 98k library containing 285 cell lines. Also, ATARiS does not produce a 
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gene solution for every gene, so we limited ourselves to the 9,348 genes that had a solution 

from ATARiS. If ATARiS produced multiple solutions, only the first solution was 

considered.

We assume that knocking down genes participating in the same protein complex should be 

enriched for similar dependency profiles. The CORUM database was used to to associate 

2,505 genes with 1,749 protein complexes. Separately for ATARiS and DEMETER, we 

computed the distribution of Pearson correlation coefficients between pairs of profiles from 

genes that participated in the same protein complex. Then, to compare the two distributions, 

we normalized by z-scoring the correlations, using the standard deviation from the 

distribution of correlations between random pairs of profiles (fig. S1A).

Correlation of Dependency Profiles (Figs. 1E–G, fig. S1B)—Pearson correlations 

of DEMETER gene dependency scores were computed across cell lines (N=501) for all 

pairs of variable genes that share overlap in cell lines (N=6,300). The resulting gene 

similarity matrix was converted to a discrete adjacency matrix by converting correlation 

coefficients to standard scores and adding edges only between pairs of genes with standard 

scores ≥ 3. The networks in Figs. 1E–G show the connected neighbors of a selected gene. 

The heatmap in figure 1E shows DEMETER gene scores as colors/values, but only genes 

connected to PIK3CA in the adjacency matrix are shown and ordered by decreasing 

correlation coefficient.

Differential dependencies and 6σ dependencies—The 17,098 unique genes in the 

DEMETER dataset were filtered for genes for which at least one cell line’s dependency 

score is −2 or below and expression of the gene in the most dependent cell line is above −2 

log2 RPKM, resulting in 6,305 dependency profiles representing potential differential 

dependencies. Of these, 6σ dependencies were defined as genes where at least one cell line 

is dependent on them at a level of six “global” standard deviations (i.e. computed using 

scores for all genes in all cell lines) from the mean of each gene. This resulted in 769 6σ 
dependencies.

Cancer Cell Line Encyclopedia (CCLE) data

RNASeq

Library construction and sequencing: RNA sequencing: library construction and 

sequencing Non-strand specific RNA sequencing was performed using large-scale, 

automated variant of the Illumina TruSeq™ RNA Sample Preparation protocol. Oligo dT 

beads were used to select polyadenylated mRNA. The selected RNA was then heat 

fragmented and randomly primed before cDNA synthesis. To maximize power to detect 

fusions insert size of fragments was set to 400nt. The resultant cDNA then went through 

Illumina library preparation (end-repair, base ‘A’ addition, adapter ligation, and enrichment) 

using Broad designed indexed adapters for multiplexing. Sequencing was performed on the 

Illumina HiSeq 2000 or HiSeq 2500 instruments, with sequence coverage of no less than 

100 million paired 101 nucleotides-long reads per sample.
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Expression data analysis: RNAseq reads were aligned to the B37 version of human genome 

using TopHat version 1.4. Gene and exon-level RPKM values were calculated using pipeline 

developed for the GTEx project (www.gtexportal.org, (DeLuca et al., 2012))

Calling substitutions: Variant calling and annotation: Nucleotide substitutions were detected 

with MuTect (Cibulskis et al., 2013) (http://www.broadinstitute.org/cancer/cga/MuTect). 

MuTect program was run in the mode that does not require matching normal DNA and thus 

identifies all variants that differ from a reference genome. Variants were annotated using the 

Oncotator (Ramos et al., 2015) and AnnoVar software (Wang et al., 2010) (http://

annovar.openbioinformatics.org).

Variant filtration: The allelic fraction was calculated for each detected variant per cell line 

as a fraction of reads that supported an alternative allele (e.g., different from the reference) 

among reads overlapping the position. Only reads with allelic fractions above 0.25 were 

used in the downstream sensitivity prediction analysis.

