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Structural Insight into Inhibition of 
CsrA-RNA Interaction Revealed by 
Docking, Molecular Dynamics and 
Free Energy Calculations
Xiaodong Ren1, Rui Zeng2, Micky Tortorella3, Jinming Wang3 & Changwei Wang3

The carbon storage regulator A (CsrA) and its homologs play an important role in coordinating the 
expression of bacterial virulence factors required for successful host infection. In addition, bacterial 
pathogens with deficiency of CsrA are typically attenuated for virulence. In 2016, the first series of 
small-molecule inhibitors of CsrA-RNA interaction were identified, which were found to achieve the 
CsrA-RNA inhibition by binding to the CsrA, without interfering with the RNA. However, the binding 
mechanism of these inhibitors of CsrA is not known. Herein, we applied molecular docking, molecular 
dynamics and binding free energy calculations to investigate the binding mode of inhibitors to CsrA. We 
found that the G11(RNA)-binding site is the most important binding site for CsrA inhibitors. An inhibitor 
with the proper size range can bind to that site and form a stable complex. We also found that inhibitors 
with larger size ranges bind to the entire CsrA-RNA interface, but have loose binding. However, this 
loose binding still resulted in inhibitory activity. The calculated binding free energy from MM/GBSA 
has a good correlation with the derived experimental binding energy, which might be used as a tool to 
further select CsrA inhibitors after a first-round of high-throughput virtual screening.

Bacterial adaptation to changing environments relies on the ability of the bacterial cell to coordinately reg-
ulate gene expression in response to chemical and physical signals by a variety of transcriptional and 
post-transcriptional regulation. The ribonucleic acid (RNA)-binding protein carbon storage regulator A (CsrA), 
which is also called regulator of secondary metabolism A or E (RsmA or RsmE) in some species are important 
and widespread post-transcriptional regulators1–4. CsrA recognises and binds to specific motifs in target mRNAs 
to regulate expression of genes for virulence factors5,6, quorum sensing5,6, motility7,8, carbon metabolism9,10, bio-
film formation11,12, and peptide uptake13, etc.

Extensive studies demonstrated that CsrA and its homologs play an important role in coordinating the expres-
sion of bacterial virulence factors required for successful host infection2,3. Bacterial pathogens with deficiency 
in CsrA are typically attenuated for virulence, which is likely a result of gene expression misregulation and the 
resulting inability to make critical physiological transitions during an infection2,3,14–17. Hence, CsrA represents a 
promising anti-infective drug target.

The three-dimensional (3D) structures of CsrA and its homologs from different species have been solved pre-
viously, which demonstrated highly similar structures18–23. The 3D structure (Fig. 1) showed that two CsrA mono-
mers, each composed of five β-strands and one α-helix, intertwine to form a symmetrical homodimer comprising 
a hydrophobic core and two identical RNA-binding surfaces20. The RNA-binding surfaces establish optimal con-
tacts with a 5′-A/UCANGGANGU/A-3′ sequence motif present in the 5′ untranslated region (5′ UTR) of RNA20,24. 
When bound by CsrA, the ANGGA core folds into a loop stabilised by a 3-base pair (bp) stem of the flanking 
nucleotides. In this clamp-like structure, the Shine-Dalgarno sequence which is part of the ribosome-binding site 
and marks the starting point of translation, is sequestered and thus translation is repressed25–27. Small noncoding 
RNAs (sRNAs) that contain multiple CsrA binding sites antagonise CsrA in a competitive manner, which permits 
them to sequester multiple CsrA homodimers away from mRNA targets28–30.

1Department of Pharmacy, Guizhou Provincial People’s Hospital, Guiyang, 550002, P.R. China. 2College of Pharmacy, 
Southwest University for Nationalities, Chengdu, 610041, P.R. China. 3Guangzhou Institute of Biomedicine and 
Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, Guangdong, 510530, P.R. China. Correspondence 
and requests for materials should be addressed to C.W. (email: wang_changwei@gibh.ac.cn)

