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Abstract

Objective

To investigate the feasibility and accuracy of texture analysis to distinguish through objec-

tive and quantitative image information between healthy and infarcted myocardium with

computed tomography (CT).

Materials and methods

Twenty patients (5 females; mean age 56±10years) with proven acute myocardial infarction

(MI) and 20 patients (8 females; mean age 42±15years) with no cardiac abnormalities (here-

after termed controls) underwent contrast-enhanced cardiac CT. Short axis CT images of

the left ventricle (LV) were reconstructed at the slice thicknesses 1mm, 2mm, and 5mm.

Two independent, blinded readers segmented the LV in controls and patients. Texture anal-

ysis was performed yielding first-level features based on the histogram (variance, skew-

ness, kurtosis, entropy), second-level features based on the gray-level co-occurrence

matrix (GLCM) (contrast, correlation, energy and homogeneity), and third-level features

based on the gray-level run-length matrix (GLRLM).

Results

Inter-and intrareader agreement was good to excellent for all histogram (intraclass correla-

tion coefficient (ICC):0.70–0.93) and for all GLCM features (ICC:0.66–0.99), and was vari-

able for the GLRLM features (ICC:-0.12–0.99). Univariate analysis showed significant

differences between patients and controls for 2/4 histogram features, 3/4 GLCM and for 6/

11 GLRLM features and all assessed slice thicknesses (all,p<0.05). In a multivariate logistic

regression model, the single best variable from each level, determined by ROC analysis,

was included stepwise. The best model included kurtosis (OR 0.08, 95%CI:0.01–0.65,P =

0.018) and short run high gray-level emphasis (SRHGE, OR 0.97, 95%CI:0.94–0.99,P =

0.007), with an area-under-the-curve (AUC) of 0.90 (95%CI:0.80–0.99). The best results for

kurtosis and SRHGE (AUC = 0.78) were obtained at a 5mm slice thickness. A cut-off value
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of 14.4 for kurtosis+0.013*SRHGE predicted acute MI with a sensitivity of 95% (specificity

55%).

Conclusion

Our study illustrates the feasibility of texture analysis for distinguishing healthy from acutely

infarcted myocardium with cardiac CT using objective, quantitative features, with most

reproducible and accurate results at a short axis slice thickness of 5mm.

Introduction

Cardiac computed tomography (CT) has developed into a routinely used imaging tool for detect-

ing and ruling-out coronary artery stenosis [1, 2], providing also incremental prognostic informa-

tion to the patients [3]. In addition to the coronary arteries, cardiac CT has been also tested for

evaluating the myocardium. Initial studies performed already four decades ago tested the general

ability of CT for detecting myocardial infarction in excised hearts of mongrel dogs [4, 5]. In 1978,

Gray et al. [6] were one of the first groups to evaluate the potential of CT to identify, accurately

localize and quantitate experimental acute myocardial infarction (MI) in isolated canine hearts.

However, in spite of these early promising results combined with the tremendous developments

of the technology in the past years, CT still has shortcomings when evaluating the myocardium.

This is mainly due to the inherently low contrast resolution of CT compared to the reference stan-

dard modality magnetic resonance (MR) imaging [7]. To compensate for this disadvantage, a

higher contrast-to-noise ratio (CNR) can be reached by administering larger volumes of contrast

media [8]. Another option is the application of dual-energy CT allowing for a direct separation of

iodine from myocardial tissue [9]. This technique has been suggested to allow for a better determi-

nation of myocardial regions with ischemia or infarction from those with a normal perfusion [10].

Texture analysis (TA) refers to an objective and quantitative set of metrics calculated for

quantifying the textural patterns of images. TA converts radiological images into a multi-

dimensional mineable feature space using automatically extracted data characterization algo-

rithms [11]. Such TA features might detect distinct quantifiable phenotypic differences of tis-

sues which cannot be assessed through a qualitative, visual evaluation of radiological images

alone. The texture features can be increasingly used for computer-aided pattern recognition

and classification techniques [12]. So far, TA has shown value in the differentiation of fat-poor

angiomyolipoma from renal cell carcinoma on unenhanced CT examinations [13] and for dif-

ferentiating benign and malignant mediastinal lymph nodes in lung cancer [14]. Another

study showed that CT-based whole tumor TA features were related to 5-year overall survival

in patients with colorectal cancer [15]. In a recent preliminary study, Thornhill and colleagues

evaluated the ability of TA to distinguish between the hearts of healthy volunteers and patients

with hypertrophic cardiomyopathy and found significant differences of certain features

between groups [16].

