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Abstract

In this paper, we study ways to enhance the composition of teams based on new requirements in a 

collaborative environment. We focus on recommending team members who can maintain the 

team’s performance by minimizing changes to the team’s skills and social structure. Our 

recommendations are based on computing team-level similarity, which includes skill similarity, 

structural similarity as well as the synergy between the two. Current heuristic approaches are one-

dimensional and not comprehensive, as they consider the two aspects independently. To formalize 

team-level similarity, we adopt the notion of graph kernel of attributed graphs to encompass the 

two aspects and their interaction. To tackle the computational challenges, we propose a family of 

fast algorithms by (a) designing effective pruning strategies, and (b) exploring the smoothness 

between the existing and the new team structures. Extensive empirical evaluations on real world 

datasets validate the effectiveness and efficiency of our algorithms.
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1 Introduction

In defining the essence of professional teamwork, Hackman and Katz [1] stated that teams 

function as ‘purposive social systems’, defined as people who are readily identifiable to each 

other by role and position and who work interdependently to accomplish one or more 

collective objectives. The responsibility for performing the various tasks and sub-tasks 

necessary to accomplish the team’s goal is divided and parceled-out among the team. Team 

effectiveness often depends upon the appropriate team structure and distribution of skills.

A promising algorithmic approach to team composition treats a team as a subgraph 

embedded in a larger social network. Prior research has focused on assembling a team from 

scratch while satisfying the skill requirements at minimum communication cost (e.g., 

diameter and minimum spanning tree) [2]. If the tasks arrive in an online fashion, the 

workload balance among the people needs to be considered [3]. In practical scenarios, there 

are more realistic requirements in the team formation, e.g., inclusion of a designated leader 

and size of a team [4]. With the increasing constraints, the team formation problem is NP-

complete. Prior work to formulate automated ways of forming a team has used heuristic 

approaches (e.g., RarestFirst and SteinerTree) but so far lacks efficient solutions [2]. Our 

work differs from previous efforts in three ways: (1) we alter the composition of an existing 

team based on new requirements; (2) we solve the problem in a principled approach with the 

notation of graph kernel; and (3) we design a set of efficient algorithms.

Specifically, we address a family of problems under the scope of TEAM ENHANCEMENT, 

namely, (1) TEAM MEMBER REPLACEMENT, (2) TEAM REFINEMENT, (3) TEAM 

EXPANSION and (4) TEAM SHRINKAGE. TEAM MEMBER REPLACEMENT was first 

defined in [5], which concerns the churn of team members. For example, an employee in a 

software or sales team might decide to leave the organization and/or be assigned to a new 

task. The loss of a key member might lead to severe consequences for the team performance. 

The central question of TEAM MEMBER REPLACEMENT is how to find the best 

alternative from the rest network when a team member becomes unavailable. Different from 

TEAM MEMBER REPLACEMENT, TEAM REFINEMENT considers refining a team by 

replacing one member with another with the desired skill sets and communication 

connections. In the above two problems, the team size remains the same. In TEAM 

EXPANSION, we want to expand the team by adding a member with certain skill sets and 

communication structure. For instance, a software project team wants to develop a new 

feature of natural language search and a new member with Natural Language Processing 

(NLP) skill will be recruited. On the contrary, in TEAM SHRINKAGE, the size of a team 

needs to be reduced in response to new challenge such as a shortage of the available resource 

(e.g., a budget cut). In all cases, the resulting disruption [6] should be minimized.

By careful inspection, we identify the problem similarity between TEAM REFINEMENT, 

TEAM EXPANSION and TEAM MEMBER REPLACEMENT and propose these problems 

can be formulated in a way to share common technical solutions. In TEAM REFINEMENT, 

one team member is edited to a desired skill and network structure configuration. Since such 

edited member might not exist in the rest of the network, we call it a ‘virtual member’. By 

replacing this ‘virtual member’ as in TEAM MEMBER REPLACEMENT, we can solve 
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TEAM REFINEMENT. Similarly, in TEAM EXPANSION, the desired new member might 

also be a ‘virtual member’. After adding this ‘virtual member’ to the current team and then 

replacing the ‘virtual member’, we can solve TEAM EXPANSION. We propose to reduce 

the disruption induced by the team alteration by maintaining the team-level similarity 

(between the original and the new teams), which includes skill similarity as well as 

structural similarity. The proposition is backed by some recent studies which show that team 

members prefer to work with people they have worked with before [7] and that distributed 

teams perform better when members know each other [8]. Furthermore, research has shown 

that specific communication patterns amongst team members are critical for performance 

[9].

We adopt the notion of graph similarity/kernel to characterize the team-level similarity for 

TEAM ENHANCEMENT. Through the lens of labeled graph for modeling teams, graph 

kernel can naturally capture the skill similarity and the structural similarity simultaneously. 

However, to solve TEAM MEMBER REPLACEMENT, TEAM REFINEMENT and TEAM 

EXPANSION on a team of size t in a network with n individuals and l skills, the basic 

approach would take O(nlr′t3) computations where r′ is the effective rank of the Kronecker 

product graph1, which is computationally intractable. For example, for the DBLP2 dataset 

with almost 1M users (i.e., n ≈ 1, 000, 000), we found that it would take 6,388s to find one 

replacement for a team of size 10. To address the computational challenges, we propose a 

family of fast algorithms by carefully designing the pruning strategies and metric analyses 

for exploring the smoothness and correspondences between the existing and the new teams. 

We perform the extensive empirical evaluations to demonstrate the effectiveness and 

efficiency of our methods. Specifically, we find that (1) by encoding both the skill and 

structural matching, we can achieve a much better replacement result. Compared with the 

best alternative choices, we achieve 27% and 24% net increase in average recall and 

precision, respectively (see Sec. 6.2 for details); (2) our fast algorithms are orders of 

magnitude faster and scale sublinearly. For example, our pruning strategy alone leads up to 

1,709× speed-up, without sacrificing any accuracy.

The main contributions of this paper are as follows.

1. Problem Formulation. We formally define a family of problems under the 

scope of TEAM ENHANCEMENT, to alter the composition of a team in the 

context of networks where nodes carrying on multiple labels (skills) and edges 

representing social structures.

2. Algorithms and Analysis. We solve the problem by introducing graph kernels 

and propose a family of effective and scalable algorithms for TEAM 

ENHANCEMENT; and analyze the correctness and complexity.

