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Abstract

Viscoelastic relaxation spectra are essential for predicting and interpreting the mechanical 

responses of materials and structures. For biological tissues, these spectra must usually be 

estimated from viscoelastic relaxation tests. Interpreting viscoelastic relaxation tests is challenging 

because the inverse problem is expensive computationally. We present here an efficient algorithm 

that enables rapid identification of viscoelastic relaxation spectra. The algorithm was tested against 

trial data to characterize its robustness and identify its limitations and strengths. The algorithm 

was then applied to identify the viscoelastic response of reconstituted collagen, revealing an 

extensive distribution of viscoelastic time constants.
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1. Introduction

The mechanical responses of nearly all materials and structures are viscoelastic, differing to 

some degree based upon the rate and duration of loading (Osaki, 1973; Frost & Ashby, 

1982; Baschnagel, 2000; Hillman et al., 2005; Stadler et al., 2005). Characterizing 

viscoelasticity is important because viscoelasticity affects the transmission, storage, and 

dissipation of force and energy, and because variations in viscoelastic response as a function 

of loading duration or frequency can provide clues about micromechanical deformation, 

resilience mechanisms and molecular structure. Because cells and collagen-rich extracellular 

matrix (ECM) show strong viscoelastic behavior at physiological loading rates (Guilak et al., 

2000; Pryse et al., 2003; Xu et al., 2013; Antoine et al., 2014), viscoelasticity is a factor in 

almost all biological tissues and organs. Indeed, viscoelastic responses have been studied as 

metrics of tissue function and health of arteries (Corman et al., 1998), brain parenchyma 

(Schregel et al., 2012), liver tissues (Chen et al., 2013), the prostate (Salcudean et al., 2006), 

skin (Clancy et al., 2010), breasts (Carp et al., 2008), articular cartilage (Edelsten et al., 

2010), ligaments (Abramowitch et al., 2004), and tendon (Fang et al., 2014) and its 

attachments to bone (Thomopoulos et al., 2003).

For engineering polymers, the characterization test of choice is often rotational rheometry, 

which can provide information about the frequencies and timescales of loading over which a 

material absorbs energy most effectively. However, rotational rheometry is often unsuitable 

for the characterization of biological tissues because of issues of gripping, orienting, and 

aligning specimens (Arbogast & Margulies, 1998). Instead, other viscoelastic protocols such 

as relaxation tests are typically used. These involve ramping uniaxial stretch to a prescribed 

level, then monitoring the isometric force needed to sustain that level of stretch.

However, estimating the viscoelastic spectrum from the time variation of this isometric force 

response requires solving a difficult and ill-posed inverse problem (Provencher, 1982a,b). 

Here we present an algorithm that is fast enough to yield a discrete spectrum of time 

constants sufficient to fit a measured relaxation spectrum with an accuracy insensitive to 

further refine-ment. The algorithm fits a discrete spectral generalized Maxwell (Maxwell-

Wiechert) model to results from a stress-relaxation test. The algorithm is analogous to the 

inverse fast Fourier transformation (FFT), except that the algorithm dissects the time domain 

relaxation data into a spectrum of viscoelastic time constants,each defined as a viscous 

coefficient η divided by an elastic modulus E (Fig. 1). Several idealized, noisy, and 

incomplete data sets were analyzed to establish the strengths and limitations of the approach. 

Thereafter, the approach was applied to study the viscoelastic relaxation of reconstituted 

collagen.

1.1. Background: the generalized Maxwell (Maxwell-Wiechert) constitutive model

The Maxwell model (Fig. 1(a)) is composed of a linear dashpot connected in series with a 

linear spring. A feature of this model is that it has a single relaxation time constant, τ = η/E. 