Various parameters have been reported to influence the results from TA, including the

application of contrast media, different contrast media phases and image post-processing

parameters such as the reconstructed slice thickness [17] and spatial resolution [12]. Ganeshan

et al. [15] showed significant differences of TA features between non-enhanced and contrast-

enhanced CT images of lung cancer. Other authors showed the influence of CT slice thick-

nesses on certain TA parameters for assessing the microarchitecture of bones [18]. In distinc-

tion, MR imaging of the brain showed only minor differences in TA features between various

slice thicknesses [19].

Texture analysis of myocardial infarction
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To our knowledge, no study so far investigated the ability of TA in CT studies of the heart

nor evaluated the influence of slice thickness on the derived TA features. Objective and quanti-

tative metrics characterizing images, however, appear desirable for a potential improvement of

the pure visual assessment of the myocardium with CT. Being designed as a proof of concept

study, we choose patients with acute MI as the pathological model for demonstrating the feasi-

bility of TA. Thus, the purpose of our study was to evaluate the ability of TA to distinguish

between healthy and acutely infarcted myocardium in CT based on objective and quantitative

image information.

Materials and methods

Patient population

A database research between January 2014 and December 2015 was performed for identifying

20 patients (15 males, 5 females; mean age 56±10 years; range: 38–78 years) who underwent

clinically indicated electrocardiography (ECG)-gated, contrast-enhanced cardiac CT and who

were diagnosed with acute MI. The diagnosis of acute MI was based on the results from labora-

tory biomarkers, ECG, and other imaging tests including catheter coronary angiography and

MR imaging during the time of index hospitalization. The segments with myocardial infarc-

tion were determined using the 17-segment model of the American Heart Association (AHA),

and infarcts were subdivided into transmural MI and non-transmural MI (Table 1). The indi-

cation for CT in these emergency department patients was acute chest pain and initially incon-

clusive ECG and biomarkers.

As the control population, additional 20 patients (12 males, 8 females; mean age 42±15

years; range: 19–55 years) who underwent cardiac CT in the same time period with the same

CT scanner and same protocol were included. The indication of CT in the control group was

Table 1. Demographic data of the patients with acute MI subdivided by gender.

Patients with acute MI

male female p-value

n = 15 (75%) n = 5 (25%)

Age (years) (mean ± SD) 55 ± 10 61 ± 12 0.35

Heart rate during CT 80 ± 23 bpm 83 ± 33 bpm 1.0

Sensitive Troponin T positive 13/15 (87%) 5/5 (100%) 0.67

ECG positive for STEMI 6/20 (40%) 2/5 (40%) 0.57

Affected Vessels

LAD 10 4

CX 10 1

RCA 5 1

Number of affected vessels (mean) 2 1.4 0.19

Number of affected myocardial segments 0.67

2 segments 8/15 (53%) 2/5 (40%)

3 segments 1/15 (7%) 1/5 (20%)

4 segments 5/15 (33%) 1/5 (20%)

5 segments 0/15 (0%) 1/5 (20%)

7 segments 1/20 (7%) 0/5 (0%)

Transmurality 8/15 (53%) 3/5 (60%) 0.87

CT: computed tomography, ECG: electrocardiography, STEMI: ST-segment elevation myocardial infarction,

LAD: left anterior descending, CX: circumflex artery, RCA: right coronary artery

https://doi.org/10.1371/journal.pone.0186876.t001
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atypical chest pain with a low pre-test probability of coronary artery disease. In these patients,

coronary CT angiography showed no plaques and no stenoses. All patients from the control

group underwent echocardiography within 2 days showing no abnormality, and had no his-

tory of cardiac disease or surgery/intervention. Reasons for atypical chest pain in the controls

were gastroesophageal reflux in 4/20 (20%), cholecystolithiasis in 1/20 (5%), and musculoskel-

etal pain in 15/20 patients (75%).

This study had institutional review board and local ethics committee approval. All investi-

gations were conducted according to the Declaration of Helsinki. Written informed consent

requirement was waived by the local ethics committee because of the retrospective nature of

the study.

CT data acquisition and image post-processing

CT examinations were performed on a second generation dual-source CT scanner (SOMA-

TOM Flash, Siemens Healthineers, Forchheim, Germany). Acquisition parameters were as fol-

lows: detector collimation 2x64 mm, slice acquisition 2x128 mm using the z-flying focal spot,

gantry rotation time 280 ms, pitch 0.2–0.5, tube voltage 100 kVp, quality reference tube cur-

rent-time product 250 mAs per rotation using automated exposure control (CareDose), effec-

tive tube current-time product 152–399 mAs per rotation. Data acquisition was prospectively

synchronized to the ECG in the step-and-shoot mode. The contrast media protocol was as fol-

lows: first, 80–100 ml nonionic iodinated contrast media (iopromidum, Ultravist 370, 370mg/

ml, Bayer, Leverkusen, Germany) was injected in an antecubital vein with a flow rate of 5–6

ml/sec, depending on the patients’ body mass index, followed by the same volume consisting

of 20% contrast media and 80% saline solution. No beta blockers were administered; all

patients received sublingual nitroglycerine (2 strokes sublingual, Isosorbiddinitrat, Isoket

Spray, 25mg/ml, UCB-Pharma, Brussels, Belgium) prior to CT.