3. Experimental Evaluations. We perform extensive experiments, including user 

studies and case studies, on real world datasets, to validate the effectiveness and 

efficiency of our methods.

1This can be achieved by using conjugate gradient method detailed in Sec. 4.2 in [10], otherwise the complexity is O(nt6).
2Please see Sec. 6.1 for details of DBLP.
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The rest of the paper is organized as follows. Section 2 formally defines TEAM 

ENHANCEMENT problem. Section 3 presents our basic solutions. Section 4 addresses the 

computational challenges. Section 5 discusses the solutions for TEAM REFINEMENT, 

TEAM EXPANSION and TEAM SHRINKAGE. Section 6 presents the experimental 

results. Section 7 reviews some related work. Section 8 concludes the paper.

2 Problem Definitions

In this section, we formally define the family of TEAM ENHANCEMENT problems. Table 

1 lists the main symbols used throughout this paper. We describe the n individuals by a 

labelled social network G := {A, L}, where A is an n × n adjacency matrix characterizing 

the connectivity among different individuals; and L is n × l skill indicator matrix. The ith 

row vector of L describes the skill set of the ith individual. For example, suppose there are 

only three skills in total, including {data mining, databases, information retrieval}. Then an 

individual with a skill vector [1, 1, 0] means that s/he has both data mining and databases 
skills but no skill in terms of information retrieval. L could be a binary matrix indicating the 

existence of a skill or a real matrix reflecting the strength of the skill. Also, we represent the 

elements in a matrix using a convention similar to Matlab, e.g., A(i, j) is the element at the 

ith row and jth column of the matrix A, and A(:, j) is the jth column of A, etc. For the ith 

individual, we define the associated skill vector as l = L(i, :) and communication structure 

vector as a = A(i, :).

We use the calligraphic letter  to index the members of a team, which includes a subset of 

t =  out of n individuals. Correspondingly, we can represent the team by another 

labelled team network . Note that  and  are 

sub-matrices of A and L, respectively. If we replace an existing member  of a given 

team  by another individual , the new team members are indexed by 

; and the new team is represented by the labelled network . If we 

lay off an existing member  of a given team , the new team members are indexed by 

; and the new team is represented by the labelled network .

With the above notations and assumptions, our problems can be formally defined as follows:

Problem 1. TEAM MEMBER REPLACEMENT

Given: (1) A labelled social network G := {A, L}, (2) a team , and (3) a team 

member ;

Recommend: An alternate  to replace the person p’s role in the team .

Problem 2. TEAM REFINEMENT

Given: (1) A labelled social network G := {A, L}, (2) a team , (3) a team 

member , and (4) desired skill l and communication structure a for p;

Recommend: A candidate  with skill l and communication structure a to refine 

the person p’s role in the team .

Problem 3. TEAM EXPANSION
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Given: (1) A labelled social network G := {A, L}, (2) a team , and (3) desired 
skill l and communication structure a for a new member;

Recommend: A new member  with skill l and communication structure a to 

join the team .

Problem 4. TEAM SHRINKAGE

Given: (1) A labelled social network G := {A, L}, and (2) a team ;

Recommend: A member  to leave the team .

Next, we will introduce our designed “goodness” metric for ranking the candidates.

3 Team Member Replacement: Proposed Solutions

In this section, we present our solutions for TEAM MEMBER REPLACEMENT. We start 

with the design objectives for the TEAM MEMBER REPLACEMENT problem, present 

graph kernel as the basic solution to fulfill such design objectives; and finally analyze the 

main computational challenges. We postpone the discussion on TEAM REFINEMENT, 

TEAM EXPANSION and TEAM SHRINKAGE in Section 5.

3.1 Design Objectives

Generally speaking, we want to find a similar person q to replace the current team member p 
who is about to leave the team. Natually, the replacement q should have a similar skill set as 

the current member q in order to perform the (sub)tasks q is involved in. More importantly, 

as recent studies show, team members prefer to work with people they have developed 

strong working relationships in the past [7]. This suggests a good replacement should also 

bring a similar social relationships with the team members. That is, a good replacement q 
should not only have a similar skill set as team member p; but also maintains team cohesion 

defined by similar social connectivity and fostering good chemistry among the team 

members and/or being less disrupted. Defining the team context is critical. In other words, 

the similarity between individuals should be measured in the context of the team itself. 

Often, the success of a team largely depends on the successful execution of several sub-

tasks, each of which requires the cooperation among several team members with certain skill 

configurations. For example, several classic tactics often recurringly find themselves in a 

successful NBA team, including (a) triangle offense (which is featured by a sideline triangle 

created by the center, the forward, and the guard), (b) pick and roll (which involves the 

cooperation between two players - one plays as ‘pivot’ and the other plays as ‘screen’, 

respectively), etc. Generally speaking, team performance arises from the shared knowledge 

and experience amongst team members and their ability to share and coordinate their work. 

As noted in the introduction, a specific pattern of communication is associated with higher 

team performance. Maintaining that communication structure should therefore be less 

disruptive to the team.

If we translate these requirements into the notations defined in Section 2, it naturally leads to 

the following two design objectives for a good TEAM MEMBER REPLACEMENT:
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• Skill matching: the new member should bring a similar skill set as the current 

team member p to be replaced that are required by the team.

• Structural matching: the new member should have similar connects to the rest of 

the team members as team member p.

3.2 Basic Solutions

In order to fulfill the above two design objectives, we need a similarity measure between two 

individuals in the context of the team itself that captures both skill matching and the 

structural matching as well as the interaction of both. We refer to this kind of similarity as 

team context aware similarity. Mathematically, the so-called graph kernel defined on the 

current and new teams provides a natural tool for such a team context aware similarity. That 

is, we want to find a replacement person q as

(1)