Variant filtration by exclusion of common germline variants: Variants for which the global 

allele frequency (GAF) in dbSNP134 or allele frequency in the NHLBI Exome Sequencing 

Project (http://evs.gs.washington.edu/EVS, data release ESP2500) was higher than 0.1% 

were excluded from further analysis.

Variant filtration by exclusion of variants observed in a panel of normals: Variants detected 

in a panel of 278 whole exomes sequenced at the Broad as part of the 1000 Genomes Project 

were excluded from further analysis. Beyond removal of additional germline variation, this 

step also allowed elimination of common false positives that originate predominantly from 

alignment artifacts.

Calling indels: For indel calling RNASeq data were realigned using STAR (Dobin et al., 

2013) and indels were called using Strelka (Saunders et al., 2012).

ATLANTIS—We developed ATLANTIS, a nonlinear regression modeling method, to find 

molecular markers that are predictive of DEMETER dependency scores. The predictive 

features were derived from CCLE’s molecular characterization of the cell lines and the 

target learned was the dependency scores reported by DEMETER. ATLANTIS, our tool for 

finding and characterizing predictive biomarker-dependency models uses the R package 

“party” to build an ensemble of conditional inference (Strobl et al., 2008). This method was 

chosen for its ability to capture nonlinear relationships, accommodating both categorical and 

continuous features in the same model, and its ability to accommodate missing values.

After learning a model with ATLANTIS, we record the out-of-bag weighted R2 as the 

goodness-of-fit metric. We next prune the feature list used by that model to present a shorter 

list of candidate biomarkers. First, we compute the variable importance using the party 

package’s “varImp” function for each feature used in the model. To prune poorly chosen 

features, we drop any features whose variable importance was either negative or absolute 

variable importance was in the bottom 0.01 quantile. We then train a new model, using only 

those features remaining, and again do another round of pruning dropping only features with 
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a negative variable importance. The remaining features are reported along with their final 

variable importance in the ATLANTIS reports.

Compensating for few dependent lines: We were most interested in ATLANTIS capturing 

the difference between dependent and insensitive lines. However, it was difficult to model as 

a classification problem when we did have a clear threshold on dependency score which we 

could use to define the dependent and insensitive classes. Also, there may be times where we 

might be able to predict the variance in the sensitive class, so we opted to instead keep it as a 

regression problem, but refer to lines whose z-scored dependency score is less than −2 as 

“dependent”. At −2 standard deviations from the mean, we may have some lines that are 

within the noise around the mean and not truly dependent, but we expect those lines are at 

least enriched for truly dependent lines.

The dependent lines were a small fraction of the lines assayed for each gene, but were 

demonstrating the behavior we wanted to predict. To encourage the model to distinguish 

between “dependent” and “nondependent” lines, we biased the sampling when selecting 

samples to build each tree to enrich for dependent lines. First, we sampled the potentially 

dependent lines, those with a dependency score < −2, picking each with a probability of 

80%. Then the remaining samples were uniformly sampled from the non-dependent lines. 

Even after biasing the sampling, the “dependent” lines were far fewer than “nondependent” 

lines in the training set for each tree, so we used non-uniform weighting to make the two 

classes more balanced. Weights for each sample were assigned to the dependent and the 

non-dependent cell lines such that the sum of weights were equal for both classes, but 

capping the maximum weight of any one line at 5%.

To improve runtime and avoid pathological splits, the smallest bucket the tree was allowed to 

be three times the weight of a single dependent line. For each model, we removed any 

features consisting of a single distinct value for all, or all but one of the cell lines. In 

addition, we dropped any cell lines missing values for all features. Once this pre-filtering 

was complete, the decision tree ensemble was constructed by the “cforest” method in the 

“party” R package.