Axial CT images were reconstructed with a slice thickness of 0.75 mm (increment 0.4 mm)

using a medium smooth convolution kernel with sinogram-affirmed iterative reconstruction

(I30f) at a strength level of 3, with a field-of-view of 200x200 mm2 and an image matrix of

512x512. From these axial image data, short axis images of the left ventricle (LV) were refor-

matted at three different slice thicknesses (1 mm, 2 mm, and 5 mm) using commercially avail-

able post-processing software (CT Cardiac Function, syngo.via, Siemens). In this feasibility

study, we choose in patients with MI the respective short axis image showing the largest extent

of infarction. In controls, short axis images in mid-ventricular myocardium were chosen. In

order to standardize reading and subsequent TA, images were standardized to a window level

and width of 300 Hounsfield Units (HU) and 30 HU, respectively. These reformatted images

were anonymized and stored in Digital Imaging and Communications in Medicine (DICOM)

file format by using the same software. Then, regions-of-interest (ROIs) were drawn freehand

by two independent and blinded readers (with 2 and 3 years of experience in cardiac radiology,

respectively) including the LV myocardium in both controls and in patients with MI. Care was

taken to avoid including LV blood or epicardial fat in the ROI (Fig 1). The ROI was delineated

on images with 1 mm slice thickness and were copied to the other slices with a thickness of 2

mm and 5 mm, so as to avoid confounding of the TA results through variability in the defini-

tion of the ROI. To determine the intrareader agreement, reader 1 repeated delineation of the

ROIs 24h after the initial definition using the same data set.

Texture analysis

Texture analysis was implemented using institutional [20] computer scripts written in Matlab

(The MathWorks, Natick, MA) based on prior algorithms developed by Wei [21] and later
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applied by Vallieres et al. [22]. The first step of TA was normalization: ROI contents were nor-

malized between μ ± 3σ (μ = grey level mean, σ = grey level standard deviation). Then, grey lev-

els between ± 3σ were decimated to 64 grey levels. This method has been previously used for

minimizing intra- and interscanner effects [22]. After this normalization and requantization

to a 6-bit image, the following features were computed: Histogram (i.e. first-level) features of

all gray-levels in the ROI were calculated including the variables variance, skewness, kurtosis

and entropy. As previously described by Haralick et al. [23], the gray-level co-occurrence

matrix (GLCM) was created based on the gray-level distribution within the ROI. By using

the GLCM, the second-level features contrast, correlation, energy and homogeneity were

obtained. Finally, the gray-level run-length matrix (GLRLM) was created as introduced by Gal-

loway [24]. Using the GLRLM, the third-level features short run emphasis (SRE), long run

emphasis (LRE), gray-level nonuniformity (GLN), run-length nonuniformity (RLN), run per-

centage (RP), low gray-level run emphasis (LGRE), high gray-level run emphasis (HGRE),

short run low gray-level emphasis (SRLGE), short run high gray-level emphasis (SRHGE),

long run low gray-level emphasis (LRLGE), and long run high gray-level emphasis (LRHGE)

were derived as described in several previous publications [24–26]. The general principle for

generating the second- and third-level matrices GLCM and GLRLM are illustrated in Fig 2,

the corresponding images are shown in Fig 3. GLCM and GLRLM features were computed in

four directions differing from each other in a 45 degree angle. The four resulting matrices

were averaged to avoid direction dependency and to acquire a global view of the texture infor-

mation [27]. Texture features were determined for further analyses. Once the ROI placement

was finished, calculation of the texture features was performed by the software (installed on a

standard personal computer) within a few seconds, not requiring large computing capacity.

Statistical analysis and feature reduction

The intra- and interreader agreement for all TA features and different slice thicknesses was

assessed using intra-class correlation coefficients (ICC). An ICC of 0.75–1 indicated excellent

agreement, 0.60–0.74 good agreement, 0.40–0.59 fair agreement, and below 0.4 poor

Fig 1. Reformatted short axis images of the left ventricle. Reformatted short axis images of the left ventricle at a slice thickness of 5 mm in a control (A)

and in a patient with acute myocardial infarction (B) illustrating the free-hand regions-of-interest for texture analysis. Note the septal hypodensity indicating

myocardial infarction (arrows).

https://doi.org/10.1371/journal.pone.0186876.g001
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agreement [28]. Differences between gender regarding demographic parameters were calcu-

lated using the non-parametric Mann-Whitney-U-test. First, we used again the non-paramet-

ric Mann-Whitney U-test (because of the small sample size) for detecting differences in TA

features between controls and patients with acute MI. Then, we sought to identify the most

accurate feature from the first and second level using receiver operating characteristics (ROC)

analysis for each TA feature and each slice thickness. For the third level features, we reduced

the number of features using a Pearson correlation for excluding those features showing simi-

lar values, hereby reducing redundancy in the data. ROC analysis was made on the remaining

feature set for each slice thickness to extract the most accurate third level feature. Then, tests of

equality of ROC curves were used to determine the three most accurate TA features (one for

each level).

