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Abstract

Crucial to many light-driven processes in transition metal complexes is the absorption and 

dissipation of energy by 3d electrons1–4. But a detailed understanding of such non-equilibrium 
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excited-state dynamics and their interplay with structural changes is challenging: a multitude of 

excited states and possible transitions result in phenomena too complex to unravel when faced 

with the indirect sensitivity of optical spectroscopy to spin dynamics5 and the flux limitations of 

ultrafast X-ray sources6,7. Such a situation exists for archetypal polypyridyl iron complexes, such 

as [Fe(2,2′-bipyridine)3]2+, where the excited-state charge and spin dynamics involved in the 

transition from a low- to a high-spin state (spin crossover) have long been a source of interest and 

controversy6–15. Here we demonstrate that femtosecond resolution X-ray fluorescence 

spectroscopy, with its sensitivity to spin state, can elucidate the spin crossover dynamics of 

[Fe(2,2′-bipyridine)3]2+ on photoinduced metal-to-ligand charge transfer excitation. We are able 

to track the charge and spin dynamics, and establish the critical role of intermediate spin states in 

the crossover mechanism. We anticipate that these capabilities will make our method a valuable 

tool for mapping in unprecedented detail the fundamental electronic excited-state dynamics that 

underpin many useful light-triggered molecular phenomena involving 3d transition metal 

complexes.

The femtosecond duration of the intense hard X-ray pulses generated by the LCLS (Linac 

Coherent Light Source) X-ray free-electron laser16,17 creates the opportunity to study spin 

dynamics with iron 3p–1s (Kβ) X-ray fluorescence spectroscopy18,19. Figure 1 shows 

diagrams of the measurement technique and relevant energy levels (Fig. 1–c), a ‘ball-and-

stick’ representation of the [Fe(2,2′-bipyridine)3]2+ complex (Fig. 1d), and the dependence 

of photoexcited spin crossover dynamics on the Fe–ligand distance (Fig. 1e). Given the 

roughly 100 femtosecond (fs) time resolution of the measurement17, the subfemtosecond 

lifetime of the iron 1s core hole makes X-ray fluorescence an effectively instantaneous 

probe20. A variety of distinct electronic excited states, including singlet and triplet metal-to-

ligand charge transfer states (1,3MLCT), triplet ligand field excited states (3T) and quintet 

ligand field excited states (5T2) have been proposed to participate in the spin crossover 

mechanism6,8,10,11,21,22 (Fig. 1e). Distinguishing electronic excited states with different 

charge and spin density, such as the 1,3MLCT, 3T and 5T2 states listed above, represents a 

critical step in characterizing the spin crossover mechanism.

Figure 2a shows the sensitivity of the iron Kβ fluorescence spectrum to the 3d spin moment, 

a sensitivity that results from the exchange interaction between the 3p and 3d 
electrons18,19,23–25. Equally important, the ground-state spectra of iron coordination 

complexes with different ligation, but the same iron spin moment, exhibit similar Kβ 
fluorescence spectra. This insensitivity of Kβ fluorescence spectroscopy to the details of the 

coordinating ligands and the local symmetry of the complex has previously been used to 

characterize the electronic ground-state spin moment of a variety of molecular systems19,25. 

We note that the insensitivity of the Kβ fluorescence spectrum to the electronic properties of 

the ligand means that the spectrum cannot be used to distinguish between singlet and triplet 

MLCT states. We utilize these spectra of distinct spin configurations to model transient 

difference spectra—that is, the time and energy dependence of the fluorescent amplitude 

difference between excited-state and ground-state spectra. Figure 2b shows the model 

complex difference spectra generated from the ground-state spectra of the relevant excited-

state spin configurations and the singlet ground state. These model complex difference 

spectra confirm that each excited-state spin moment generates a distinct difference spectrum 
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that cannot be reproduced by a linear combination of the other difference spectra (see Fig. 2, 

Extended Data Fig. 1 and Methods for details).