In Eq. (1),  is the labelled team graph; and  is the labelled team graph after 

we replace a team member p by another individual j; and Ker(.) is the kernel between these 

two labelled graphs. Generally speaking, the basic idea of various graph kernels is to 

compare the similarity of the sub-graphs between the two input graphs and then aggregate 

them as the overall similarity between the two graphs. As such, the graph kernel is able to 

simultaneously capture both the skill matching and the structure matching, beyond the 

simple ad-hoc combination between the two (e.g., weighted linear combination, 

multiplicative combination, sequential filtering, etc). We would like to emphasize that this 

treatment is important - as we will show in the experimental section, it leads to much better 

performance over all the alternative choices. Let us explain the intuition/rationality of why 

graph kernel is a natural choice for team context aware similarity. Here, each subgraph in a 

given team might reflect a specific skill configuration among a sub-group of team members 

that is required by a certain sub-task of that team. By comparing the similarity between two 

subgraphs, we implicitly measure the capability of the individual j to perform this specific 

sub-task. Thus, by aggregating the similarities of all the possible subgraphs between the two 

input graphs/teams, we get a goodness measure of the overall capability of the individual j to 

perform all the potential sub-tasks that team member p is involved in the original team. Note 

that the team replacement scenario is different from team formation [2, 3, 4]. This existing 

work on team formation aims to build a team from scratch by optimizing some pre-chosen 

metric (e.g., compatibility, diversity, etc). In contrast, we aim to find a new team member 

such that the new team resembles the original team as much as possible. Team formation is 

typically an effortful and prolonged process (weeks, months, years) and team training is 

hugely resource intensive. For instance, teams usually go through several stages - the most 

popular model being “storming, forming, norming, performing”. Our approach is focused on 

maintaining team cohesion and ideally high-levels of performance by recommending the 

most ideal candidate to minimize any disruption.

Having this in mind, many of the existing graph kernels can be adopted in Eq. (1), such as 

random walk based graph kernels, sub-tree based graph kernels (See section 7 for a review). 
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In this paper, we focus on the random walk based graph kernel [11] due to its mathematical 

elegancy and superior empirical performance. Given two labelled graphs Gi := {Ai, Li}, i = 

1, 2, the random walk based graph kernel between them can be formally computed as 

follows [11, 12]:

(2)

where  is the weight matrix of the two graphs’ Kronecker product, ⊗ 
represents the Kronecker product between two matrices, c is a decay factor, y = y1 ⊗ y2 and 

x = x1 ⊗ x2 are the so-called starting and stopping vectors to indicate the weights of 

different nodes and are set uniform in our case, L× is a diagonal matrix where L×(i, i) = 0 if 

the ith row of  is zeroed out due to label inconsistency of two nodes of the two 

graphs. L× can be expressed as .

3.3 Computational Challenges

Eq.(2) naturally suggests the following procedure for solving TEAM MEMBER 

REPLACEMENT problem (referred to as TEAMREP-BASIC): for each individual , 

we compute its score score(j) by Eq.(2); and recommend the individual(s) with the highest 

score(s). However, this strategy (TEAMREP-BASIC) is computationally intensive since we 

need to compute many random walk based graph kernels and each of such computations 

could be expensive especially when the team size is large. To be specific, for a team  of 

size t and a graph G with n individuals and l skills in total, its time complexity is O(nlr′t3) 

where r′ is the effective rank of A× since we need to compute a random walk based graph 

kernel for each candidate who is not in the current team, each of which could cost O(lr′t3) 

[11]. Even if we allow some approximation in computing each of these graph kernels, the 

best known algorithms (i.e., by [12]) would still give an overall time complexity as O(n(lt2r4 

+ mr + r6)), where r is reduced rank after low rank approximation, which is still too high. 

For example, on the DBLP dataset with 916,978 authors, for a team with 10 members, it 

would take 6,388s to find a best replacement.

In the next section, we present our solution to remedy these computational challenges.

4 Team Member Replacement: Scale-Up and Speed-Up

In this section, we address the computational challenges to scale up and speed up 

TEAMREP-BASIC. We start with an efficient pruning strategy to reduce the number of 

graph kernel computations, and then present three algorithms to speed-up the computation of 

individual graph kernel.

4.1 Scale-up: Candidate Filtering

Here, we propose an efficient pruning strategy to filter out those unpromising candidates. 

Recall that one of our design objectives for a good TEAM MEMBER REPLACEMENT is 

structural matching, i.e., the new member has a similar network structure as team member p 
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in connecting the rest team members. Since p is connected to at least some of the rest 

members, it suggests that if an individual does not have any connection to any of the rest 

team members, s/he might not be a good candidate for replacement.

Pruning Strategy—Filter out all the candidates who do not have any connections to any 

of the rest team members.

Lemma 1: Effectiveness of Pruning. For any two persons i and j not in , if i is connected 

to at least one member in  and j has no connections to any of the members in , we 

have that

Proof: Suppose that . Let , and 

.

By Taylor expansion of Eq. (2), we have

where ,

where .

Therefore, it is sufficient to show that  for any z > 0, 

where two matrices A ≥ B if Aij ≥ Bij holds for all possible (i, j). We prove this by induction.

(Base Case of Induction) When z = 1, we have

(3)

Because , we have 

.

(Induction Step) Assuming , we have that
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where the first inequality is due to the induction assumption; and the second inequality is 

due to the base case. This completes the proof.

Remarks—By Lemma 1, our pruning strategy is “safe”, i.e., it will not miss any potentially 

good replacements. In the meanwhile, we can reduce the number of graph kernel 

computations from O(n) to , which is sub-linear in n.

4.2 Speedup Graph Kernel - Exact Approach

Here, we address the problem of speeding up the computation of an individual graph kernel. 

Let  and , where A1, A2 are symmetric adjacency 

matrices of the two graphs.3 Without loss of generality, let us assume that p is the last team 

member in . Compare A1 with A2, it can be seen that the only difference is their last 

columns and last rows. Therefore, we can rewrite A2 as A2 = Ac + Ad2, where Ac is A1 with 

its last row and column being zeroed out, and the nonzero elements of Ad2 only appear in its 

last row and column reflecting the connectivity of q to the new team. Notice that Ad2 has a 

rank at most 2, so it can be factorized into two smaller matrices as Ad2 = Et×2F2×t.

Denote diag(L1(:, j)) as  and diag(L2(:, j)) as  for j = 1,…, l. Compare  with , 

the only difference is the last diagonal element. Therefore, we can write  as 

, where  is  with last element zeroed out, and ’s last element 

indicates q’s strength of having the jth skill. ’s rank is at most 1, so it can be factorized as 

. Therefore, the exact graph kernel for the labelled graph can be computed 

as:

3Although we focus on the undirected graphs in this paper, our proposed algorithms can be generalized to directed graphs.
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(4)

Each  is a matrix of size t2 by t and I ⊗ f(j) is a matrix of size t by t2. We denote 

the matrix created by concatenating all  horizontally as P, i.e., 

; denote the matrix created by stacking all I ⊗ f(j) vertically 

as Q, i.e., Q = [I ⊗ f(1);…; I ⊗ f(l)]. Obviously,  is equal to 

PQ. We denote  by X1; denote 

 by X2; denote Q(A1 ⊗ Ac) by Y1 and denote (I ⊗ 
F) by Y2. Let X be [P, X1, X2] and Y be [Y1; Y2; Y2].