However, this does not wholly simulate the viscoelastic behavior of most materials. For this 

reason, the generalized Maxwell (or Maxwell-Wiechert) model with multiple springs and 

dashpots is commonly applied (Fig. 1(b)). This model is composed of a spring of elastic 

modulus E0 in parallel with M Maxwell elements, with the ith Maxwell element having time 
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constant τi and a spring of elastic modulus Ei. Since the components of the generalized 

Maxwell model are connected in parallel, all branches have the same strain ε(t) at all times t, 
and the overall stress of the system is the sum of the stresses in each branch. The response of 

a fully relaxed generalized Maxwell material to a strain history ε(t) is typically studied 

following convolution integral:

(1.1)

where σ(t) is the generalized Maxwell prediction of the overall stress in a material sample, 

M is the number of Maxwell branches, s0 is stress in the single spring and si(t) is the stress 

within the ith Maxwell element.

When calibrating the generalized Maxwell model to a particular material, the objective is to 

find the strain-independent material properties Ei and τi and number of branches M.

Although Eq. (1.1) is particularly simple when the ε(t) represents a stepwise change in 

strain, approximating such a strain course experimentally is fraught with difficulty because 

inertial effects can cause overshoot in the loading frame and wave motion in the specimen 

that can in turn cause substantial error in parameter fitting (Nekouzadeh et al., 2005). 

Instead, strain is typically increased at some constant rate ε̇ over a time interval 0 ≤ t ≤ tp, 

and then held over the time interval tp ≤ t ≤ tf (Fig. 1(c)). At discrete times tj, the predicted 

stress response is (Fig. 1(d)):

(1.2)

where p and f are the number of data points in ramp and relaxation intervals, respectively. 

Note that the response to a very fast ramp (tp → 0, ε̇ → ∞) to a defined strain level εp has 

the simple form:

(1.3)

where the substitution t = ε/ε̇ was made into Eq. (1.2), and  was 

used.
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2. Methods

2.1. Fitting of generalized Maxwell data

Two classes of approaches were used to fit a generalized Maxwell model to stress data σ̄(tj) 
recorded at discrete times tj as a material responds to a straining history ε(tj): an ad hoc 
approach and a discrete spectral approach. We present here both approaches.

ad hoc approach—The first approach was a simple and widely used ad hoc approach, 

requiring an ad hoc function to compute Ei and τi. Thus, the number M of Maxwell elements 

was guessed in advance, and the time constants τi and associated values of Ei were 

unknown. The values of τi and Ei could be estimated by minimizing the least squares error 

to fit a set of f observations with a relation for 2M unknown parameters (f > 2M). The 

approach started with a vector of initial guesses for Ei and τi and refined the estimates 

iteratively by minimizing the mean squared error:

(2.1)

where s0 and si(t) were defined in Eq. (1.1) and σ̄(t) is the recorded stress history. We found 

that the ad hoc approach could fit most experimental stress-relaxation data with M = 2 or 3. 

This can be advantageous because a fit to subsequent analogous loadings could be obtained 

with little effort or complexity. However, this could be disadvantageous because such fitting 

may provide little information relevant to the characterization of intrinsic deformation 

mechanisms. Further, if one analyzes a single set of experimental data with three different 

arbitrary exponential terms, e.g. M=1,2 or 3, the results of these analyses are not comparable 

easily: the derived parameters such as τi and Ei are usually affected by the arbitrarily chosen 

M. In the following sections we present a simple, fast, and robust algorithm for overcoming 

this limitation.

Discrete spectral approach—In the second approach, the time constants τi of Maxwell 

elements were chosen in advance, with τi spaced sufficiently closely to be approximately 

continuous on a logarithmic scale. For analysis of collagen, on the order of M = 1000–10000 

time constants were distributed equidistantly in logarithmic space over an interval of 10−3 to 

105 s, an interval broader than any previously reported time constants of biological 

materials. The corresponding values of Ei were determined by fitting a generalized Maxwell 

model to relaxation data σ̄(tj).

The problem of determining a low-rank solution is ill-posed. A range of methods exist for 

this problem, but they are relatively slow and are thus difficult to optimize (Provencher, 

1982a; Stadler & Bailly, 2009; Honerkamp, 1989). Our contribution is a relatively fast 

algorithm that enables a well converged (although not necessarily optimal) approximation to 

experimental data. We converted (1.2) to a system of linear equations in matrix form that 

could be solved rapidly as:
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(2.2)

where aij = τiε̇ (1 − e−tj/τi) for i = 1,2, …, M and for j = 1,2, …, p; and bij = τiε̇ (1 − e−tp/τi) 

e−(tj−tp)/τi for i = 1,2, …, M and for j = p, p + 1, …, f.