Received: 1 June 2017

Accepted: 18 October 2017

Published: xx xx xxxx

OPEN

mailto:wang_changwei@gibh.ac.cn


www.nature.com/scientificreports/

2Scientific REPOrTS | 7: 14934  | DOI:10.1038/s41598-017-14916-6

In 2016, Hartmann et al.31 described the discovery of the first CsrA-RNA interaction inhibitors by screening 
a library of small molecules. They identified seven structurally diverse hits capable of inhibiting the CsrA-RNA 
interaction in a dose-dependent manner with an IC50 range of 4 to 106 μM. Inhibition was achieved by 
dose-dependent binding of the inhibitor to CsrA and not by interfering with RNA. Five of the seven compounds 
are shown in Fig. 2, and structures of the other two compounds were not disclosed in Hartmann’s report for intel-
lectual property reasons. As this is the first series of CsrA inhibitors to be identified, their binding mechanism is 
not known. Herein, we perform docking, molecular dynamics as well as free energy calculations to investigate 
the binding mechanism.

Results
Molecular docking.  In the present study, we first used molecular docking to obtain the most possible 
binding pose for each compound. The five inhibitors were docked with CsrA at the RNA-binding interface. The 
predicted binding energy for each compound calculated by Autodock is summarised in Table 1. It was shown 
that despite compound 2 which has the lowest activity exhibited the highest binding energy, the ranking of 
the predicted binding energy for all the compounds was not in agreement with the experimental IC50 values 
reported.

To better study the binding poses, we analysed the RNA-binding surface of CsrA and designated four regions, 
namely sites 1 to 4 (Fig. 3a). As shown in Fig. 3a, the G10, G11, A12 of RNA core motif GGA in the complex 
occupied site 2, site 1 and site 4, respectively. The docking poses for each compound with the lowest binding 
energy which are the most likely binding poses, are shown in Fig. 3b. Compound 2 and 3 only occupy site 1, 
with their acetamide moiety oriented towards the N-terminal of chain A. Compound 5 occupies sites 1 and 2, 

Figure 1.  3D structure of the CsrA homologs RsmE binding with RNA (PDB ID: 2JPP). (a) The structure of the 
2:2 complex of RsmE with 20-nucleotide hcnA RNA. Protein ribbons for each monomer are shown in orange 
and cyan. RNA cartoons are shown in green. (b) The structure of one RNA bound to the edge of the RsmE 
dimer with the second RNA molecule omitted in the background; the binding sequence motif UCACGGAUGA 
is shown by the magenta line.

Figure 2.  The structures and IC50 of the five CsrA inhibitors.
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with its carboxy group and tetrahydropyran moiety binding at site 2, while the dihydropyran end binding at site 
1. Compound 1 mainly occupies site 1, but extends its allyl group into site 2. Due to its large size, compound 4, 
which is the most active compound occupies sites 1 ~ 4.

Stability of protein during MD simulation.  To investigate the thermodynamics of the complexes of CsrA 
and ligands, 20 ns MD simulation were performed for each complex. To monitor the structural stability of the 
receptor, the root mean square deviation (RMSD) values of the backbone atoms of the entire protein were cal-
culated. As we envisioned that the C-terminal helix of both chains might have continuous fluctuation during 
the simulation, the backbone RMSD of protein cores (1–45 aa of both chains) without the C-terminal helix was 

Compounds IC50 (μM) Binding energy(kcal/mol)

1 39 −7.86

2 71 −5.82

3 27 −5.90

4 11 −7.18

5 24 −7.78

Table 1.  The binding energy of compounds binding to CsrA calculated by Autodock.

Figure 3.  Potential binding sites on CsrA and docking binding pose of the inhibitors on the CsrA-RNA binding 
interface. (a) Potential binding sites on the CsrA-RNA binding interface. The interface was formed by the 
N-terminal of chain A (orange) and Chain B (cyan). RNA was shown as a magenta cartoon and the G10 (red), 
G11 (blue), A12 (green) of RNA core motif GGA are shown as sticks. (b) The binding pose of inhibitors of CsrA 
derived from Autodock. Compounds 1 (red), 2 (green), 3 (blue), 4 (magenta) and 5 (white) are shown as a stick.