With these additional notations, we can rewrite Eq. (4) as

(5)

where the second equation is due to the matrix inverse lemma [13].

Remarks—In Eq. (5),  does not depend on the 

candidate q. Thus, if we pre-compute its inverse Z−1, we only need to update X(I − 

cYZ−1X)−1Y and PQx for every new candidate. Notice that compared with the original 

graph kernel (the first equation in Eq. (4)), (I−cYZ−1X) is a much smaller matrix of (l + 4)t 
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× (l + 4)t. In this way, we can accelerate the process of computing its inverse without losing 

the accuracy of graph kernel.

4.3 Speedup Graph Kernel - Approx Approach

Note that the graph kernel by Eq. (5) is exactly the same as the original method by the first 

equation in Eq. (4). If we allow some approximation error, we can further speed-up the 

computation.

Note that Ac is symmetric and its rank-r approximation can be written as Âc = UV, where U 
is a matrix of size t by r and V is a matrix of size r by t. A1 can be approximated as Â1 = Âc 

+ Ad1 = UV + E1F1 = X1Y1, where X1 = [U, E1], Y1 = [V; F1], E1 = [w1, s], , s 
is a zero vector of length t except that the last element is 1, and w1 is the weight vector from 

p to the members in . Similarly, after p is replaced by a candidate q, the weight matrix of 

the new team can be approximated as Â2 = X2Y2 where X2 = [U, E2], Y2 = [V; F2], E2 = 

[w2, s],  and w2 is the weight vector from q to the members in the new team. The 

approximated graph kernel for labeled graphs can be computed as:

(6)

where , the second equation is due to the 

Kronecker product property; the third equation is again due to the matrix inverse lemma, the 

fourth equation is by matrix multiplication distributivity and the last equation is due to the 

Kronecker product property.

Remarks—The computation of M is much cheaper than the original graph kernel since it is 

a matrix inverse of size (r+2)2 ×(r+2)2. It was first proposed in [12] to explore the low-rank 

structure of the input graphs to speed-up graph kernel computations. However, in the context 

of TEAM MEMBER REPLACEMENT, we would need to estimate the low-rank 

approximation many times  when we directly apply the method in [12]. In 

contrast, we only need to compute top-r approximation once by Eq. (6). As our complexity 

analysis (subsection 4.5) and experimental evaluations (subsection 6.3) show, this brings a 

few times additional speed-up.
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4.4 Speedup Graph Kernel - Approximation with Correspondence

In the above approaches, the starting and ending probabilities x and y are assumed to be 

uniform by default. This implicitly implies that the starting points for random walks on the 

two team graphs could be any combinations. However, the node correspondences between 

the two teams are already known. For example, suppose the members in the old team are 

 and the new team after replacement becomes . Then a, b, c in 

the original team correspond to a, b, d respectively in the new team. With the 

correspondence known, we can only consider those random walks starting from the 

correspondent nodes only. In the above example, only random walks starting from (a, a), (b, 
b), (c, d) should be considered. If we assign equal starting probabilities for the correspondent 

starting nodes and zero for else, the starting probability x can be written as:

(7)

Similarly, by the same reasoning, we get y = x. The computations in Eq. (6) can be further 

simplified as follows:

(8)

The approximated graph kernel for labeled graphs with node correspondence can be 

computed as:

(9)

Remarks—As shown in Eq. (8), the savings from the correspondences come from the way 

y′L×x, (Y1 ⊗ Y2)L×x and y′L×(X1 ⊗ X2) are computed. For example, without 
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correspondence, computing (Y1 ⊗ Y2)L×x by  will take O(lt2r 
+ lr2) in Eq. (6), but it only takes O(tl + tr2) in Eq. (9).

4.5 Putting Everything Together

Putting everything together, we are ready to present our algorithms for TEAM MEMBER 

REPLACEMENT. Depending on the specific methods for computing the individual graph 

kernels, we propose three variants.

4.5.1 Variant #1: TEAMREP-FAST-EXACT—We first present our algorithm using the 

exact graph kernel computation in Eq. (5). The algorithm (TEAMREP-FAST-EXACT) is 

summarized in Algorithm 1. We only need to pre-compute and store Z−1, R, b and l for later 

use to compute each candidate’s score (step 2 and 3). In the loop, the key step is to update M 
involving matrix inverse of size (l + 4)t × (l + 4)t which is relatively cheaper to compute 

(step 17).

The effectiveness and efficiency of TEAMREP-FAST-EXACT are summarized in Lemma 2 

and Lemma 3, respectively. Compared with TEAMREP-BASIC, Algorithm 1 is much faster 

without losing any recommendation accuracy.
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Algorithm 1

TEAMREP-FAST-EXACT

Lemma 2: Accuracy of TEAMREP-FAST-EXACT. Algorithm 1 outputs the same set of 

candidates as TEAMREP-BASIC.

Proof: (Sketch) First, according to Lemma 1, we will not miss a promising candidate during 

the pruning stage. Second, for each candidate after pruning, Algorithm 1 calculates its graph 

kernel exactly the same as Eq. (5), which is in turn the same as Eq. (4) and hence Eq. (2). 

Therefore, after ranking the scores, Algorithm 1 outputs the same set of candidates as 

TEAMREP-BASIC.

Lemma 3: Time Complexity of TEAMREP-FAST-EXACT Algorithm 1 takes 

 in time.
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Proof: (Sketch) After pruning, the number of potential candidates (the number of loops in 

Algorithm 1) is . In every loop, computing X1,X2 and Y1 take O(lt5); 

computing M takes O(lt5+l3t3) and computing the score(q) takes O(lt3). Putting everything 

together, the time complexity of Algorithm 1 is .