The matrix form of (1.3) was written:

(2.3)

where cij = εpe−ti/τj for i = 1,2, …, M & j = 1,2, …, p.

A non-negative least squares regression (Lawson & Hanson, 1974; Bro & De Jong, 1997) 

was used to determine the values Ei from the stress-relaxation data. For a large dataset, 

corresponding to a large-scale matrix, solving the above equations was computationally 

expensive. Our approach was to use a singular value decomposition method (Demmel, 1997; 

Klema & Laub, 1980) to decrease the rank of the matrices and speed up the solution 

procedure. The procedure was repeated with increasingly large numbers M of Maxwell 

elements to ensure that approximations converged to those that would arise from infinitely 

large matrices. For all cases studied, spectra estimated using M = 1000 did not differ from 

those estimated using M = 10000. We therefore used M = 1000, and the algorithm calculated 

dominant time constants and moduli of relaxation data sets precisely, without needing to 

guess the requisite number of time constants in advance.

Convergence was achieved in 6.4 s when the algorithm was implemented in uncompiled 

Matlab (The Mathworks, Natick, MA) on a laptop running with an Intel Core i7-4710 CPU 

at 2.50 GHz and 8 GB of RAM for f=25,000 data points and M=1000 time constants.

2.2. Calibration

Fitting to idealized and incomplete data—Simulated stress-relaxation data were 

generated using the generalized Maxwell model and a strain history involving a ramp to 

10% strain at a constant rate of 100%/s, followed by 500 s with the strain level held constant 

at the fixed level of 10%. The generalized Maxwell model had M = 3 Maxwell elements in 

parallel with a linear spring. The elastic modulus of the parallel spring was E0 = 100 MPa; 
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the time constants of Maxwell branches were {τ1, τ2, τ3} = {1 s, 10 s, 100 s}; the elastic 

moduli of the springs within the Maxwell branches were {E1, E2, E3} = {18 MPa, 25 MPa, 9 

MPa}. Data were generated at 50 data points per second.

Several permutations were studied, including fitting the generated data with a generalized 

Maxwell model having M=1, 2, 3 and 4 time constants, and fitting of truncated datasets. The 

latter studies aimed to assess the robustness of the procedure when data are acquired over 

time intervals that are not long compared to the longest time constant.

Sensitivity to noise—To study the stability of both ad hoc and discrete spectral fittings 

with respect to noise, random noise was added to the simulated stress-relaxation data. We 

superimposed upon the data noise chosen from the Gaussian distribution with amplitudes of 

0%, 1%, 2%, 3% and 4% of the steady state stress. These noise amplitudes were in the range 

of experimental levels of noise. In this way, 50 noisy data sets were generated (10 sets for 

each noise percentage). For these new data sets, the time constants of the system were 

estimated. The sensitivity to noise level was then quantified by relative error of the predicted 

parameters compared to the underlying input ones.

2.3. Estimation of the viscoelastic relaxation spectrum of reconstituted collagen

Viscoelastic relaxation spectra of reconstituted collagen gels were estimated from the data of 

Pryse et al. (2003) using both the ad hoc and discrete spectral approaches. Briefly, type I rat 

tail collagen (Upstate Biotechnologies), was diluted to 2.5 mg/ml in Dulbecco’s Modified 

Eagle Medium (DMEM) brought to pH 7 with sodium hydroxide. One milliliter of the 

collagen solution was pipetted into Teflon casting molds composed of an outer cylinder and 

an inner mandrel, and centrifuged gently and incubated at 37 °C to form ring-shaped 

specimens of 9.5 mm inner diameter, 2 mm thickness, and 10 mm height. Specimens were 

kept in molds at 37 °C for 15–18 hours before force measurements were performed. Ring 

gel specimens were then removed from the casting mold and mounted on a loading frame. 

Specimens were stretched to a strain of 6.7% in 20 ms and held isometrically while the force 

was monitored for 30 min at 5 Hz.