Fig 2. Principles of generating texture analysis features. Principles of generating the histogram and the variables gray-level run-length matrix (GLRLM)

and gray-level co-occurrence matrix (GLCM) from a given ROI. To construct the GLCM each pixel of the ROI is once compared with a pixel in a given

distance and direction (0˚, 45˚, 90˚ or 135˚). For each value pair the GLCM is increased by 1 in the respective column and row (in the given example a

distance of 1 and direction of 90˚ were used; one 2–1 pair was found and 1 was added to the matrix accordingly). Runs of the same grey-level in a given

direction (0˚, 45˚, 90˚ or 135˚) are assessed to construct the GLRLM and used as the x-axis in the matrix, whereas the y-axis contains the assessed grey-

levels. The example shows one run of three 2’s and a 1 is added to the matrix accordingly (a direction of 90˚ was used).

https://doi.org/10.1371/journal.pone.0186876.g002

Texture analysis of myocardial infarction

PLOS ONE | https://doi.org/10.1371/journal.pone.0186876 November 2, 2017 6 / 16

https://doi.org/10.1371/journal.pone.0186876.g002
https://doi.org/10.1371/journal.pone.0186876


A stepwise forward logistic regression analysis with acute MI as dependent variable and the

three most accurate features was then performed (see results section below for reasons why 5

mm short axis reformations were used). Goodness-of-fit of the logistic regression model was

evaluated using the Hosmer-Lemeshow test. ROC analysis for the final model and the single

most accurate TA features from each level were constructed and the area-under-the-curve

(AUC) including the 95% confidence intervals (CI) were computed. Cut-off values for the

most accurate TA features for diagnosing acute MI were calculated. Statistical analyses were

performed using IBM SPSS Statistics (Version 22.0 Armonk, NY: IBM Corp) and STATA (Sta-

taCorp LP, version 13.1, TX, USA). A two-tailed p-value below 0.05 was considered to infer

statistical significance.

Results

Patient population

Twenty patients (15 males, 5 females; mean age 56±10 years; range: 38–78 years) who under-

went clinically indicated ECG-gated, contrast-enhanced cardiac CT and who were diagnosed

with acute MI were identified. There were no significant differences between genders regard-

ing age (p = 0.35), heart rate during CT (p = 1.0), positive sensitive troponin T (p = 0.67),

STEMI on ECG (p = 0.57), number of affected vessels (p = 0.2), number of affected myocardial

segments (p = 0.67), and the presence or absence of transmural MI (P = 0.87) (Table 1).

Inter- And intrareader agreement

All results regarding inter- and intrareader agreement can be found in Table 2. For all slice

thicknesses, the agreement was good to excellent for all first-level (interreader: ICC = 0.70–

Fig 3. Differences of texture analysis features in controls and patients with acute MI. First- (histogram,

left column), second- (GLCM, middle column), and third-level (GLRLM, right column) texture analysis

features in a patient with acute myocardial infarction (upper row) and in a control (lower row). Note the

additional peak at lower gray levels in patients with acute myocardial infarction indicating the proportion of

voxels with a lower density and the divergent distribution of voxels in GLCM and GLRLM between controls

and patients.

https://doi.org/10.1371/journal.pone.0186876.g003
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0.93, intrareader: ICC = 0.70–0.91) and all second-level features (interreader: ICC = 0.66–0.98,

intrareader: ICC = 0.66–0.98). For the third-level features inter- and intrareader agreement ran-

ged between poor and excellent (interreader: ICC = -0.12–0.99, intrareader: ICC = 0.30–0.99).

TA features: 1mm slice thickness

Comparison of first-level features between controls and patients with acute MI showed signifi-

cant differences for the variance (P = 0.018) and kurtosis (P = 0.014). Second level features

showed significant differences for contrast (P = 0.004), correlation (P = 0.006) and homogene-

ity (P = 0.005). Third level features showed significant differences for SRE (P = 0.004), LRE (P
= 0.009), RP (P = 0.007), HGRE (P = 0.049), SRHGE (P = 0.001) and LRHGE (P = 0.003). All

other variables showed no significant differences between groups (Table 3).