4.5.2 Variant #2: Teamrep-Fast-Approx—By using Eq. (6) to compute the graph kernel 

instead, we propose an even faster algorithm (TEAMREP-FAST-APPROX), which is 

summarized in Algorithm 2. In the algorithm, we only need to compute the top r eigen-

decomposition for Ac once (step 2), and use that to update the low rank approximation for 

every new team. Besides, when we update M, a matrix inverse of size (r+2)2 × (r+2)2 (step 

14), the time is independent of the team size.

Algorithm 2

TEAMREP-FAST-APPROX

The effectiveness and efficiency of TEAMREP-FAST-APPROX are summarized in Lemma 

4 and Lemma 5, respectively. Compared with TEAMREP-BASIC and TEAMREP-FAST-

EXACT, Algorithm 2 is even faster; and the only place it introduces the approximation error 

is the low-rank approximation of Ac (step 2).
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Lemma 4: Accuracy of TEAMREP-FAST-APPROX. If Ac = UΛU′ holds, Algorithm 2 

outputs the same set of candidates as TEAMREP-BASIC.

Proof: (Sketch) First, according to Lemma 1, we will not miss a promising candidate during 

the pruning stage. Second, for each candidate after pruning, if Ac = UΛU′, we have that Ac 

= Âc, A1 = Â1, and A2 = Â2. This means when we compute the approximated graph kernel 

using Eq. (6), the low rank approximations of A1 and A2 is exactly the same as original A1 

and A2. Therefore, the scores calculated by Algorithm 2 are exactly the same as Eq. (2), 

hence outputting the same set of candidates. □

Lemma 5: Time Complexity of TEAMREP-FAST-APPROX Algorithm 2 takes 

 in time.

Proof: (Sketch) After pruning, the number of potential candidates (the number of loops in 

Algorithm 2) is . In every loop, computing T takes O(lt2r + lr2); computing M 
takes O(lt2r + lr4 + r6) and computing the score(q) takes O(lt2 + r4). Putting everything 

together, we have that the time complexity of Algorithm 2 is .

Remarks: Considering that  and  are diagonal matrices, computing M can be further 

reduced to O(ltr2 + lr4 + r6).

4.5.3 Variant #3: TEAMREP-FAST-APPROXCORR—The algorithm for computing the 

approximated graph kernel with node correspondences as in Eq. (9) is summarized in 

Algorithm 3. Compared with TEAMREP-FAST-APPROX, the difference is that the starting 

and ending probabilities take form in Eq. (7), which will allow simplified computation in Eq. 

(8) (step 12–14).
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Algorithm 3

TEAMREP-FAST-APPROXCORR

The effectiveness and efficiency of TEAMREP-FAST-APPROXCORR are summarized in 

Lemma 6 and Lemma 7, respectively. Compared with TEAMREP-FAST-APPROX, 

Algorithm 3 is much faster and outputs the same set of candidates if the starting and ending 

probabilities take form in Eq. (7).

Lemma 6: Accuracy of TEAMREP-FAST-APPROXCORR. If the starting and ending 

probabilities take form in Eq. (7), Algorithm 3 outputs the same set of candidates as 

Algorithm 2.

Proof: (Sketch) Note the only difference between TEAMREP-FAST-APPROXCORR and 

TEAMREP-FAST-APPROX is that the starting and ending probabilities take form in Eq. (7) 

in TEAMREP-FAST-APPROXCORR. According to Eq. (9), the approximated graph kernel 

score is the same as output by Eq. (6).
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Lemma 7: Time Complexity of TEAMREP-FAST-APPROXCORR Algorithm 3 takes 

 in time.

Proof: (Sketch) After pruning, the number of potential candidates (the number of loops in 

Algorithm 3) is . In every loop, computing T takes O(tl+tr2); computing M 
takes O(ltr2 + lr4 + r6) and computing the score(q) takes O(lt2 + r4). Putting everything 

together, we have that the time complexity of Algorithm 3 is .

We summarize and compare the proposed algorithms in Table 2.

5 Beyond Team Member Replacement: Team Refinement, Team Expansion 

and Team Shrinkage

In this section, we discuss how the techniques for TEAM MEMBER REPLACEMENT can 

be applied to the other team enhancement scenarios, including TEAM REFINEMENT, 

TEAM EXPANSION and TEAM SHRINKAGE. We note that the fast solutions developed 

in Section 4 also apply to these scenarios, and thus omit the detailed discussions.

5.1 Team Refinement

In TEAM REFINEMENT, we want to edit a current team member p to have the desired skill 

l and communication structure vector a. As the person with the exact skill and 

communication requirements might not exist in the network, we aim to find a best-effort 

match. We define a ‘virtual member’ ν to be the person with skill l and network structure a 

and a ‘virtual team’  to be . Using graph kernel, the best-effort match q can be found 

as:

(10)

5.2 Team Expansion

In TEAM EXPANSION, we want to add a team member with the desired skill l and 

communication structure vector a. Again, because the exact match might not exist, we 

instead find a best-effort match. We define a ‘virtual member’ ν to be the person with skill l 

and network structure a and a ‘virtual team’ to be . Using graph kernel, the best-

effort match q can be found as:

(11)

5.3 Team Shrinkage

In TEAM SHRINKAGE, we want to remove a current team member with minimum 

disruption. Since graph kernel can characterize the team-level similarity, it can also be 
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applied to TEAM SHRINKAGE. The idea is to find a current team member p so that the 

new team after p leaves is most similar to the old team. That is, we want to find a member 

 such that:

(12)

where  is the labelled team graph after a team member j leaves. Note that in TEAM 

SHRINKAGE, the search space is no longer the rest network but the team itself, which is 

much smaller.

6 Experimental Evaluations

In this section, we present the experimental evaluations. The experiments are designed to 

answer the following questions:

• Effectiveness: How accurate are the proposed algorithms for TEAM 

ENHANCEMENT?

• Efficiency: How scalable are the proposed algorithms?

6.1 Datasets

DBLP—DBLP dataset4 provides bibliographic information on major computer science 

journals and proceedings. We use it to build a co-authorship network where each node is an 

author and the weight of each edge stands for the number of papers the two corresponding 

authors have coauthored. The network constructed has n = 916, 978 nodes and m = 3, 063, 

244 edges. We use the conferences (e.g., KDD, SIGMOD, CVPR, etc) to reflect authors’ 

skills (e.g., data mining, data base, computer vision, etc) and for a given author and 

conference, we define his/her skill level as the percentage of the papers s/he publishes in that 

conference. For a given paper, we treat all of its co-authors as a team. Alternatively, if a set 

of authors co-organize an event (such as a conference), we also treat them as a team.