Figure 4.  Backbone RMSD of the entire protein (a) and protein core structure (b). The number in the 
parentheses is compound number.
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calculated. As shown in the Fig. 4, the RMSD for the entire protein backbone in all complexes fluctuate continu-
ously during the simulation, but the protein core without helixes in all complexes reached equilibrium after 8 ns 
of the simulation phase. As the binding sites are mainly located on the protein core structure, the trajectories of 
the MD simulations for all of the complexes after equilibrium of the protein core RMSD should be reliable for 
further analyses. It is noteworthy that the stability of the protein core does not necessarily guarantee the stability 
of the complexes as will be discussed later.

Binding free energy calculated by the MM/GBSA method.  The Molecular Mechanics/Generalized 
Born Surface Area (MM/GBSA) method has been widely utilised to study the receptor-ligand interaction in many 
cases32. In our study, 500 snapshots were extracted at every 10 ps of intervals from last 5 ns MD trajectory. Five 
different GB models available in AMBER (igb = 1 (GBHCT), 2 (GBOBC I), 5 (GBOBC II), 7 and 8; see Methods section) 
were used in this study, and the corresponding binding free energies are summarised in Table 2.

It was shown that there was a good correlation between predicted binding energies ΔGMM-GBSA versus exper-
imental IC50 derived binding energies ΔGcalc. The correlation coefficient R2 for GB models GBOBC I (igb = 2) and 
GBOBC II (igb = 5) were 0.99 and 1.00 respectively (Fig. 5). The correlation coefficient when using igb = 1, 7 and 
8 was 0.76, 0.74 and 0.79 respectively (The correlation graph for igb = 1, 7 and 8 can be found as Supplementary 
Figs S1–S3)

Table 3 showed different components of the ΔGMM-GBSA using igb = 5 (The energies of different components of 
each complex using igb = 1, 2, 7 and 8 can be found as Supplementary Tables S1–S4). It was revealed that the polar 
component of solvation (ΔGpolar) contributed unfavourably to binding of all five inhibitors, which are especially 

Compounds
ΔGMM-GBSA

a 
(igb = 1)

ΔGMM-GBSA
a 

(igb = 2)
ΔGMM-GBSA

a 
(igb = 5)

ΔGMM-GBSA
a 

(igb = 7)
ΔGMM-GBSA

a 
(igb = 8)

IC50 
(uM) ΔGcalc

a,b

1 −19.81 ± 0.24 −15.74 ± 0.20 −15.83 ± 0.20 −14.73 ± 0.18 −13.66 ± 0.17 39 −6.05

2 −13.39 ± 0.26 −9.87 ± 0.23 −9.96 ± 0.24 −7.03 ± 0.20 −9.52 ± 0.20 71 −5.70

3 −21.12 ± 0.12 −17.51 ± 0.12 −18.40 ± 0.13 −12.48 ± 0.12 −13.80 ± 0.11 27 −6.27

4 −30.39 ± 0.18 −25.20 ± 0.17 −25.95 ± 0.18 −21.27 ± 0.17 −21.23 ± 0.16 11 −6.80

5 −16.20 ± 0.12 −18.07 ± 0.16 −19. 00 ± 0.17 −21.27 ± 0.19 −20.94 ± 0.18 24 −6.34

Table 2.  MM/GBSA derived binding free energies of CsrA-inhibitor complexes calculated from the MD 
simulations using different GB Models. aAll values are given in kcal/mol, and ΔGMM-GBSA values are given as 
average ± SEM (standard error of the mean). bBinding free energies ΔGcalc were calculated from experimental 
IC50 using the equation: ΔGcalc ≈ RTln IC50, where R is ideal gas constant, T is the temperature in K (300 K is 
used in this paper)53,54.

Figure 5.  Correlation of the predicted binding energies by MM-GBSA (ΔGMM-GBSA) using GBOBC I (a) and 
GBOBC II models (b) with binding energy (ΔGcalc) calculated from experimental IC50.