The time-resolved Kβ fluorescence spectra provide the sensitivity to spin dynamics needed 

to answer a critical question regarding the spin crossover mechanism: does the 5T2 state 

form directly from the 1,3MLCT state6,13,26, or does spin crossover involve a 3T 

transient8,10? Ultraviolet–visible transient absorption13,14, time-resolved luminescence13, 

and time-resolved iron K-edge XANES6 have been used to characterize the spin crossover 

dynamics of [Fe(2,2′-bipyridine)3]2+, and the similar rates measured for 3MLCT decay 

and 5T2 formation were attributed to the 3MLCT excited state converting directly to the 5T2 

excited state, although a conversion including transient triplet states was also considered6. 

Potential energy surfaces calculated for this system allow either mechanism to proceed with 

minimal reaction barriers21,22, but cannot explain why the 1,3MLCT and 5T2 states should be 

strongly coupled: the leading order spin–orbit interaction cannot couple the 1,3MLCT 

and 5T2 states because a transition between these states requires the excitation of two 

electrons on two distinct centres, whereas spin–orbit coupling is predominantly a single-

centre, one-electron operator22.

Figure 2c, d shows the transient difference spectra for [Fe(2,2′-bipyridine)3]2+ measured for 

a 50-fs and a 1-ps (picosecond) time delay. The spectrum in Fig. 2d clearly demonstrates the 

ease of identifying the 5T2 state with the Kβ fluorescence spectrum. Determining whether 

spin crossover from the 1,3MLCT to the 5T2 proceeds through a transient 3T state proves 

more challenging because the relaxation dynamics do not lead to a time regime where the 

majority of the excited molecules reside in the 3T excited state. The significant difference 

between the spectra in Fig. 2c and d, however, clearly demonstrates the presence of excited-

state species other than the 5T2 state. With statistically rigorous kinetic 

modelling, 1,3MLCT, 3T and 5T2 states can be clearly distinguished in the relaxation 

dynamics probed with Kβ fluorescence.

The ability to spectroscopically distinguish between 1,3MLCT, 3T and 5T2 electronic excited 

states allows the spin crossover mechanism to be determined from the time evolution of the 

iron Kβ fluorescence spectrum. The time-resolved difference spectra, model fits of the 

difference spectra, and the parameters extracted from the fit can be found in Fig. 3, Extended 

Data Figs 2–4 and Extended Data Table 1. We have fitted the difference spectra to two 

distinct models: one where the 1,3MLCT decays directly to a 5T2 excited state and one where 

the 1,3MLCT relaxes to the 5T2 state via a 3T transient. Figure 3b, c shows the time-

dependent difference signal measured at two X-ray fluorescence energies: 7,061 eV, where 

the difference signal is largest, and 7,054 eV, where the triplet model complex has a spectral 

signature clearly distinct from the 1,3MLCT and 5T2 states as shown in Fig. 2b. The fits in 

Fig. 3b, c have been determined from a global analysis of the full time-dependent spectra. 

The statistical significance of the more complex kinetic model involving the triplet transient 

can be determined from an F-test comparison of the two models (described in Methods). The 

reduction in residuals achieved with the model containing the triplet transient is sufficient to 

reject the direct 1,3MLCT→5T2 model with greater than 95% confidence. Note that the 

successful use of a kinetic model to describe subpicosecond dynamics implies that the Kβ 
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spectra do not depend significantly on the time-evolving nuclear structure, consistent with 

the insensitivity of the ground-state Kβ spectra to the ligand details.

The successful analysis of the experimental data relies on two constraints presented by the 

model spectra shown in Fig. 2b and two constraints derived from the kinetic models. We 

force (1) the shape and (2) the relative amplitudes of the difference signals for 

the 1,3MLCT, 3T and 5T2 electronic excited states to match the shape and relative amplitudes 

of the model complex difference spectra. We also require (3) allX-ray fluorescence energies 

to be fitted with a single time zero and (4) all MLCT excited states to undergo spin 

crossover, consistent with previous measurements of the spin crossover quantum yield13. 