TA features: 2mm slice thickness

Comparison of first-level features between controls and patients with acute MI showed signifi-

cant differences for the variance (P = 0.008) and kurtosis (P = 0.002). Second level features

showed significant differences for contrast (P<0.001), correlation (P<0.001) and homogeneity

(P = 0.001). Third level features showed significant differences for SRE (P = 0.001), LRE (P =
0.006), RP (P = 0.003), HGRE (P = 0.023), SRHGE (P<0.001) and LRHGE (P = 0.003). All

other variables showed no significant differences between groups (Table 3).

Table 2. Intraclass correlation coefficients indicating the inter- and intrareader variability of all texture analysis features at each slice thickness.

Interreader

Variability

Intrareader

Variability

Interreader

Variability

Intrareader

Variability

Interreader

Variability

Intrareader

Variability

1mm 2mm 5mm

variance 0.888 0.837 0.905 0.846 0.695 0.703

First-level skewness 0.873 0.818 0.863 0.819 0.833 0.844

features kurtosis 0.934 0.896 0.929 0.905 0.908 0.913

entropy 0.854 0.761 0.826 0.730 0.740 0.787

contrast 0.966 0.968 0.950 0.960 0.919 0.950

Second-level correlation 0.971 0.968 0.962 0.967 0.933 0.951

features energy 0.796 0.796 0.661 0.661 0.818 0.818

homogeneity 0.988 0.979 0.983 0.973 0.973 0.971

SRE 0.982 0.968 0.982 0.969 0.976 0.963

LRE 0.990 0.976 0.985 0.970 0.980 0.964

GLN 0.948 0.971 0.944 0.969 0.933 0.966

RLN 0.966 0.986 0.966 0.987 0.971 0.990

Third-level RP 0.988 0.978 0.983 0.970 0.977 0.969

features LGRE 0.615 0.455 0.649 0.649 0.615 0.565

HGRE 0.649 0.762 0.748 0.798 0.787 0.749

SRLGE -0.157 0.451 0.333 0.333 -0.115 0.253

SRHGE 0.977 0.972 0.975 0.967 0.969 0.951

LRLGE 0.616 0.300 0.664 0.342 0.647 0.632

LRHGE 0.991 0.981 0.986 0.972 0.981 0.964

SRE: short run emphasis, LRE: long run emphasis, GLN: gray-level nonuniformity, RLN: run-length nonuniformity, RP: run percentage, LGRE: low gray-

level run emphasis, HGRE: high gray-level run emphasis, SRLGE: short run low gray-level emphasis, SRHGE: short run high gray-level emphasis, LRLGE:

long run low gray-level emphasis, LRHGE: long run high gray-level emphasis. All variables showing a good (>0.60) or higher agreement are indicated in

bold.

https://doi.org/10.1371/journal.pone.0186876.t002
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TA features: 5mm slice thickness

Comparison of first-level features between controls and patients with acute MI showed signifi-

cant differences for variance (P = 0.017) and kurtosis (P = 0.014). Second level features showed

significant differences for contrast (P = 0.001), correlation (P = 0.001) and homogeneity (P =
0.003). Third level features showed significant differences for SRE (P = 0.004), LRE (P =
0.005), RP (P = 0.004), HGRE (P = 0.013), SRHGE (P = 0.001) and LRHGE (P = 0.002). All

other variables showed no significant differences between groups (Table 3).

Selection of the most accurate TA features

The most accurate first-level feature based on ROC analysis was kurtosis (5mm slice thickness:

AUC: 0.78, 95%CI 0.63–0.93, P = 0.002), the most accurate second-level feature was correla-

tion (5mm slice thickness: AUC: 0.81, 95%CI 0.63–0.93, P = 0.002), and the most accurate

third-level feature was SRHGE (5mm slice thickness: AUC: 0.82, 95%CI 0.68–0.95, P = 0.001)

(Fig 4).

Table 3. Comparison of texture analysis features between controls and patients with acute MI for different slice thicknesses. Values present the

median and the interquartile range in parentheses.