Compounds ΔEvdW
a ΔEele

a ΔGpolar
a ΔGnonpolar

a ΔGMM-GBSA
a

1 −23.88 ± 0.23 −9.53 ± 0.23 20.50 ± 0.27 −2.92 ± 0.03 −15.83 ± 0.20

2 −15.95 ± 0.28 −21.14 ± 0.38 29.09 ± 0.43 −1.96 ± 0.03 −9.96 ± 0.24

3 −22.60 ± 0.10 −25.84 ± 0.36 32.71 ± 0.35 −2.67 ± 0.01 −18.40 ± 0.13

4 −27.92 ± 0.15 −78.78 ± 0.54 84.75 ± 0.54 −4.00 ± 0.02 −25.95 ± 0.18

5 −21.64 ± 0.12 −65.26 ± 0.70 71.34 ± 0.66 −3.44 ± 0.02 −19.00 ± 0.17

Table 3.  MM/GBSA binding free energies and different components of CsrA-inhibitor complexes calculated 
from the MD simulations using igb = 5. aAll values are given in kcal/mol and as average ± SEM (standard error 
of the mean).
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obvious in the 4 and 5 bound complexes. However, the unfavourable ΔGpolar is mostly, but not fully, compensated 
by the favourable electrostatic charge-charge interactions ΔEele, especially in the 4 and 5 bound complexes.

Identification of the key residues.  To obtain a more detailed thermodynamic description of the residue 
contributions to the binding free energy, we decomposed the binding energy ΔGMM-GBSA on a per-residue level 
depicted in Fig. 6. As shown in Fig. 6, the contribution of an individual residue to binding varies from +1.7 to 
−5.4 kcal/mol. These groups of interactions consist of 13 residues in total with the binding energy of lower than 
−1 kcal/mol. The decomposition approach was helpful for locating residues that contribute to the receptor-ligand 
interaction.

For compound 1 and 3, the binding energies were mainly due to residues Leu2(A), Asn35(B), Ala36(B), 
Ser41(B) and Val42(B). For compound 2, the binding energies were guided by residues Leu2(A), Lys38(B). The 
residue contributions for compound 4 come from Leu2(A), Ile3(A), Leu4(A), Arg31(B) and Arg44(B), while the 
contributions for compound 5 arise from Val42(B), His43(B), Ile47(B), Arg50(B) and Ile51(B).

Clustering analysis.  In order to explore the structural differences between the initial docking pose and the 
MD simulated pose, clustering analysis was applied to extract the representative conformation after 15 ns of MD 
simulation. Each trajectory of the last 5 ns was divided into five clusters using the average linkage algorithm. From 
the largest number of clusters, the conformation with the lowest RMSD to the cluster centre was selected. And the 
representative structures for each system compared with initial structures are shown in Fig. 7.

As shown in Fig. 7, the protein (especially the protein core structure without helixes) in all complexes are quite 
stable during simulation. Compound 1 and 3 still stayed in site 1, with only slight movement compared with the 
initial pose after 15 ns simulation. Compound 2 withdrew from site 1, which was probably the main reason that 
compound 2 exhibited an unfavourable binding free energy and poor in vitro activity. Compound 4 and 5 exhib-
ited notable conformation changes, and both of them moved around the protein surface. Compound 4 mainly 
moved toward site 3 with its 1-methylpiperidine moiety withdrawn from site 1. Compound 5 also retreated from 
site 1 and moved toward the C-terminal of the chain B, and exhibited interactions with Arg50B and Ile51B at the 
C-terminus, as demonstrated in Fig. 6.

Among the five inhibitors, compound 1, 2 and 3 have relative higher ligand efficiency (LE)31 of 0.24, 0.24 and 
0.38 compared to compound 4 and 5, with LE of 0.15 and 0.19. A higher LE is considered more favourable for 
affinity optimisation of a lead compound, as during the process of optimisation a lead molecule making its way to 
a clinical candidate, usually results in an further increase in molecular weight33. In addition, compound 4 and 5 
have dramatic conformational or positional changes in comparison to its original pose. From the MD simulation 
results, compound 1 and 3 demonstrate the potential to be a lead compound for further optimisation. Although 
compound 2 has equal LE with 1, its loose binding and poor activity make it hard to be optimised. We also ana-
lysed the residue interaction of CsrA with 1 and 3. As shown in Fig. 7f ~ g, compound 1 forms one hydrogen bond 
with Leu2A and Val42B, two with Asn35B. In addition, compound 1 also formed a hydrophobic interaction with 
Leu2A. Compound 3 forms one hydrogen bond with Val42B and two hydrogen bonds with Leu2A. The binding 
interaction of compounds 1 and 3 with CsrA indicated that hydrogen bond formation is important to the binding, 
and compounds with hydrogen bond donor and acceptor potential with Leu2A, Asn35B and Val42B may result 
in improved activity.