The ultrafast rise of the difference signal shown in Fig. 3b greatly constrains the value of 

time zero and the final 5T2 state population. For the fit to the direct spin crossover 

mechanism shown in Fig. 3b, the fast rise in signal at 7,061 eV requires a fast rise in 5T2 

population. As shown in Fig. 3c, the fast rise in the direct mechanism fit at 7,061 eV also 

leads to a fast drop in signal at 7,054 eV, because the 5T2 state has a negative difference 

signal at 7,054 eV. For the fit to the sequential spin crossover mechanism also shown in Fig. 

3b, the fast rise in signal at 7,061 eV can be accommodated initially by a rise in 3T 

population. Because the 3T state does not have a negative difference signal at 7,054 eV, the 

fast rise in 3T population does not lead to a fast drop at 7,054 eV. The stepwise transition 

through the 3T leads to a delayed onset of the drop in fluorescence amplitude at 7,054 eV 

relative to the rise in signal at 7,061 eV, consistent with the experimental data. For the direct 

model, a shift in time zero to fit the data in Fig. 3c would lead to a poor fit of the data in Fig. 

3b.

Relaxation to the 5T2 excited state via a 3T transient provides a more satisfying explanation 

for the relaxation dynamics. We speculate that the sequential relaxation occurs more 

promptly than the direct crossover from the 1,3MCLT to the 5T2 excited state because the 

sequential transition involves single electronic transitions coupled by a spin–orbit operator, 

whereas the direct transition involves the simultaneous transition of two distinct electrons on 

two centres and cannot occur with the first-order spin–orbit operator. The sequential 

relaxation, like the direct transition, provides an energetically feasible pathway with minimal 

reaction barriers between states that can be coupled with standard spin–orbit interactions22. 

The spin–orbit matrix elements in conjunction with the calculated potential energies of a 

variety of electronic excited states of [Fe(2,2′-bipyridine)3]2+ as a function of the metal–

ligand bond distance provide an approximate explanation for the fast intersystem crossing 

and the extremely short lifetime of the 3T excited state. A diagram of these potential energy 

surfaces can be found in Fig. 1e. In principle, the triplet ligand field excited state could be 

either a 3T1 or a 3T2 state. Computations indicate a crossing of the 3T2 state in the Franck–

Condon region of the 1,3MLCT excited state and that the 1,3MLCT→3T2→5T2 pathway 

dominates27; however, relaxation trajectories involving the 3T1 ligand field excited state 

remain plausible, and more definite conclusions will require a more complete calculation of 

the multidimensional potential energy surfaces, including the potentially important role of 

metal–ligand torsional motion28. The sequential model fit in Fig. 3 gives a 150 ± 50 fs time 

constant for 1,3MLCT decay to the 3T state and a 70 ± 30 fs time constant for 3T decay to 

the 5T2 state. Although the mechanistic conclusions we have drawn from our measurements 

differ from the earlier interpretation26, our experimental findings do not contradict the 
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earlier results, but rather expand on them. The extracted decay time for the 1,3MLCT excited 

state and the effective rise time for the 5T2 excited state agree with the time constants 

observed previously within experimental error26. The similarity of the 1,3MLCT decay time 

and the 5T2 rise time results from the rate of 3T decay being greater than that of 3T 

formation. This inhibits the build-up of molecules in the 3T excited state and challenges the 

temporal differentiation of the distinct electronic states involved in spin crossover (see 

Extended Data Fig. 2d). Only with a technique highly sensitive to the iron spin multiplicity 

can the presence of the 3T transient excited state in the relaxation dynamics be robustly 

resolved.

The complex excited-state electronic structure of molecules containing transition metals has 

inhibited the unambiguous interpretation of experimental measurements and the 

development of excited-state quantum dynamics simulations. We have demonstrated here 

that ultrafast X-ray fluorescence spectroscopy enables robust measurements of the charge 

and spin dynamics integral to excited-state relaxation in 3d transition-metal coordination 

complexes, which represents an important step towards an incisive mechanistic 

understanding of excited-state dynamics in 3d transition metal complexes.