3. Results and Discussion

Because the generalized Maxwell model only approximates dominant elastic moduli and 

time constants of a real material, validation of the fitting method began with application to a 

fictional material whose mechanical response followed the generalized Maxwell model 

exactly. In this way, we checked the reproducibility of the approximations to further 

understand how the approximations deviate from the optimum. Then, viscoelastic response 

of collagen gel (Pryse et al., 2003) was reinterpreted by using the discrete spectral approach.

3.1. Characterization of relaxation spectra from idealized generalized Maxwell data

Ad hoc analysis—We began by evaluating what happens when data generated via the 

generalized Maxwell model with M=3 were interpreted using the ad hoc approach with 

M=1, 2, 3, or 4. When data from a model with M = 3 Maxwell elements were fitted using a 

generalized Maxwell model with M=1 elements (i.e., a system including a spring and 
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dashpot in series, in parallel with a single spring), the longest relaxation was estimated while 

two fast relaxation time constants were missed (Fig. 2(b)). The data were fitted based on 

their weights (with MSE regression); thus, the model estimated the time constants which had 

the highest weight in the data, which is τ=100 s. Correspondingly, the fitting (Fig. 2(a)) was 

good for longer times, but noticeably poor at shorter times. Different weighting functions 

could be applied to change this, but optimization based upon approach always captured the 

longest time constants.

For M=2, the two longer time constants were well estimated (Fig. 2(c)–(d)), and the fit to the 

data was much improved. For M=3 all three time constants were identified correctly (Fig. 

2(e)–(f)).

When the process was repeated for M=4, in which the number of the viscoelastic terms was 

overestimated, a counterfeit peak appeared with a relatively small amplitude in the vicinity 

of the fastest time constant of the material’s viscoelastic relaxation (Figs. 2(g)–(h)). This 

small counterfeit peak disrupted estimation of the fastest time constant. With a sufficiently 

tight convergence criterion and no experimental noise, this peak would presumably 

disappear with a well-tailored algorithm and sufficient iteration. However, the peak was 

sustained to convergence criteria far tighter than are practical with experimental data. In 

each case, the value of R2 for the fitting was very close to 1, even for the case of a fitting 

with M=1 (Table 1). We noted that the MSE of the fittings was a far more sensitive metric of 

goodness of fit (Table 1) and applied it in all subsequent analyses.

Discrete spectral analysis—With a sufficiently large number M of fixed time constants 

in the discrete spectrum, the number, elastic moduli, and time constants of Maxwell 

branches were well predicted using discrete spectral analysis (Fig. 3). Counterfeit peaks did 

not arise in the discrete spectrum as they did in the ad hoc spectrum.

Effects of noise—Random noise added to the stress-relaxation data affected estimation 

time constants that were not long compared to the frequency of the noise. The effect 

increased with the amplitude of noise added (Fig. 4). Although estimates of the time 

constants were affected, the noise did not introduce new, artifactual time constants into the 

viscoelastic relaxation spectrum.

To study the effect of noise estimates derived using the ad hoc approach, a best case scenario 

was assumed in which the correct number of Maxwell branches (M = 3) was known in 

advance. In this best-case scenario, the fastest time constant of the system, τ1, for 4% noise, 

was estimated with less than 8% error, while the other time constants were estimated with 

less than 1.5% error. For comparison, the time constants were estimated correctly to within 

floating point precision for the ideal case of no noise. The errors associated with interpreting 

these data using the discrete spectral approach were smaller still (Fig. 4). For 4% noise, the 

fastest time constant was estimated with less than 4% error while the other time constants 

were estimated with less than 2% error. These results suggest that for the interpretation of 

noisy data from a generalized Maxwell material, the discrete spectral approach is at least as 

accurate as the ad hoc approach, and has the additional advantages of being fast 

computationally and of avoiding the need to guess the number M of time constants a priori.
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3.2. Interpretation of incomplete relaxation data

With the efficacy of the discrete spectral approach established, we evaluated its performance 

against incomplete data. This is useful because biological systems often preclude the 

possibility of holding a specimen sufficiently long for complete relaxation to occur. For 

example, in biological tissue constructs consisting of living cells in a reconstituted collagen 

matrix, relaxation has been shown to persist to times sufficient for cellular remodeling to 

occur (Lee et al., 2012); in such a case, the tissue construct as a whole becomes a different 

material before relaxation is complete, and only partial data can be used.