Discussion
Protein-protein or protein-RNA interactions are clearly challenging drug targets because the binding interface 
does not usually show small, deep cavities that are optimal for small-molecule-binding sites34. It is inspiring that 
the CsrA–RNA interaction could be blocked by small molecules like compound 3 with a low molecular weight 
(MW of 229 Da). As the first series of CsrA-RNA inhibitors to be identified, its binding mode to CsrA was not 
defined. Thus, the current study investigated the binding mechanism of these inhibitors to CsrA and may be help-
ful for better understanding the affinity differences between these molecules as well as help future drug design.

Figure 6.  Contribution of each residue to the binding free energy. Residues 1–58 aa are residues comprising 
chain A, residues 59–144 aa represent chain B.
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We firstly compared the sequence of CsrA from Y. pseudotuberculosis YPIII and the two chains in 
CsrA homolog RsmA from Y. enterocolitica (PDB ID: 2BTI), and the sequence alignment can be found as 
Supplementary Fig. S4. It was shown that CsrA bear only one residue difference (60th aa) with the both chains of 
2BTI. In protein 2BTI, 1–58 aa of chain A and 1–56 aa of chain B were solved, and the missing residues located 
in C-terminus, are far from the CsrA-RNA interface and not likely relevant. Thus, CsrA homolog RsmA proein 
was used in this study.

Molecular docking of the five inhibitors to the RNA-binding interface showed that site 1 (G11(RNA)-binding 
site) is the most viable site to accommodate small molecules, followed by site 2 (G10(RNA)-binding site), as evi-
denced by compounds 1 and 3 with their small molecular size binding to site 1, compound 4 with a larger size 
binds to both sites 1 and 2. Molecular docking is an important tool for obtaining possible binding poses for each 
compound; although, due to the structural diversity of the compounds and all the possible binding sites, the rank-
ing of the predicted binding energy was not in agreement with the experimental IC50 values.

We also performed 20 ns MD simulation to study the thermodynamics of the complex, as well as calculated 
the binding free energy based on the MD trajectories. In the MM/GBSA free energy calculations, different GB 
models give slightly different polar solvation energies ΔGpolar, which resulted in slightly different relative bind-
ing free energies ΔGMM-GBSA. The calculated binding free energies have good correlation with ΔGcalc which are 
derived from the experimental IC50 values. However, as the available data is limited, using the MM/GBSA method 
to more widely predict the binding energy and affinities still need more validation.

Clustering analysis provided important information and gave us a representative structure in a selected 
time period. The representative structures during the last 5 ns demonstrated different conformation changes. 
Compound 1 and 3 stayed in site 1 after at least 15 ns of simulation, showing that a small fragment binds to the 
site to form a stable complex and yield promising activity. Compound 2 retreated from the site 1 during simula-
tion, indicating loose binding for compound 2 in site 1 resulting in decreased activity. Compound 4 and 5 have 
larger molecular sizes and can occupy more surfaces. In fact, compound 5 occupied both sites 1 and 2, while 
compound 4 occupied almost half of the interface, but readily moved around, indicating that there’s no deep 
pocket that can accommodate larger-size inhibitors. However, that does not necessarily mean the two inhibitors 
can more easily dissociate from the protein compared to compounds 1 and 3, as demonstrated that 4 and 5 have 
the highest inhibitory activity among the five inhibitors.

From the point of view of medicinal chemistry, compound 3 with a simple structure, high ligand efficiency 
and obvious activity, may deserve further lead optimisation consideration.

In conclusion, we applied molecular docking, molecular dynamics and binding free energy calculations to 
investigate the binding mechanism of several inhibitors to CsrA and is the first report to study the binding of 
compounds to CsrA. We found that site 1 (G11(RNA)-binding site) is the most important binding site for small 
fragments. An inhibitor with proper size range and shape can bind to site 1 and form a stable complex. It was also 
found that inhibitors with large size range can bind to the entire interface, but are only loosely bound. However, 
this loose binding still resulted in promising inhibitory activity. The calculated binding free energy from MM/