METHODS

Experimental procedures

We performed femtosecond hard X-ray fluorescence measurements on a 50 mM solution of 

[Fe(2,2′-bipyridine)3]2+ in water at the X-ray pump-probe (XPP) instrument at the Linac 

Coherent Light Source (LCLS). The experiment used a 0.1 mm thick planar liquid jet 

oriented at an angle of 45° with respect to the direction of the incident X-ray beam. We 

measured the ultra-violet–visible absorption spectrum of the solution before and after the 

measurement to ensure no appreciable sample damage had occurred. The sample solution 

was collinearly excited with a 70 fs FWHM 520 nm laser beam (120 mJ cm−2) generated by 

optical parametric amplification of the 800 nm output of a Ti:sapphire regenerative amplifier 

laser system (Coherent, Legend). With 520 nm light, we excited [Fe(2,2′-bipyridine)3]2+ at 

the peak of the MLCT band (Extended Data Fig. 5a). We set the pump laser fluence to 

maximize excitation yield, while avoiding other deleterious photophysical phenomena. 

Previous time-resolved hard X-ray spectroscopy measurements of iron spin crossover 

compounds have used higher, often significantly higher, optical laser fluence29–31. We used 

an excitation laser fluence where the transient optical signal changes linearly with pump 

fluence, as shown in Extended Data Fig. 5b. The 8 keV X-ray laser pulses, with an average 

bandwidth of 0.3%, were focused using Be compound refractive lenses to a 50 μm diameter 

spot size at the sample position. Shot-to-shot fluctuations in the X-ray incidence energy and 

band width do not influence the X-ray fluorescence spectrum when the X-ray energy is well 

above the core ionization threshold. For iron, with a 1s ionization threshold of 7.112 keV, the 

8 keV X-ray energy used in the experiment achieves this goal.

The incoming X-ray pulse energy was measured using non-invasive diagnostics before the 

sample32. A high-resolution energy dispersive X-ray emission spectrometer33, based on the 

von Hamos geometry, was used to capture the iron 3p–1s (Kβ) fluorescence. The 

spectrometer was equipped with 4 cylindrically bent (0.5 m radius) Ge(620) crystal 
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analysers and set to cover a Bragg angle range from 78.0° to 80.4°. The CSPAD 2D pixel 

array detector (388 × 370 pixels)34 intersected the X-rays diffracted from the crystal 

analysers in an energy range from 7,033 to 7,084 eV.

The detector response calibration involved a pixel dependent dark current (pedestal) 

subtraction, a common mode offset, and an experimentally determined gain map. The gain 

map was built from histograms of each pixel response extracted from multiple images (after 

dark current and common mode offset corrections) collected over many minutes. Gaussians 

were fitted to the zero and one photon peaks of the histograms, enabling fine-tuned dark and 

gain corrections to the histograms directly from the data. The zero photon peaks were 

centred at zero analogue-to-digital units and the separation between the zero and one photon 

peaks were scaled to unity for all pixels. The counts for each pixel in a given time-step were 

obtained by averaging the analogue-to-digital values above a threshold of 2.5σ of the zero-

photon peak and scaling to the incident X-ray intensity. The final 1D spectrum for each 

time-step was obtained by integrating the signal in the non-dispersive direction33.

The shot-to-shot X-ray–optical relative time of arrival fluctuations were measured for every 

X-ray–optical pulse pair with a timing diagnostic tool based on optical detection of X-ray 

generated carriers in a Si3N4 thin film. A description of the time diagnostic tool and the 

demonstrated performance of the tool can be found elsewhere17,35. This experimental 

measure of the relative timing can be used to sort each experimental shot by the relative time 

of arrival. Although the timing tool provides an accurate measure of the shot-to-shot 

variation in there lative time of arrival between the X-ray and optical laser pulses, it does not 

provide an accurate measure of the instrument response function. The timing tool uses 

changes in the Si3N4 dielectric function to modify the transmission of a chirped white light 

pulse through the Si3N4 thin film. These changes in the dielectric function result from the 

increase in free carriers generated by X-ray ionization, Auger relaxation and impact 

ionization. The temporal response is the convolution of these complex dynamics with the 

cross-correlation of the X-ray and optical laser pulses. Without a detailed model of the 

carrier generation, the cross-correlation cannot be extracted from the timing tool. At present, 

no experimental means of cross-correlating the hard X-ray and optical pulses has been 

demonstrated.