Movie—This dataset5 is an extension of MovieLens dataset, which links movies from 

MovieLens with their corresponding IMDb webpage and Rotten Tomatoes review system. It 

contains information of 10,197 movies, 95,321 actors/actress and 20 movie genres (e.g., 
action, comedy, horror, etc.). Each movie has on average 22.8 actors/actresses and 2.0 genres 

assignments. We set up the social network of the actors/actresses where each node represents 

one actor/actress and the weight of each edge is the number of movies the two linking 

actors/actresses have co-stared. We use the movie genres that a person has played as his/her 

skills. For a given movie, we treat all of its actors/actress as a team.

NBA—The NBA dataset6 contains NBA and ABA statistics from the year of 1946 to the 

year of 2009. It has information of 3,924 players and 100 teams season by season. We use 

4http://arnetminer.org/citation
5http://grouplens.org/datasets/hetrec-2011/
6http://www.databasebasketball.com
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players’ positions as their skill labels, including guard, forward and center. The edge weight 

of the player network stands for the number of seasons that the two corresponding nodes/

individuals played in the same team.

The statistics of these three datasets are summarized in Table 3. All the experiments are run 

on a Windows machine with 16 GB memory and Intel i7-2760QM CPU.

Repeatability of Experimental Results—All the three datasets are publicly available. 

We will release the code of the proposed algorithms through authors’ websites.

6.2 Effectiveness Results

Recall that we have two design objectives for our TEAM MEMBER REPLACEMENT 

problem, including both the skill match and the structural match. Our effectiveness 

evaluations focus on the following two aspects. First, we examine whether simultaneously 

considering both design objectives outperform only considering one of them. Second, we 

evaluate to what extent our graph kernel formulation outperforms other alternative choices, 

in order to fulfill both design objectives (i.e., the skill match and the structural match). To be 

specific, we compare to the following alternative methods, including (a) only with structure 
matching and not including L× in Eq. (2) (Graph Only), (b) only with skill matching and 

using cosine similarity of skill vectors as scores (Skill Only), (c) computing the score from 

the Euclidean distance of skill vectors (Skill EuclideanDist), (d) using the weighted sum of 

scores by ‘Skill Only’ and ‘Graph Only’ (Linear Combination), (e) using the multiplication 

of the two (Multiplicative Combination), and (f) first picking those with high ‘Skill Only’ 

scores and then ranking them by ‘Graph Only’ scores (Sequential Filtering).

A. Qualitative Evaluations—We first present some case studies on the three datasets to 

gain some intuitions.

Case studies on DBLP: Let us treat the organizing committee of KDD 2013 as a team. 

After filtering those not in DBLP, we have 32 people in the committee team. We use their 

co-authorship network as their social network. Suppose one of the research track co-chairs 

Inderjit Dhillon becomes unavailable and we are searching for another researcher who can 

fill in this critical role in organizing KDD 2013. The top five candidates our algorithm 

recommends are in Table 4. The results are consistent with the intuitions - all of these 

recommended researchers are highly qualified - not only have they made remarkable 

contributions to the data mining field, but also they have strong ties with the remaining 

organizers of KDD 2013. For example, Liu is the current chair of KDD executive 

committee; Wang is one of the research track program chairs for KDD 2014; and Faloutsos 
was the PC co-chair of KDD 2003, etc. We also develop a prototype system to visualize the 

teams before and after replacement. For details, please refer to our conference version of the 

paper [5].

Case studies on Movie: Assuming actor Matt Damon became unavailable when filming the 

epic war movie Saving Private Ryan (1998) and we need to find an alternative actor who can 

play Ryan’s role in the movie. The top five recommendations our algorithm gives are in 

Table 4. As we know, Saving Private Ryan is a movie of action and drama genres. Notice 
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that both Damon and Jackson have participated in many movies of drama, thriller and action 
genres, hence Jackson has the acting skills required to play the role in this movie. Moreover, 

Jackson has co-played with Tom Sizemore, Vin Diesel, Dale Dye, Dennis Farina, Giovanni 
Ribisi and Ryan Hurst in the crew before. The familiarity might increase the harmony of 

filming the movie with others.

Case studies on NBA: Let us assume that Kobe Bryant in Los Angeles Lakers was hurt 

during the regular season in 1996 and a bench player is badly wanted. The top five 

replacements our algorithm recommends can be seen in Table 4. As we know, Bryant is a 

guard in NBA. Among the five recommendations, Kidd, Shaw and Lue all play as guards. 

More importantly, Jason, Brian and Tyronn have played with 9, 7 and 9 of the rest team 

members on the same team in the same season for multiple times. Therefore, it might be 

easier for them to maintain the moment and chemistry of the team which is critical to 

winning the game.

Case studies on TEAM EXPANSION: Suppose we want to expand the organizing 

committee of KDD 2013 by hiring a researcher with strong expertise in Artificial 

Intelligence, and preferably who has collaborated with as many researchers on the 

committee as possible. The top five candidates found by our algorithm are: Qiang Yang, 

Zoubin Ghahramani, Eric Horvitz, Thomas G. Dietterich and Raymond J. Mooney. All the 

candidates have made significant contributions to the field of artificial intelligence and Yang, 

Horvitz, Dietteirch and Mooney are the current AAAI fellows. Among them, Yang has 

collaborated with some previous KDD organizing committee members (e.g., Jian Pei, Ying 
Li, Geoff Webb and Dou Shen).

B. Quantitative Evaluations—Besides the above case studies, we also perform 

quantitative evaluations.

User studies: We perform a user study with 20 people as follows. We choose 10 papers 

from various fields, replace one author of each paper, run our method and the first two 

comparison methods, and each of them recommends top five candidates. Then, we mix the 

outputs (15 recommendations in total) and ask users to (a) mark exactly one best 

replacement; (b) mark all good replacements from the list of 15 recommended candidates. 

The results are presented in Fig. 1, Fig. 2 and Fig. 3, respectively. As we can see from these 

figures, the proposed method (the green bar) is best in terms of both precision and recall. For 

example, the average recalls by our method, by ‘Graph Only’ and by ‘Skill Only’ are 55%, 

28%, 17%, respectively. As for different papers, our method wins 9 out of 10 cases, except 

for ‘paper 2′ where ‘Skill Only’ is best. One possible reason for the exception is that in 

‘paper 2′ [14], all the authors are primarily in computer vision while the person leaving 

(Prof. Han) is mostly focused in data mining. As a result, using our method and Graph Only 

will bias towards those candidates in computer vision; while the recommendations made by 

Skill Only are more preferred by the users.