Figure 7.  The conformation change of the complexes after MD simulation and receptor-ligand interaction. (a) 
~ (e) are conformation change of the complexes of CsrA and compound 1 ~ 5 after MD simulation. For each 
comparison diagram, representative MD simulated CsrA (orange) and ligands (red) were aligned to the initial 
CsrA structure (cyan) and ligands (blue). (f) and (g) are binding site amino acid residue interactions between 
CsrA and bound 1 and 3. Hydrogen bonds are depicted by a blue solid line, and hydrophobic interaction is 
depicted by a grey dotted line.

http://S4
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GBSA has a good correlation with the experimental inhibitory activity and might be used as a tool to further 
select CsrA inhibitors after a first-round high-throughput virtual screening. Our analysis in this report may facil-
itate further anti-infective drug design targeting CsrA.

Methods
Protein and ligand preparation.  The CsrA protein used to screen the inhibitors in previous report31 was 
constructed based on CsrA gene from Y. pseudotuberculosis YPIII, and the 3D structure of CsrA from this spe-
cies is not known. However, the structure of CsrA homolog RsmA (PDB ID: 2BTI), which only bear one resdue 
difference with CsrA, have been solved via X-ray crystallography21. Thus, the structure of RsmA was retrieved 
from the PDB bank(www.rcsb.org) and used in the following studies (We still called it CsrA in the whole study 
for clarity). The binding site was determined by aligning the structure of 2BTI to the RsmE/mRNA complex 
(PDB ID: 2JPP)20, as RsmE has 71% identity to CsrA (Y. pseudotuberculosis YPIII). All of the 3D structure of small 
molecules were built and energy minimised using Avogadro v1.2.035. The steepest descent algorithm using the 
MMFF94 force field was used in the energy minimisation.

Molecular Docking.  AutoDock 4.2.3 program package was used for molecular docking and AutoDock Tools 
1.5.6 (ADT) was used to prepare the PDBQT file format of ligands and protein36. The docking calculations were 
performed by locating a 50 × 90 × 80 points grid map and with a 0.375 Å grid point spacing which covers the 
entire interface of CsrA/RNA. 250 independent docking runs were performed for each docking simulation with 
2,500,000 energy evaluations for each run. Other docking parameters were set to default. In docking calculations, 
the obtained poses were ranked using an energy-based scoring function. After all outputs were clustered based 
on the root mean squared deviation (RMSD) values, the top pose of docked ligands with the lowest energy in the 
biggest cluster were saved. For all docking analyses, only the best-scored pose was taken into account.

Molecular Dynamics Simulation.  Docked binding poses were used to run molecular dynamics simu-
lations using the Amber16 software package37. Each compound was assigned AM1-BCC38,39 charges and gaff40 
atom types using antechamber. Simulations were carried out using the GPU accelerated version of the PMEMD 
program with Amber ff99sb41 force field in periodic boundary conditions. Complexes were immersed in a trun-
cated octahedron box of TIP3P42 water molecules with a margin distance of 12.0 Å. The solvated box was further 
neutralised with Na+ or Cl− counter ions using the tleap program. Particle Mesh Ewald (PME)43 was employed to 
calculate the long-range electrostatic interactions. The cutoff distance for the long-range van der Waals (VDW) 
energy term was 12.0 Å. In order to remove any steric conflicts induced during system setup, structural optimi-
sations were first performed on the relaxed water molecules and counter ions in two steps with the harmonic 
constraint potential of 2.0 kcal/mol·Å2 on all heavy atoms of both protein and ligands. Afterwards, the whole 
system was minimised without any restraint. The above steps were all executed by 2500 cycles of steepest descent 
minimization followed by 5000 cycles of conjugate gradient minimization. After system optimisation, running 
of MD simulations was started on the systems by gradually heating each system in the NVT ensemble from 0 
to 300 K for 50 ps using a Langevin thermostat with a coupling coefficient of 1.0/ps and with a force constant of 
2.0 kcal/mol·Å2 on the complex. And then 500 ps of density equilibration with a force constant of 2.0 kcal/mol·Å2 
on the complex was performed. Subsequently, the systems were again equilibrated for 500 ps by releasing all the 
restraints. Finally, production runs for 20 ns MD simulations were performed under a constant temperature of 
300 K in the NPT ensemble with periodic boundary conditions for each system. During the MD procedure, the 
SHAKE algorithm44 was applied for the constraint of all covalent bonds involving hydrogen atoms. The time step 
was set to 2 fs.