The final time resolution of the experiment results from the convolution of the optical and 

X-ray pulse durations, the group velocity walk-off of the X-ray and optical pulses in the 

sample and the error in the relative time of arrival measurement. These factors would predict 

a cross-correlation of roughly 150 fs FWHM. In the data analysis, the instrument response 

function FWHM and time zero (coincident arrival of the X-ray and optical pulses) are fit 

parameters.

Kβ fluorescence spectra for model complexes

The 3p–1s X-ray (Kβ) fluorescence spectra of model complexes play an important role in 

our analysis of the time-dependent data. The Kβ fluorescence spectra of 3d transition-metal 

ions reflect the 3p–3d exchange interaction, which makes the line shapes sensitive to the 

spin state of the transition metal atom19,23,24,36,37. Kβ fluorescence provides a powerful 

technique for spin state studies, particularly when there are advantages of working with 
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penetrating hard X-rays. When a sample contains multiple spin states, the spin state 

distribution can be readily and precisely calculated from the line shape variations19.

We measured the Kβ fluorescence spectra of a series of iron complexes with different spin 

states at beamline 6-2 of the Stanford Synchrotron Radiation Light-source (SSRL). All the 

samples were cooled to 10 K to reduce the influence of X-ray damage. The static spectra, 

collected with a multi-crystal high-resolution X-ray emission spectrometer, are shown in 

Fig. 2a.

We use the model complex difference spectra generated from molecules that have different 

spin multiplicities in their electronic ground state to model the time-dependent populations 

of electron excited states with different spin multiplicities. We verify the validity of using the 

model complex difference spectra generated from the quintet [Fe(phenanthroline)2(NCS)2] 

and the singlet [Fe(2,2′-bipyridine)3]2+ model compounds for the quintet excited state by 

comparing it with the transient difference spectra of [Fe(2,2′-bipyridine)3]2+ after a 1-ps 

time delay (see Fig. 2d). The validity of model complex difference spectra for the 1,3MLCT 

and 3T excited states proves more challenging to demonstrate because we do not isolate 

these excited states at any time delay in our pump probe measurements (the fit to the 50-fs 

time delay spectra shown in Fig. 2c indicates a population ratio of 5:1.3:1 for 

the 1,3MLCT:3T:5T2 excited states).

Despite this limitation, the model for the 1,3MLCT excited generated from doublet [Fe(2,2′-

bipyridine)3]3+ and singlet [Fe(2,2′-bipyridine)3]2+ compounds should be robust since the 

only distinction is the presence of the electron on the 2,2′-bipyridine ligand which should 

have minimal impact on the Kβ fluorescence spectrum. For the 3T transient, no long-lived 

triplet excited state can be used to extract an excited state Kβ fluorescence difference 

spectrum as an internal reference. Instead, we use the ground state model complex difference 

spectrum obtained from triplet Fe(II) phtha locyanine (FePc) and singlet [Fe(2,2′-

bipyridine)3]2+ Kβ spectra as our reference difference spectra. We used the four-coordinate 

FePc, rather than an octahedral model complex, because octahedral Fe(II) complexes cannot 

have a triplet ground state. While de Beer et al. have shown that tetrahedral, octahedral, and 

square planar molecules in the same quintet or sextet spin state have very similar Kβ 
spectra25, this cannot be demonstrated experimentally for intermediate spin states. Instead, 

we use theoretical calculations to demonstrate this point. We theoretically calculated the Kβ 
fluorescence spectra of a four-coordinate square planar and a six-coordinate octahedral 

ferrous complex using atomic multiplet theory38. This theory is the standard method for 

calculating and interpreting hard X-ray fluorescence spectra38. For all calculations, the 

Slater–Condon parameters were reduced to 80% of their atomic value and the 3d orbital and 

spin angular momentum (LS) coupling was switched off for simplicity. The Kβ spectra were 

calculated as a 3p→1s fluorescence following 1s ionization. For FePc, we use the previously 

published crystal field parameters (10Dq = 2.7 eV, Ds = 0.86 and Dt = 0.247) in our 

calculations39. For the six-coordinate octahedral complex calculation, we used a 10Dq = 1.5 

eV, consistent with the experimental 10Dq ≈ 1.5 eV measured for [Fe(2,2′-bipyridine)3]2+ 