Control MI Control MI Control MI

1mm p-value 2mm p-value 5mm p-value

Variance 112.02 (2.83) 113.13

(10.86)

0.018 112.27 (2.74) 113.29

(18.10)

0.017 112.24 (3.65) 114.26

(23.19)

0.008

First-level Skewness -0.04 (0.22) -0.15 (0.47) 0.28 -0.06 (0.32) -0.15 (0.48) 0.36 -0.09 (0.46) -0.16 (0.49) 0.43

features Kurtosis 0.15 (0.31) -0.11 (0.63) 0.014 0.13 (0.46) -0.19 (0.83) 0.014 0.25 (0.61) -0.29 (1.04) 0.002

Entropy 5.36 (0.06) 5.34 (0.10) 0.37 5.34 (0.06) 5.31 (0.10) 0.45 5.31 (0.09) 5.28 (0.12) 0.53

Contrast 20.92 (18.65) 13.38 (11.91) 0.004 17.73 (14.09) 9.25 (9.69) 0.001 12.80 (9.90) 6.04 (5.75) <0.001

Second-

level

Correlation 0.91 (0.08) 0.94 (0.05) 0.006 0.92 (0.06) 0.96 (0.04) 0.001 0.94 (0.04) 0.97 (0.03) <0.001

features Energy 0.00 (0.00) 0.00 (0.00) 0.80 0.00 (0.00) 0.00 (0.00) 0.80 0.00 (0.00) 0.00 (0.01) 0.43

Homogeneity 0.35 (0.08) 0.39 (0.10) 0.005 0.37 (0.07) 0.44 (0.11) 0.003 0.40 (0.09) 0.49 (0.11) 0.001

SRE 0.93 (0.02) 0.91 (0.04) 0.004 0.92 (0.02) 0.89 (0.04) 0.004 0.91 (0.04) 0.86 (0.05) 0.001

LRE 1.36 (0.18) 1.52 (0.35) 0.009 1.42 (0.21) 1.66 (0.43) 0.005 1.58 (0.38) 1.93 (0.59) 0.006

GLN 312.12

(137.98)

367.54

(253.27)

0.55 312.79

(152.33)

359.45

(250.55)

0.57 316.38

(179.85)

349.67

(239.45)

0.64

RLN 9108.79

(5347.96)

9883.15

(7812.59)

0.62 8979.50

(5159.15)

9313.33

(7303.64)

0.70 8115.29

(4695.15)

8203.88

(6609.40)

0.90

Third-level RP 0.90 (0.04) 0.88 (0.07) 0.007 0.89 (0.04) 0.85 (0.07) 0.004 0.87 (0.06) 0.81 (0.08) 0.003

features LGRE 0.00 (0.01) 0.00 (0.00) 0.43 0.00 (0.01) 0.00 (0.00) 0.18 0.00 (0.01) 0.00 (0.00) 0.30

HGRE 1165.85

(7.06)

1162.88

(9.29)

0.049 1166.79

(9.59)

1160.54

(10.13)

0.013 1167.71

(7.82)

1162.17

(13.86)

0.023

SRLGE 0.00 (0.00) 0.00 (0.00) 0.60 0.00 (0.00) 0.00 (0.00) 0.60 0.00 (0.00) 0.00 (0.00) 0.80

SRHGE 1086.54

(23.57)

1047.94

(47.51)

0.001 1069.91

(25.43)

1025.72

(54.08)

0.001 1057.55

(42.76)

994.60

(69.23)

<0.001

LRLGE 0.01 (0.01) 0.01 (0.01) 0.30 0.02 (0.02) 0.01 (0.02) 0.19 0.01 (0.05) 0.02 (0.02) 0.24

LRHGE 1590.04

(175.91)

1846.52

(418.14)

0.003 1641.41

(241.11)

2007.78

(478.56)

0.002 1822.58

(409.40)

2371.89

(715.18)

0.003

SRE: short run emphasis, LRE: long run emphasis, GLN: gray-level nonuniformity, RLN: run-length nonuniformity, RP: run percentage, LGRE: low gray-

level run emphasis, HGRE: high gray-level run emphasis, SRLGE: short run low gray-level emphasis, SRHGE: short run high gray-level emphasis, LRLGE:

long run low gray-level emphasis, LRHGE: long run high gray-level emphasis. Significant p-values are indicated in bold.

https://doi.org/10.1371/journal.pone.0186876.t003
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TA features across slice thicknesses

There were differences comparing the single best performing feature at each level across slice

thicknesses (first-level: kurtosis, P = 0.20; second-level: correlation, P = 0.24; third-level:

SRHGE, P = 0.89), however, without reaching statistical significance. The best results based on

ROC analysis were obtained at a 5mm slice thickness for kurtosis (1mm: AUC = 0.73, 2mm:

AUC = 0.73, 5mm: AUC = 0.78), correlation (1mm: AUC = 0.75, 2mm: AUC = 0.79, 5mm:

AUC = 0.81) and SRHGE (1mm: AUC = 0.80, 2mm: AUC = 0.80, 5mm: AUC = 0.82). Thus,

the quantitative variables from 5 mm short axis reformations were used for multivariate logis-

tic regression analysis.