Author alias prediction: In DBLP, some researchers might have multiple name identities/

alias. For example, in some papers, Alexander J. Smola might be listed as Alex J. Smola, 

Zhongfei (Mark) Zhang might be listed as Zhongfei Zhang, etc. For such an author, we run 
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the team replacement algorithm on those papers s/he was involved to find top-k replacement. 

If his/her other alias appears in the top-k recommended list, we treat it as a hit. The average 

accuracy of different methods is shown in Fig. 4. Again, our method performs best. It 

outperforms both the methods that consider only one design objective (‘Skill Only’, ‘Graph 

Only’ and ‘Skill EuclideanDist’); and also those that use alternative ad-hoc methods to 

combine both skill and structural match (‘linear combination’, ‘multiplicative combination’ 

and ‘sequential filtering’).

Team Shrinkage: In DBLP, we select teams with over 10 members and manually inject a 

“noisy” individual to the team such that the individual is connected with all the team 

members with random edge weights and has randomly generated skill vectors. Recall that, in 

team shrinkage we want to find the “best” member to leave the team without much 

disruption to the team. In our setting, we treat the “noisy” individual as the “best” candidate. 

For “Skill Only”, we first compute the similarity matrix among all team members using 

inner product of their skill vectors and then apply max-pooling as their score. Figure 6 

shows the result of our method, “Graph Only” as well as “Skill Only”. Our method achieves 

the best Precision@1, Recall@1 and F@1.

6.3 Efficiency Results

A. The speed-up by pruning—To demonstrate the benefit of our pruning strategy, we 

run TEAMREP-BASIC with and without pruning on the three datasets and compare their 

running time. For DBLP, we choose the authors of paper [15] (6 authors); for Movie, we 

select the film crew of Titanic (1997) (22 actors/actresses); for NBA, we pick the players on 

the Los Angeles Lakers in year 1996 (17 players). The result is presented in Fig. 5. As we 

can see, the pruning step itself brings significant savings in terms of running time, especially 

for larger graphs (e.g., DBLP and Movie). Notice that according to Lemma 1, we do not 

sacrifice any recommendation accuracy by pruning.

B. Further speedup—Next, we vary the team sizes and compare the running time of 

TEAMREP-BASIC with TEAMREP-FAST-EXACT(exact methods); and Ark-L [12] with 

TEAMREP-FAST-APPROX and TEAMREP-FAST-APPROXCORR(approximate methods). 

For TEAMREP-BASIC and Ark-L, we apply the same pruning step as their pre-processing 

step. The results on DBLP are presented in Fig. 7 and Fig. 8, respectively. We can see that 

the proposed TEAMREP-FAST-EXACT and TEAMREP-FAST-APPROX are much faster 

than their alternative choices, especially when team size is large. Besides, knowing the node 

correspondences, TEAMREP-FAST-APPROXCORR can achieve additional speed-up 

compared to TEAMREP-FAST-APPROX. No tice that Ark-L is the best known method for 

approximating random walk based graph kernel.

C. Scalability—To test the scalability of our TEAMREP-FAST-EXACT, TEAMREP-

FAST-APPROX and TEAMREP-FAST-APPROXCORR algorithms, we sample a certain 

percentage of edges from the entire DBLP network and run the two proposed algorithms on 

teams with different sizes. The results are presented in Fig. 9, Fig. 10 and Fig. 11, 

respectively. As we can seen, all algorithms enjoy a sub-linear scalability w.r.t. the total 

number of edges of the input graph (m).

Li et al. Page 22

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7 Related Work

In this section, we review the related work in terms of (a) team formation, (b) 

recommendation and expert finding, and (c) graph kernel.

Team Formation

Team formation studies the problem of assembling a team of people to work on a project. To 

ensure success, the selected team members should possess the desired skills and have strong 

team cohesion, which is first studied in [2]. As follow-up work, Anagnostopoulos et al [3] 

studies forming teams to accommodate a sequence of tasks arriving in an online fashion and 

Rangapuram et al [4] allows incorporating many realistic requirements into team formation 

based on a generalization of the densest subgraph problem. With the presence of the 

underlying social network, the set cover problem is complicated by the goal of lowering the 

communication cost at the same time. Cao et al [16] develop an interactive group mining 

system that allows users to efficiently explore the network data and from which to 

progressively select and replace candidate members to form a team. Bogdanov et al [17] 

studies how to extract a diversified group pulled from strong cliques given a network; this 

ensures that the group is both comprehensive and representative of the whole network. 

Cummings and Kiesler [8] find that prior working experience is the best predictor of 

collaborative tie strength. To provide insights into designs of online communities and 

organizations, the systematic differences in appropriating social softwares among different 

online enterprise communities is analyzed in [18]. The patterns of informal networks and 

communication in distributed global software teams using social network analysis is also 

investigated in [19]. Specific communication structures are proven critical to new product 

development delivery performance and quality [9]. To assess the skills of players and teams 

in online multi-player games and team-based sports, “team chemistry” is also accounted for 

in [20, 21]. Along another line, recently some work aim at predicting the long term 

performance of a team [22, 23].

Recommendation and Expert Finding

Recommendation and expert finding is a very active research topic in data mining and 

information retrieval, either to recommend products a user is mostly interested in or to 

identify the most knowledgeable people in a field. Our work is related to this in the sense 

that we aim to recommend top candidates who are most suitable for the vacancy. A popular 

method in recommendation (collaborative filtering) is latent factor model [24, 25, 26]. The 

basic idea is to apply matrix factorization to user-item rating data to identify the latent 

factors. The factorization technique can be naturally extended by adding biases, temporal 

dynamics and varying confidence levels. In question-answering sites, e.g., Quora and Stack 

Overflow, an important task is to route a newly posted question to the ‘right’ user with 

appropriate expertise and several methods based on link analysis have been proposed [27, 

28, 29]. In academia, identifying experts in a research field is of great value, e.g., assigning 

papers to the right reviewers in a peer-review process [30, 31], which can be done by either 

building the co-author network [15] or using language model and topic-based model [32, 

33]. For enterprises, finding the desired specialist can greatly reduce costs and facilitate the 
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ongoing projects. Many methods have been proposed to expert search through an 

organization’s document repository [34, 35].