(ref. 9). This value also ensures a low spin (S = 0) ground state, a high spin (S = 2) first 

excited state and an intermediate spin (S = 1) second excited state.
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Extended Data Fig. 1a shows the calculated Kβ fluorescence spectra for both the four- and 

six-coordinate complexes. The square planar and octahedral symmetries have similar triplet 

state Kβ fluorescence spectra, consistent with prior experimental and theoretical findings for 

high spin complexes19,25. The accuracy of the calculations can also be assessed by 

comparing calculated and experimental difference spectra. In Extended Data Fig. 1b we 

show a comparison between the calculated difference spectrum generated when subtracting 

an octahedral crystal field singlet state from the square planar triplet ground state and the 

experimental difference spectrum generated by subtracting singlet [Fe(2,2′-bipyridine)3]2+ 

spectrum from the triplet FePc spectrum. The calculated difference spectrum reproduces the 

qualitative features of the experimental difference spectrum. The insensitivity of the 

calculated spectra to the coordination geometry and the ability of the calculations to 

reproduce the main features of the experimental difference spectrum validate the use of the 

FePc fluorescence spectrum as a model for the triplet excited state of [Fe(2,2′-

bipyridine)3]2+.

Using model complex difference spectra has proven more fruitful for the kinetic modelling 

than singular value decomposition (SVD). The model complex difference spectra 

demonstrate that differentiation of the 1,3MLCT and the 3T excited states depends upon both 

the shape of the difference spectra and the relative amplitudes of the difference spectra. To 

first order, the integrated area of the Kβ fluorescence spectra do not change with spin state. 

The integral of the absolute value of the difference spectrum, however, depends linearly on 

the magnitude of the spin change39. This robust and reproducible aspect of Kβ fluorescence 

spectroscopy makes the relative amplitudes of the difference spectra an important 

distinction. SVD, however, struggles to differentiate species when a difference in relative 

amplitude is a key distinguishing feature of the difference spectra. For this reason, we have 

used model complex difference spectra, rather than SVD to model the time resolved data.

Kinetic modelling of the [Fe(2,2′-bipyridine)3]2+ experimental population dynamics

We have used two distinct kinetic models to analyse the time-dependent electron dynamics 

in [Fe(2,2′-bipyridine)3]2+. For the direct transition between 1,3MLCT and 5T2, without a 3T 

transient state, the relaxation mechanism can be expressed as follows:

where 1,3MLCT corresponds to the electronic excited state populated by optical 

excitation, 5T2 corresponds to the quintet ligand field state, and 1A1 represents the electronic 

ground state. The differential rate equations for each species are given by the following mass 

balance simultaneous equations,
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The integrated rate equations provide the following time-dependent populations for the three 

species,

From prior ultrafast measurements, we know that the lifetime of the 5T2 excited state is 

roughly 660 ps (refs 6, 13, 15). The long lifetime of the 5T2 excited state allows us to set k3 

≈ 0 when we model the kinetics in the first couple of picoseconds. The integrated rate 

equations can be reduced to:

For the sequential kinetic model with a 3T transient state, the relaxation mechanism can be 

expressed as follows:

where 1,3MLCT corresponds to the electronic excited state populated by optical 

excitation, 3T corresponds to the triplet ligand field excited state, and 5T2 corresponds to the 

quintet ligand field excited state, and 1A1 represents the electronic ground state. The 

differential rate equations for each species are given by the following mass balance 

simultaneous equations:

The integrated rate equations provide the following time-dependent populations for the four 

species:
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The long lifetime of the 5T2 excited state allows us to set k3 ≈ 0 when we model the kinetics 

in the first couple of picoseconds. The integrated rate equations can be reduced to:

To fit the experimental data to a kinetic model, we must convolve the kinetic model with the 

instrument response function which we describe with a Gaussian function. Taking the 

example of [1,3MLCT] = [1,3MLCT]0e−k1t, which is an exponential decay starting at time 

zero (t0), it will be expressed as

where H is the Heaviside step function and σ is the temporal width of the instrument 

response function.