For the stress relaxation data studied in Fig. 2, the first test involved analyzing the first 50 s 

of stress relaxation data (Fig. 5(a)), a time interval that is only 50% of the slowest finite 

viscoelastic time constant in the input data. The interpretation of the spectrum succeeded in 

identifying the three time constants and the infinite time constant (Fig. 5(b)). The first, 

second and infinite time constants had accurate positions, but the third time constant 

estimation deviated about 7% from input time constant. When 100 s of the stress relaxation 

data were studied (Fig. 5(c)), a time interval equal to the longest time constant of the input 

data, the interpretation succeeded in capturing the first two fast time constants (Fig. 5(d)), 

but the interpretation again captured the third peak with about 7% error. With 200 s of stress-

relaxation data, the interpretation succeeded in capturing the peaks at the all three time 

constants and also the correct amplitude of the infinite time constant (Fig. 5(e)–(f)). Here, 

we considered an estimate of the time constant with less than 2% error as successful.

The guidelines demonstrated in this simple test are that a predicted time constant can be 

trusted as being represented in the actual spectrum of a tested material if it is infinite or if it 

is less than half the duration of the viscoelastic relaxation data. Error was on the order of 

10% or less for a time constant that is twice the duration of the viscoelastic relaxation data.

3.3. The viscoelastic relaxation response of reconstituted collagen

We reinterpreted the experimental data studied by Pryse et al. (2003) using the ad hoc and 

discrete spectral approaches (Figs. 6, columns 1 and 2, receptively). For the fitting of these 

data collagen gel data, the highest absolute error was associated with the ad hoc approach, 

but the mean errors were comparable (Fig. 6(e)–(f)).

Consistent with the analyses of Pryse et al. (2003), ad hoc analysis estimated that collagen 

gel has three relaxation mechanisms that manifest themselves as viscoelastic relaxation time 

constants of 4.6 s, 30.6 s and 1250 s (Fig. 6(c)). However, the discrete spectral approach 

revealed a region with relatively fast time constants (Fig. 6(d)). The studies described in the 

previous sections suggest that these time constants are not artifacts arising from noise or 

from the duration of the test. The spectrum suggested six main relaxation time constants of 

about 0.3 s, 0.7 s, 2.6 s, 16.1 s, 72.7 s, and 1520 s (Fig. 6(d)). Because the time constants 

found were either infinite or less than twice the 1800 s duration of the isometric stretch, they 

can be expected to have an error of less than 10%. In addition to being consistent with the 

analysis of Pryse et al. (2003), they are further consistent with some of the slower time 

constants identified by Gupta et al. (2010) and Xu et al. (2013). The faster time constants 

might have been absent in the work of Gupta et al. (2010) because their study was of 
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tendons rather than of reconstituted collagen. Alternatively, it is possible that, either because 

their approach was analogous to the ad hoc approach or because that study used a data 

acquisition rate whose inverse was slow compared to the fastest time constants observed 

here, they were able to obtain an excellent fit in the absence of the contributions of faster 

time constants. The slowest time constant of 1500 s was not present in the work of Gupta et 

al. (2010), possibly reflecting once more a difference between collagen within reconstituted 

tissues and collagen within the fibers and fibrils of a tendon.

3.4. Prospects for application to collagenous tissues

A central theme of this study is the potential of a viscoelastic spectrum as a tool for 

assessing the health and function of a biological tissue. We envision that this potential will 

be strong for assessing pathologies such as hypertrophic cardiomyopathy, in which 

relaxation is central to the progression of pathology (Babaei et al., 2015). However, several 

important factors need to be considered when extending our application of the method to 

living tissues, especially collagenous tissues such as tendon. First, viscoelastic time 

constants of collagenous tissues are well known to depend upon the degree of hydration of 

the tissue. This is known from studies at the molecular (Gautieri et al., 2012), fibril (Shen et 

al., 2011), and tissue (Venkatasubramanian et al., 2010) levels, for both unmineralized and 

mineralized tissues (Liu et al., 2014). Therefore, the viscoelastic spectra estimated by our 

approaches will likely be sensitive to the nature of the medium in which tendons are tested.