We assessed the goodness-of-fit of each model by computing the square of the out-of-bag 

weighted Pearson correlation coefficient. However, any model with a negative weighted 

correlation was given a score of 0. To compute p-values testing whether the model’s 

goodness-of-fit could have arisen by chance, a global null distribution was computed by 50k 

iterations of selecting a random gene, shuffling the dependency scores, and fitting and 

scoring a model with the procedure described above. Finally, to correct for multiple 

hypothesis testing, q-values were computed from the p-values across all models fit for a 

given MDP class via Benjamini & Hochberg’s method.

Identifying dependency classes (related to table S6)

Mutation-driven dependencies: To identify putative oncogene addictions, we considered 

any hotspot mutations, missense mutations, and the copy number of the gene whose 

sensitivity we were modeling. Those genes whose model had the best biomarker negatively 

correlated with the dependency score were classified as putative oncogene addictions. To 
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avoid ATLANTIS modeling any of the variation in the non-dependent portion of the 

distribution, we additionally generated a second model based on replacing all sensitivities >

−2 with zero. In addition, we enforced that each tree could only threshold on a feature at 

most once per leaf to only capture behavior for extremes of a feature, and avoid modeling a 

prediction for an interval of a feature.

We note that many p53 wild-type cell lines gain a growth advantage following TP53 
suppression, leading TP53 to be identified as a mutation-driven dependency (as mutated cell 

lines show stronger “dependency” compared to wild-type ones). We have therefore manually 

excluded TP53 from this MDP class.

Expression-driven dependencies: The same method was used to identify gene addictions, 

with the exception that also gene expression was considered as a potential predictive feature. 

Those models that also had the strongest biomarker negatively correlated with the 

dependency score were classified as gene addictions.

CYCLOPS: For CYCLOPS, the gene expression and copy number of the modeled gene 

were used as predictive features. We continued to only allow a single split per feature, but 

only ran ATLANTIS once, predicting the gene’s dependency scores. Among those models, 

those where the best biomarker was positively correlated with the dependency score 

prediction were classified as CYCLOPS.

Paralog deficiency dependencies: To identify instances where a gene dependency emerges 

due to loss of function of a paralogous gene, we run ATLANTIS using missense and 

damaging mutations, copy number and gene expression of all genes which were reported as 

sequence paralogs by GenesLikeMe. Again, here we produce two models, one with the 

original dependency data and one with values > −2 replaced with zero.

We note that RPL17 and RPL17-C18orf32 were identified as a paralog deficiency pair but 

they in fact represent the same gene and hence we manually excluded them from this MDP 

class.

Related features: The “related” MDP models were trained by limiting the features based on 

the gene whose dependency we were trying to predict. For each dependency being predicted, 

we limit the features only those of genes which were either reported as having a protein-

protein interaction according to InWeb with a confidence score greater than 0.1 (Lage et al., 

2008; Lage et al., 2007), associated with one another according to GenesLikeMe with a 

super-pathway score greater than 0.3 (Stelzer et al., 2016), or any gene which shares a 

complexes with the dependent gene according to CORUM (Ruepp et al., 2010).

We note that the dependency profile of MAP4K4 was removed from these analyses as we 

found it to suffer from strong off-target (non-seed-based) effects, causing it to mimic the 

profile of NRAS.
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Table summarizing the definitions of the MDP classes

Features Models predict

Mutation-driven dependencies Hotspot mutations, Missense 
mutations, Copy number

One model predicts z-scored sensitivity.
One model predicts z-scored sensitivity where 
values >−2 are replaced with zero

Expression-driven dependencies Hotspot mutations, Missense 
mutations, Copy number, Gene 
expression

One model predicts z-scored sensitivity.
One model predicts z-scored sensitivity where 
values >−2 are replaced with zero

CYCLOPS Copy number, Gene expression One model predicts z-scored sensitivity.

Paralog deficiency dependencies Missense and damaging 
mutations, Copy number and 
Gene expression of all sequence 
paralog genes.

One model predicts z-scored sensitivity.
One model predicts z-scored sensitivity where 
values >−2 are replaced with zero

Related Missense and damaging 
mutations, Copy number and 
Gene expression of associated 
genes via PPI, CORUM or 
GenesLikeMe’s super-pathways.