Binding free energy calculations and per-residue free energy decomposition analysis.  MM/
GBSA free energy calculation has been successfully been used in many reported that can accurately predict the 
activity, which has the advantage of rapid speed, and the binding free energy can be decomposed into different 
components and on a per-residue level32.

The binding free energy was calculated using the MM/GBSA procedure implemented in Amber 16. The aver-
age 500 snapshots were extracted from the last 5 ns of MD trajectory at 10 ps intervals. Briefly, the MM/GBSA 
method can be summarised by the following equations.

Δ = − +( )G G G G (1)binding complex receptor ligand

= + − ΔG E G T S (2)x MM solv

= +E E E (3)MM vdW ele

= +G G G (4)solv polar nonpolar

γ β= +G SASA (5)nonpolar

Δ = Δ + Δ + Δ + Δ−G E E G G (6)MM GBSA vdW ele polar nonpolar

http://www.rcsb.org
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For each snapshot, binding free energy was calculated as the difference between the free energy of the complex 
(Gcomplex) and the total of the free energies of the receptor (Greceptor) and the ligand (Gligand), shown in equation (1). 
The free energy of each component Gx in equation (1) can be computed as the sum of the molecular mechan-
ical(MM) gas-phase binding energy (EMM), the solvation free energy (Gsolv) and the configurational entropy 
(−TΔS) contribution (equation (2)). EMM is further divided into van der Waals (EvdW) and gas-phase electrostatic 
energies (Eele) (equation (3)), while the solvation free energy (Gsolv) is further divided into a polar (Gpolar) and a 
nonpolar (Gnonpolar) component (equation (4)).

The polar solvation energy contribution was calculated by solving Generalized Born (GB) equation 
(MM-GBSA calculation) with the MM-GBSA module in AMBER. There are five different GB models, namely 
GBHCT(igb = 1)45, GBOBC I (igb = 2)46, GBOBC II (igb = 5)46, and two GBn models (igb = 7, 8)47 developed until 
now. In our study, all of the five available GB solvation models are used to see which one can best predict the 
activity of inhibitors. The nonpolar component (Gnonpolar) was determined using equation (5), where SASA is the 
solvent-accessible surface area, with the γ and β using the default value. The value of the implicit solvent dielectric 
constant and the solute dielectric constant for GB calculations was set to 80 and 1, respectively. The solvent probe 
radius was set to 1.4 Å as default.

The absolute binding energy is often determined by considering the conformational entropy contribution 
(−TΔS), where T is the absolute temperature and S the entropy of the molecule. The entropy of the molecule 
accounts for the loss of translational, rotational and conformational degrees of freedom of ligand upon binding. It 
has already been reported that inclusion of entropy in calculations did not always improve the accuracy48. It was 
also found that the inclusion of conformational entropy compromised the agreement between predicted absolute 
binding free energy and experimental binding free energy due to large fluctuations in the calculated entropy 
values49. In addition, the entropy calculation is computationally expensive. Thus, the binding free energy was cal-
culated without considering the entropy contribution in this study to see whether a correlation could be achieved 
between relative binding free energies and biological data.

In summary, the relative binding energy (ΔGMM-GBSA) are evaluated by a sum of the changes of each compo-
nent in equation (6).

To obtain a detailed view of the protein-ligand binding and identify the key residues responsible for the bind-
ing, free energy decomposition to each residue was performed using the MM/GBSA method with GBOBC I model 
(igb = 2). All energy decomposition analyses were performed on the same snapshots which were used in the 
above calculations.

Trajectory analysis.  Clustering is a means of partitioning data so that data points inside a cluster are more 
similar to each other than they are to points outside a cluster. The cluster analysis of protein conformations was 
carried out using cpptraj module with average linkage as the clustering algorithm, and backbone atom RMSD as 
the distance metric. The average linkage algorithm is recommended in the previous report50. The interactions 
between ligand atoms and protein residues were determined using the fully automated protein–ligand interaction 
profiler (PLIP)51. Pymol 1.852 was used for structural alignments and visualisations. For plotting graphs, MS Excel 
(2016), Xmgrace (Grace 5.1.25) were used.
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