Statistical determination of the correct kinetic model

Given two distinct kinetic models, we must determine which model best represents the 

experimental data. Choosing the model with smaller residual sum of squares (RSS) is not 

sufficient because the two models do not have the same number of fit parameters. We have 

used the statistical F-test to determine whether the model with or without a 3T transient 

provides the best fit of the experimental data40.

The F-test provides a statistically robust method for comparing the quality of two models 

with a different number of fit parameters when the simpler model 1 can be ‘nested’ within 

the more complex model 2. Model 1 has p1 parameters, and model 2 has p2 parameters, 

where p2 > p1. For any choice of parameters in model 1, the model 2 should always be able 

to fit the data at least as well as the model 1. Thus, model 2 typically will have a lower RSS 

than model 1. The F-test allows us to determine the statistical significance of this variance in 

RSS. The F statistic can be calculated by

where n is the number of data points (time delays) fitted by the two models. For the null 

hypothesis that model 2 does not provide a fit statistically superior to that provided by model 

1, the F will have an F distribution defined by the degrees of freedom, (p2 – p1) and (n – p2). 

To reject the null hypothesis, F must exceed a critical value that depends upon the degrees of 

freedom and the level of confidence40.
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[Fe(2,2′-bipyridine)3]2+ experimental data modelling

Using the reference difference spectra with the kinetic model, we fit the time-dependent 

difference Kβ fluorescence spectra for optically excited [Fe(2,2′-bipyridine)3]2+ in water. 

The parameters extracted from the fit of the two kinetic models can be found in Extended 

Data Table 1. We compute the time constants and uncertainties reported in Extended Data 

Table 1 by fitting multiple runs of the same experiment and then calculating the mean and 

the standard deviation. The experimental two-dimensional transient difference spectra, fit 

spectra, residuals, and excited electronic state populations extracted from the best fit for each 

model can be found in Extended Data Figs 2 and 3. Given the very short lifetime of the 3T 

excited state, the deviations between the fits of the two models predominantly occur within 

the first 500 fs. The two-dimensional plots of the residuals in Extended Data Figs 2c and 3c 

highlight the regions where the 1,3MLCT→3T→5T2 model provides a fit superior to that of 

the 1,3MLCT→5T2 model. Unsurprisingly, this corresponds to time delays with larger 3T 

populations and spectral regions with the largest difference between the 3T and 5T2 spectra 

(7,053–7,056 eV).

The residual sum of squares quantifies the variable quality in the fits. The residual sum of 

squares for each model is: RSS1 = 3.77 and RSS2 = 3.21. In this situation, we have p1 = 5, 

p2 = 6 and n = 45. To be 95% confident that the complex model is better than the nested 

model, the calculated F value must be larger than the F distribution value that captures 95% 

of the distribution for F(p2 – p1, n – p2) which is 4.09. The calculated F value is 6.71 which 

exceeded 4.09. So with 95% confidence we conclude that the model containing the 3T 

transient provides a better description of the experimental data.

Influence of instrument response function parameters on the data analysis

We utilize the instrument response function (IRF) as a variable since the technology does not 

yet exist to measure the instrument response time accurately. This leads to an increase in the 

number of parameters in the data analysis. This increase in fit parameters makes statistically 

differentiating the robustness of alternative kinetic models more difficult, rather than easier.

To ensure that the statistical superiority of the kinetic model possessing the 3T transient does 

not result from our uncertainty about the instrument response function parameters, we have 

investigated how variation of time zero and FWHM values differentially influence the RSS 

for the direct 1,3MLCT→5T2 model and the 1,3MLCT→3T→5T2 model. For the range of 

time zero and FWHM values reported in Extended Data Table 1 that adequately fit the 

experimental data with either model, the model containing the 3T transient always provides a 

significantly superior fit to the experimental data. We have used the instrument response 

function values that minimize the RSS for the 1,3MLCT→5T2 model to fit the data with 

the 1,3MLCT→3T→5T2 model. Using this sub-optimal instrument response function only 

increases the RSS2 from 3.21 to 3.27, both significantly less than the direct model RSS1 = 

3.77. Using the definition for F given above and p1 = 5, p2 = 6 and n = 45, we calculate F = 

5.98, in excess of the 4.09 value needed to conclude with 95% confidence that the complex 

model provides a better representation of the experimental data than the nested model.
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Experimental time resolution can also influence the ability to identify a distinct excited state. 