Logistic regression analysis

The comparison of ROC curves indicated the variable kurtosis as the best first-level feature,

correlation as the best second-level feature, and SRHGE as the best third-level feature. The

stepwise logistic regression resulted in a model including kurtosis (OR 0.083, 95% CI 0.11–

0.66; P = 0.018) and SRHGE (OR 0.97, 95%CI 0.94–0.99; P = 0.007). The Hosmer-Lemeshow

test showed a good model fit (P = 0.94). The parameter correlation did not have an additional

significant effect (P = 0.80).

ROC analysis showed an AUC of 0.78 (95% CI 0.63–0.93) for kurtosis, 0.81 (95% CI 0.68–

0.95) for correlation, and 0.82 (95% CI 0.68–0.95) for SRHGE. The logistic regression with

kurtosis and SRHGE as predictors showed an AUC of 0.9 (95% CI 0.80–0.99). Adding the

parameter correlation to the two other features did not improve the AUC (0.9; 95% CI 0.80–

0.99) (Fig 5).

Based on ROC analysis, values higher or equal to a cut-off of 14.4, calculated as kurtosis

+ 0.013�SRHGE, is associated with a sensitivity of 95% (specificity 55%) for diagnosing acute

MI.

Discussion

TA describes an objective and quantitative means for quantifying the texture of images. Hav-

ing the potential to demonstrate features that are not visible for the human eyes, there are also

Fig 4. Boxplots of the three most distinguishing texture features. Boxplots showing the three most distinguishing TA features between

patients with acute MI and controls on images reformatted with a 5 mm slice thickness.

https://doi.org/10.1371/journal.pone.0186876.g004

Texture analysis of myocardial infarction

PLOS ONE | https://doi.org/10.1371/journal.pone.0186876 November 2, 2017 10 / 16

https://doi.org/10.1371/journal.pone.0186876.g004
https://doi.org/10.1371/journal.pone.0186876


some image acquisition and data post-processing parameters that are known to influence the

results from TA [12, 15, 17]. Our proof of concept study is the first–to our knowledge—to

demonstrate the feasibility of TA in CT imaging of the heart, showing a good to excellent

intra- and interreader agreement for all first and second-level features at all slice thicknesses.

In distinction, the intra- and interreader agreement for some third-level features was poor,

independent of the slice thickness. While the capabilities of the various features for distin-

guishing healthy from infarcted myocardium were not significantly related to slice thickness,

the most accurate results were obtained at the highest slice thickness of 5 mm. Univariate anal-

ysis showed that the best quantitative parameters for distinguishing normal from infarcted

myocardium were kurtosis (first-level), correlation (second-level), and SRHGE (third-level).

Multivariate regression demonstrated that the combination of two of the features had a high

accuracy for the diagnosis of acute MI. Importantly, these two identified features were highly

reliable showing an excellent intra- and interreader agreement.

The TA methodology applied in this study demonstrated significant differences between

healthy and infarcted myocardium for 2/4 first-level, 3/4 second-level and for 6/11 third-level

features. The kurtosis, representing the first-level parameter with highest accuracy for differen-

tiating between groups, showed a positive excess (median 0.25) in controls and a negative

Fig 5. ROC analysis showing the best model for predicting acute MI. ROC analysis comparing the

accuracy of the texture analysis features kurtosis (green; AUC: 0.78), correlation (orange; AUC: 0.81) and

SRHGE (purple; AUC: 0.82) for predicting acute myocardial infarction. Combined analysis of kurtosis and

SRHGE (red; mostly hidden behind the blue line, AUC: 0.9). Adding the parameter correlation to the first

model added no benefit for the prediction of acute MI (blue; AUC: 0.9). Reference line in grey.

https://doi.org/10.1371/journal.pone.0186876.g005

Texture analysis of myocardial infarction

PLOS ONE | https://doi.org/10.1371/journal.pone.0186876 November 2, 2017 11 / 16

https://doi.org/10.1371/journal.pone.0186876.g005
https://doi.org/10.1371/journal.pone.0186876


excess (median -0.29) in patients with acute MI. Kurtosis is a descriptor of the shape of a prob-

ability distribution and indicates whether a variable is heavy- or light-tailed relative to a nor-

mal distribution, the latter having a kurtosis of zero. Thus, the positive kurtosis of healthy

myocardium indicates the distribution of voxels to be more peaked, whereas the negative kur-

tosis in infarcted myocardium indicates a flatter distribution which most probably is related to

the second peak of voxel counts at lower density (Fig 3).

The parameter correlation, representing the second-level feature with highest accuracy for

differentiating between groups, was higher (median 0.97) in patients with MI as compared to

those with a normal myocardium (median 0.94). The parameter SRHGE, representing the

third-level feature with highest accuracy for differentiating between groups, was lower (median

994.60) in patients with MI as compared to controls (median 1057.55). Unlike the features

defined by Tamura et al. [29], who tried to define texture features corresponding to visual per-

ception and to first-level features, which correspond to visually perceived distributions of gray

levels, the meaning of second and third-level features is not readily apparent. However, similar

to the observation of the second distinct peak at lower gray values in the histograms of patients

with MI (Fig 3), both the GLCM and GLRLM showed two clusters in patients with MI instead

of one in controls.