One model predicts z-scored sensitivity.
One model predicts z-scored sensitivity where 
values >−2 are replaced with zero

Mutation enrichment analysis in mutation-driven dependencies (related to Table 
S5): For each gene identified as a potential differential dependency (N=6,305), cell lines 

were split into two groups, MUT and WT, based on presence or absence of an RNA 

missense mutation in the gene. Enrichment p values were calculated by further splitting the 

MUT and WT groups into dependent and non-dependent groups by discretizing the 

DEMETER gene scores at a particular threshold and performing a one-sided Fisher Exact 

test. Instead of using a single threshold of −2, as was done with the lineage enrichment of TF 

dependencies, a Fisher exact test was performed using the DEMETER score of each MUT 

cell line, −2 or below, as the dependency threshold. The multiple p values that result per 

gene from this process were Bonferroni corrected and the most negative threshold with p < 

0.001 was selected to represent the gene.

A global null was built by performing 10 million permutations of cell line labels and 

compiling the minimum thresholds given the fisher criteria for all genes. Empirical p-values 

were determined for each gene by counting number of times the null threshold was less than 

the true threshold for the gene. Empirical p-values were corrected using Benjamini 

Hochberg method.

Lineage enrichment of transcription factor dependencies (related to Fig. 4B): For each 

lineage context with at least 7 cell lines (N=20), an enrichment score was computed for 

dependency on each transcription factor (TF) included in the mutation- and expression-

driven MDP classes (N=49). The enrichment score is calculated by discretizing the 

DEMETER gene dependency scores (GS) for each TF into dependent (GS ≤ −2) and non55 

dependent (GS > −2) cell lines. Recall that a GS of −2 represents a dependency that is 2 

standard deviations more dependent than the mean across all the cell lines. Dependent and 

non-dependent groups of cell lines are further split into a two-by-two contingency table 

based on membership in the specified lineage. P-values are assigned to each (TF, lineage) 

pair based on one-sided Fisher’s exact tests and converted to q-values using the Benjamini 

Hochberg method to correct for multiple hypothesis testing. TFs that are significantly 

Tsherniak et al. Page 23

Cell. Author manuscript; available in PMC 2018 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



enriched (q-value ≤ .05) in a single lineage are labeled ‘Specific’, whereas TFs that are 

significantly enriched in multiple lineages are labeled ‘Multiple’. The y-axis in Figure 4B is 

an odds ratio (OR), which is calculated as follows:

Lineage Non-lineage

Dependent a b

Non-dependent c d

Benchmarking curated dependency-biomarker pairs (related to Fig. 6B): To determine 

the performance of DEMETER, a curated list of dependency-biomarker pairs was created 

based on literature reviews and experimental validation. We computed the Pearson 

correlation coefficients for each marker with each of the 6,305 identified dependency 

profiles. Dependencies were categorized as (1) Discovered, if the dependency scored in the 

top 100, (2) Not discovered, if the dependency did not score in the top 100 and could not be 

explained by having insufficient context, (3) Insufficient context, if the dependency did not 

score in the top 100 and the marker was a mutation and there were fewer than 3 cell lines 

with hotspot mutations (4) No differential dependency, if fewer than 3 cell lines with a 

dependency score of less than −2.

QUANTIFICATION AND STATISTICAL ANALYSIS

GFP competition assay (Figure 5D)—For each cell line (N=7), mean fraction of GFP 

negative cells was calculated for UBC hairpins (shUBC: 1,3,7) and negative controls 

(TRC025, shGFP437, shRFP188, shLuc158). shUBC-4 was excluded from this analysis 

since DEMETER assigned a low gene-score. Values were converted to log2 fold-change of 

mean UBC targeting hairpins versus mean negative control and the fold-changes were 

compared between UBB high expressing (N=3) and UBB low expressing (N=4) using a one-

sided Mann-Whitney test.