For the case of the triplet transient, the temporal resolution of 150 fs has little impact on the 

characterization of the triplet excited state dynamics. To demonstrate that the roughly 150 fs 

FWHM IRF does not inhibit our ability to characterize the triplet population dynamics, we 

have simulated the 1,3MLCT→3T→5T2 population kinetics using the time constants 

extracted from the best fit to the experimental data listed in Extended Data Table 1 with an 

IRF possessing a 150 fs FWHM and a 5 fs FWHM. The initial time dependence of 

the 1,3MLCT state signal depends significantly on the time resolution (though the decays for 

time delays longer than 200 fs look similar), but the shape and amplitude of the triplet 

population is similar. The convolution of the IRF and the lifetime of the 1,3MLCT excited 

state determine the time dependence of the 3T transient state formation observed 

experimentally. The low transient population of the triplet state results primarily from the 

fact that the decay rate of the 3T state exceeds that of the 1,3MLCT state by a factor of two.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic depiction of ultrafast X-ray fluorescence detection of spin crossover 
dynamics
a, Experimental set-up involving liquid jet for sample replenishment, optical laser pump, and 

8-keV X-ray beam for generating X-ray fluorescence measured with a dispersive crystal 

spectrometer. b, Energy level diagram for Kβ fluorescence involving photo-ionization of a 

1s electron and X-ray fluorescence originating from the transition of a 3p electron to the 1s 
hole. c, Schematic diagram of how the spin crossover dynamics influence the time-

dependent Kβ fluorescence difference spectra. d, Molecular structure of [Fe(2,2′-

bipyridine)3]2+ (red, Fe atom; blue, N; grey, C; H not shown). e, A schematic drawing of the 

potential energy surfaces involved in the spin crossover dynamics.
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Figure 2. Spin-dependent iron Kβ fluorescence spectra
a, The Kβ fluorescence spectra of ground-state iron complexes with different spin moments: 

singlet ([Fe(2,2′-bipyridine)3]2+, red), doublet ([Fe(2,2′-bipyridine)3]3+, blue), triplet 

(iron(II) phthalocyanine, green), quartet (iron(III) phthalocyanine chloride, red dashed), and 

quintet ([Fe(phenanthroline)2(NCS)2], blue dashed). b, Model complex difference spectra 

for the 1,3MLCT, 3T and 5T2 excited states constructed by subtracting the singlet model 

complex spectrum from the doublet, triplet and quintet model complex spectra shown in a. c, 

Kβ transient difference spectra obtained at 50-fs time delay for [Fe(2,2′-bipyridine)3]2+ 

(black circles). The best fit of this difference spectra can be found in Extended Data Fig. 4. 

d, Kβ transient difference spectra obtained at 1-ps time delay for [Fe(2,2′-bipyridine)3]2+ 

(black circles), which closely matches the model complex difference spectra (red) obtained 

when subtracting the singlet from the quintet spectra shown in a.
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Figure 3. Time-dependent photo-induced iron Kβ difference spectra and kinetic modelling of 
spin crossover dynamics
a, Time-dependent optically induced two-dimensional Kβ fluorescence difference spectra 

for [Fe(2,2′-bipyridine)3]2+. b, c, The difference signal measured at a Kβ fluorescence 

energy of 7,061 eV (b) and 7,054 eV (c) for [Fe(2,2′-bipyridine)3]2+ (red stars), as well as 

the best fit achieved for kinetic models with (blue) or without (green dashed) a 3T1,2 

transient. The error bars in b and c reflect the standard error for the difference signal 

determined from six independent measurements.
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