Previous studies indicated conflicting results regarding the influence of slice thickness on

TA parameters. A study evaluating bone microarchitecture evaluated four different slice thick-

nesses from 1 to 8 mm showing significant changes of features [18]. While all GLRLM features

decreased with increasing slice thickness, only one feature (long run emphasis (LRE))

increased. GLCM features either decreased, increased or showed no changes across slice thick-

nesses. In contrast, a study evaluating the effect of slice thickness on brain MR image TA

parameters showed only minor differences of features across slice thicknesses [19]. The results

of our study indicate no significant differences comparing all 19 TA features at all three levels

and slice thicknesses. However, accuracy (and thus, the capability to differentiate between con-

trols and patients with acute MI) was highest when using short axis reformations at a slice

thickness of 5 mm. This is most probably related to the lower noise and higher contrast-to-

noise ratio (CNR) in images reformatted with a higher slice thickness. This also corroborates

with previous reports suggesting that changes in image acquisition parameters affecting image

noise impinge especially finer texture scales [15].

Although TA-derived features are objective measures, it remains to be elucidated how sta-

ble these features are when different readers delineate slightly different ROIs. It can be

assumed that histogram features are influenced to a lesser degree with larger ROIs and when

gray levels are homogenously distributed throughout the ROI. In our study, first and second-

level features showed a high intra- and interreader agreement, whereas third-level features

were more variable within and between readers. We assume that the very sparse matrices and

small deviations from third-level features are sensitive to variation and thus impact more on

intra- and interreader agreement. As this observation was true for all assessed slice thicknesses,

this variability seems to be inherent to the features and less influenced by noise and/or CNR.

A previous study investigating TA in cardiac CT indicated that the first level feature Energy

is the most stable to differentiate between normal and scarred tissue [30]. In contrast, our

study identified Kurtosis as the most accurate and distinguishing first level feature. Differences

in CT scanner technology, scan protocol settings and image reconstruction, and a different age

of MI might be the reason for these divergent findings.

TA in cardiac CT imaging provides a tool allowing for the investigation of differences

between healthy subjects and patients with acute MI, currently not used in clinical routine but

being potentially useful for objective, quantitative imaging. In our study, we explicitly did not

segment only the areas of infarction but the entire LV myocardium with the rationale that the
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same is done also by automatic segmentation software tools of the left heart, such as for deter-

mining the LV myocardial mass and global systolic LV function. Thus, a possible clinical sce-

nario would be that these automatic segmentations of the LV could be also used for texture

analysis, which then indicates–based on the feature thresholds identified in this study–myocar-

dial regions with possible infarction. Then, these regions would need to be re-analyzed by the

radiologist for confirming the infarct and for searching the corresponding culprit coronary

lesion. Theoretically, TA is feasible on any kind of CT image and thus could be also used on

cardiac CT acquisitions with dual-energy [30, 31].

The following study limitations must be acknowledged. First, there were inherent draw-

backs of the retrospective study design. Second, the study was conducted with only one CT

scanner and with a relatively small number of patients, limiting the generalizability of the tech-

nique. This hold particularly true for the cut-off value indicating acute MI, which might differ

in other patient populations and when using other CT scanners. Third, we performed two-

dimensional TA on selected ROIs rather than using a three-dimensional analysis of the entire

LV myocardium. Also, TA was restricted to the slice showing the largest area of perfusion

impairment, and it remains to be elucidated whether TA performs equally well if infarcted

areas are smaller. Fourth, we used as a pathological model patients with acute MI where the

necrotic area in MI usually is well demarcated and can be detected also visually, not requiring

advanced quantitative texture features. However, this study was intended to demonstrate the

general feasibility of TA in cardiac CT. Fifth, we did not investigate the influence of other pro-

tocol parameters such as reconstruction filters, scanner type and data acquisition technique,

and other issues such as reconstruction phases and heart rate of the patients on TA features.

Finally, we only computed a limited set of texture features instead of analyzing several hundred

features, however, those have been repeatedly proven useful in the analysis of medical images

after normalization [32–36].

In conclusion, our first experience study indicates that TA based on cardiac CT image data

is feasible and allows for defining objective and quantitative metrics enabling the distinction

between healthy subjects and those with acute MI. Future studies must address the clinical

value of the TA technique in more subtle myocardial disease and whether TA features improve

the diagnostic and prognostic performance as compared to a visual analysis of CT images

alone.
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