UBB rescue (Figure 5E)—The log2 fold-changes for hairpins targeting UBC (excluding 

shUBC-4 which has low predicted on-target activity) were averaged for each time point 

(Day: 1,3,5,7) and each group (parental, UBB over-expressed). A linear model was fit to the 

log2 fold-change response vector using only time point as the predictor (p-value=0.1538, F-

statistic). A second model was fit with the additional group variable as a second predictive 

feature (pvalue= 0.0262, F-statistic). The additional contribution of the group variable to 

prediction is measured by comparing the two models using an F-test included in R ‘stats’ 

package anova function (v3.2.1).
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DATA AND SOFTWARE AVAILABILITY

The shRNA data generated in this study are publically available at broadinstitute.org/

achilles. All analysis results are available at depmap.org/rnai, and code for DEMETER and 

ATLANTIS is available at github.com/cancerdatasci. Cell line molecular features can be 

downloaded from www.broadinstitute.org/ccle. See also Key Resource Table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The DEMETER computational model segregates on- from off-target effects 

of RNAi

• 769 strong differential dependencies were identified in 501 cancer cell lines

• Predictive models for 426 dependencies were found using 66,646 molecular 

features

• This cancer dependency map facilitates the prioritization of therapeutic 

targets
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Figure 1. Computational segregation of on- and off-target effects of RNAi
(A) Tumor types by their contribution to cancer mortality (left) and their cancer cell line 

representation in the reported dataset (right). (B) Distributions of Pearson correlation 

coefficients for pairs of shRNA viability profiles before (left) and after (right) removal of 

inferred seed effects and selection of effective shRNAs (n > 12,000) by DEMETER. Pairs of 

shRNAs selected randomly (blue lines), targeting the same gene (orange) and sharing a seed 

sequence (green). (C) Schematic representation of DEMETER and its computational model. 

Gene- and seed-related effects are estimated from shRNA depletion data. The color of inner 

circles represents the shRNA target gene and the color of outer circles represents the 
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shRNAs seed sequence. (D) For the top 0.1% most depleted shRNA readouts and the top 

0.1% DEMETER gene dependency scores across the whole dataset, the fraction of data 

points corresponding to a cell line not expressing the target gene. (E) A heatmap depicts the 

dependency scores (rows) across 501 screened lines (columns) for PIK3CA and the 7 genes 

that have significantly correlated dependency profiles (z-score > 3). These data were used to 

plot a gene network, with each edge representing a significant correlation between a pair of 

dependency profiles. Genes are colored by functional classes. The same analysis was used to 

generate gene networks for PTK2 (F) and MED12 (G).
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Figure 2. The landscape of genetic dependencies in 501 cancer cell lines
(A) Histograms of gene dependency scores for the indicated genes for all cell lines (x-axis). 

(B) For each differential dependency strength (line color), and for each number of cell lines 

(xaxis), the number of genes that are differential dependencies is shown (y-axis). (C) 

Distribution of the number of 6σ dependencies per cell line. (D) Distribution of 6σ 
dependencies by protein classes. (E) The number of 6σ dependencies annotated as 

druggable by either being included in DGIdb or IUPHAR/BPS Guide to Pharmacology. (F) 

The fraction of cell lines (y-axis) that have a 6σ differential dependency on at least one gene 
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in a set of a given size (x-axis). Blue line – considering all 6σ dependencies; orange line – 

considering only druggable ones.
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Figure 3. Prediction of differential dependencies using molecular markers
(A) The number of 6σ dependencies with predictive models built using all features 

(Unbiased, blue), features of genes related to the dependency gene (Related, red) and those 

falling into one of the four identified dependency classes (green). (B) Cumulative fraction of 

6σ and non-6σ dependencies with predictive models (y-axis) using all features (red bars), 

plus related features (green), plus those in the four dependency classes (blue). (C) The 

proportion of the top predictive feature type (copy number, orange; expression, green; 

mutation, blue) in all unbiased models of 6σ dependencies (D) Top five features of 
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predictive models for 3 gene dependencies in white circles. Circle size is proportional to the 

relative importance of each feature to the model’s predictive power. (E) Predictive accuracy 

of ATLANTIS models using only single features (black and colored bars) and using all 

features (gray bars). (F) Four classes of MDPs, each with a representative example and the 

top 10 predictable dependencies. Red dotted circles highlight the most dependent cell lines. 