Graph Kernel

Graph kernel measures the similarity between two graphs. Typical applications include 

automated reasoning [36], bioinformatics/chemoinformatics [37, 38]. Generally speaking, 

graph kernels can be categorized into three classes: kernels based on walks [10, 11, 39, 40, 

41], kernels based on limited-sized subgraphs [42, 43, 44] and kernels based on subtree 

patterns [45, 46, 47]. Graph kernels based on random walk is one of the most successful 

choices [48]. The idea is to perform simultaneous walks on the two graphs and count the 

number of matching walks. One challenge of random walk based graph kernel lies in 

computation. The straight-forward method for labelled graphs take O(lr′t3) time by reducing 

to the problem of solving a linear system [10, 11]. With low rank approximation, the 

computation can be further accelerated with high approximation accuracy [12].

8 Conclusion

In this paper, we study a family of problems under the umbrella of TEAM 

ENHANCEMENT, namely, TEAM MEMBER REPLACEMENT, TEAM REFINEMENT, 

TEAM EXPANSION and TEAM SHRINKAGE. To our best knowledge, we are the first to 

study these problems related to teams in large-scale networks. The basic idea of our method 

is to adopt graph kernel to encode both skill matching and structural matching. To address 

the computational challenges, we propose a suite of fast and scalable algorithms. Extensive 

experiments on real world datasets validate the effectiveness and efficiency of our 

algorithms. To be specific, (a) by bringing skill matching and structural matching together, 

our method is significantly better than the alternative choices in terms of both average 

precision (24% better) and recall (27% better); and (b) our fast algorithms are orders of 

magnitude faster while enjoying a sub-linear scalability.

This paper has presented an efficient technique in addressing the team enhancement 

challenge; however, the proposed method can be applied to general graph mining problem 

where the interaction of multiple objectives is critical, e.g., finding a similar multimedia 

object by considering both its content and relationship with other objects. In the future, we 

would like to expand team enhancement to team composition. For instance, given the 

structure of a high-grossing movie (e.g., Saving Private Ryan) of a particular genre, we want 

to develop an effective algorithm to suggest a team of actors.
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Fig. 1. 
The average recall, average precision and R@1 of the three comparison methods. Higher is 

better.
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Fig. 2. 
Recall for different papers. Higher is better.
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Fig. 3. 
Precision for different papers. Higher is better.
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Fig. 4. 
Average accuracy vs. budget k. Higher is better.
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Fig. 5. 
Time Comparisons before and after pruning on three datasets. Notice time is in log-scale.
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Fig. 6. 
Precision@1, Recall@1 and F@1 of the three comparison methods for TEAM 

SHRINKAGE. Higher is better.
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Fig. 7. 
Time Comparison between TEAMREP-BASIC and TEAMREP-FAST-EXACT. 

TEAMREP-FAST-EXACT is on average 3× faster. TEAMREP-BASIC takes more than 10 

hours when team size = 70.
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Fig. 8. 
Time Comparisons between Ark-L[20] and TEAMREP-FAST-APPROX, TEAMREP-FAST-

APPROXCORR.
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Fig. 9. 
Running time of TEAMREP-FAST-EXACT vs. graph size. TEAMREP-FAST-EXACT 

scales sub-linearly w.r.t. the number of edges of the input graph.
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Fig. 10. 
Running time vs. graph size. TEAMREP-FAST-APPROX scales sub-linearly w.r.t. the 

number of edges of the input graph.
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Fig. 11. 
Running time vs. graph size. TEAMREP-FAST-APPROXCORR scales sub-linearly w.r.t. 

the number of edges of the input graph.
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TABLE 1

Table of symbols

Symbols Definition

G := {A, L} the entire social network

An×n the adjacency matrix of G

Ln×l skill indicator matrix

the team member index

the team network indexed by its members 

di the degree of the ith node in A

l the total number of skills

t
the team size, i.e., 

n the total number of individuals in A

m the total number of connections in A
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TABLE 2

Comparison of proposed algorithms.

Algorithm Time Complexity Remark

TEAMREP-BASIC O(nlr′t3) Direct graph computations

TEAMREP-FAST-EXACT Pruning + smoothness

TEAMREP-FAST-APPROX Pruning + smoothness + low-rank approximation

TEAMREP-FAST-APPROXCORR Pruning + smoothness + low-rank approximation + node 
correspondence
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TABLE 3

Summary of Datasets.

Data n m # of teams

DBLP 916,978 3,063,244 1,572,278

Movie 95,321 3,661,679 10,197

NBA 3,924 126,994 1,398
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TABLE 4

Case studies results

Dataset Method Recommendations

DBLP Ours
Graph Only
Skill Only

Multiplicative Combination

Philip S. Yu, Jiawei Han, Christos Faloutsos, Bing Liu and Wei Wang
Jian Wu, Ada Wai-Chee Fu, Ke Wang, Heikki Mannila, Daxin Jiang

W. Nick Street, Kristin P. Bennett, David Gondek, Bianca Zadrozny, Katsuhiko Takabayashi
David Gondek, Katsuhiko Takabayashi, Jeremy Z. Kolter, Hung Hay Ho, Genady Grabarnik

Movie Ours
Graph Only
Skill Only

Multiplicative Combination

Samuel L. Jackson, Steve Buscemi, Robert De Niro, Christopher Walken, Bruce Willis
Tommy Lee Jones, Woody Harrelson, Stanley Tucci, Nicky Katt, Juliette Lewis

Chris Cooper, Clive Owen, Gig Young, Stellan Skarsgrd, Brad Hunt
Gig Young, Brad Hunt, Adrien Brody, Danny Huston, Faye Dunaway

NBA Ours
Graph Only
Skill Only

Multiplicative Combination

Rick Fox, A.c. Green, Jason Kidd, Brian Shaw and Tyronn Lue
Rick Fox,A.c. Green,Chucky Brown, Michael Finley, Jason Kidd

Mahmo Abdul-rauf,Tariq Abdul-wahad,Forest Able,Alex Acker,Donald Ackerman
Mahmo Abdul-rauf, Forest Able, Alex Acker, Donald Ackerman, Hassan Adams
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