(Top left) A histogram of GNAI2 dependency scores (x-axis). The two cell lines most 

dependent on GNAI2 harbor the same indel mutation. (Top right) POU2F2 dependency 

scores (x-axis) and expression levels (y-axis). Cell lines over-expressing POU2F2 are the 

most dependent lines. (Bottom left) RPL17 dependency (x-axis) and copy number (y-axis) 

illustrating a CYCLOPS dependency. (Bottom right) FERMT1 dependency (x-axis) and 

FERMT2 expression levels (y-axis) for cell lines with low expression of FERMT3 

(log2RPKM < 3). Cell lines most dependent on FERMT1 do not express FERMT2.
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Figure 4. Oncogene and expression addiction MDPs are enriched in lineage-specific transcription 
factors
(A) Percentage of transcription factors (TF) among all genes and the four dependency 

classes. * - P-value < 0.05, *** - P-value < 10−15, Fisher’s exact test. (B) Lineage 

enrichment (odds ratio; y-axis) of mutation- and expression-driven TF dependencies (N=50) 

for lineages (x-axis) with significant enrichment (Fisher’s exact FDR < 0.05) in a single 

(blue) or multiple (orange) lineages. (C) Distributions of 6σ TF dependencies 

overrepresented in non-essential lineages (ovary, breast, prostate, multiple myeloma and 
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melanoma) compared to known mutation-driven dependencies (BRAF, PIK3CA); dots 

depict dependency scores greater than 4σ.
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Figure 5. UBB/UBC as a paralog deficiency MDP in ovarian cancer cell lines
(A) UBC dependency scores (x-axis) versus UBB expression levels (y-axis). UBB 

expression (y-axis) versus promoter methylation (x-axis; Fraction) in (B) ovarian cell lines 

(CCLE data) and (C) tumors (TCGA data). (D) GFP viability competition assay in UBBlow 

and UBBhigh ovarian cell lines using 4 shRNAs targeting UBC. Log2 fold change of shUBC 

expressing cells relative to negative controls is shown. (E) Time course of relative viability 

upon UBC suppression with or without ectopic expression of monoubiquitin (UBB) in a 

UBBlow cell line (SNU8). Data represent fold change relative to day 1 normalized to 

pLKO_TRC005-nullT. Error bars represent SD. (F) Levels of conjugated ubiquitin upon 

UBC suppression in UBBlow (SNU8) and UBBhigh (TOV112D) cell lines.
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Figure 6. Effects of scale on the completeness of a Cancer Dependency Map
(A) For each differential dependency with a significant predictive model, the predictive 

power of the best model (y-axis) and its MDP class (color) along with the strength of the 

dependency in the most dependent cell line (x-axis). (B) Discovery status of a curated set of 

39 mutation- and expression-related dependencies in the dataset. We computed the 

correlations of each marker with all the differential dependencies and categorized them as 

(1) Discovered, (2) Not concordant (3) Insufficient context or (4) No differential dependency 

(see Methods). (C) Fraction of predictable 6σ dependencies, summarized by the number of 

6σ dependent cell lines. (D) Results of a down-sampling analysis showing the number of 6σ 
differential dependencies identified (y-axis) in randomly-sampled subsets of the screened 
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cell lines (x-axis). The blue, orange, green and red lines correspond to dependencies 

observed in at least 1, 5, 10 or 20 cell lines, respectively.
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