Second, such tissues are highly nonlinear and anisotropic. Although these two material 

factors are well understood from the perspective of linear elasticity, the nature of the 

viscoelastic nonlinearity and anisotropy is not yet certain (Puso & Weiss, 1998; 

Stylianopoulos & Barocas, 2007; Nguyen et al., 2008). While we expect that the tools 

presented in this article will be of value in defining these effects, we note that 

characterization and comparison of viscoelastic spectra may be sensitive to the details of 

strain state and direction of loading.

Third, we expect viscoelastic spectra to be sensitive to the details of the composition of 

tissues. A key motivation for our group is understanding viscoelastic responses at interfaces 

between tendon and bone, where composition is known to vary in a graded fashion. 

Understanding such spatial variations will be complicated by the nature and media-

sensitivity of glycosaminoglycans and by the spatial disposition of mineral. Although 

outstanding models exist for the viscoelastic responses of proteoglycan rich tissues, the 

extension of these to spectral representations will be a challenge.

4. Conclusions

We presented a fast and general discrete spectral approach to estimating viscoelastic 

relaxation spectra from force or stress relaxation data, and compared it to an ad hoc 
approach. When using an ad hoc approach with a fixed number M of variable viscoelastic 

time constants, the fitting process was sensitive to M: by underestimating M, faster 

relaxation mechanisms were missed; by overestimating M, artifactual fast time constants 

were introduced. These problems were not clearly evident when comparing goodness of fit 
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using R2, because R2 was near 1 for all of the fittings. The precision of fittings was more 

distinguishable by considering MSEs.

The discrete spectral approach predicted the number of time constants and corresponding 

elastic moduli with very low MSE, only slightly higher than when the correct number of 

viscoelastic time constants was known a priori. The discrete spectral approach was less 

sensitive to noise, but for ideal data, without any noise, the ad hoc method was more 

efficient.

Application of the discrete spectral approach to reconstituted collagen gels revealed six time 

constants, with the slower time constants analogous to those captured by ad hoc analyses in 

the literature. As with the work of others, the discrete spectra that arise are of value in 

relating viscoelastic responses to micro-mechanical phenomena that occur across length 

scales (Xu et al., 2015; Ashrafi & Shariyat, 2010; Graham et al., 2011). Results suggest that 

the discrete spectral approach is a computationally efficient and informative approach to 

analyzing viscoelastic relaxation data.
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Figure 1. 
Schematics of the Maxwell model (a) and generalized Maxwell (Maxwell-Wiechert) model 

(b). The strain profile of a stress-relaxation test showing a linear ramp to an isometric value 

of strain (c), and the associated stress response, showing a peak at the end of the ramp and a 

relaxation to a strain-dependent steady state.
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Figure 2. 
Stress relaxation data for an idealized generalized Maxwell material with M=3 time 

constants, fit with M=1 ((a) and (e)), M=2 ((b) and (f)), M=3 ((c) and (g)), and M=4 ((d) and 

(h)) time constants.
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Figure 3. 
Stress relaxation data for an idealized generalized Maxwell material with M=3 time 

constants, fit using the discrete spectral approach with 1000 time constants distributed 

equidistantly in log space over the interval 10− 1s ≤ τ ≤ 103s.
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Figure 4. 
50 sets of Gaussian noise were generated (10 sets for each of 5 noise amplitudes) and added 

to ideal simulated stress-relaxation data. The simulated noisy stress relaxation data were 

then analyzed using the (a) ad hoc and (b) discrete spectral approaches.
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Figure 5. 
Discrete spectral analyses of noisy data following 50 s ((a) and (b)), 100 s ((c) and (d)), or 

200 s ((e) and (f)) of relaxation.
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Figure 6. 
Fittings for stress-relaxation data acquired from a collagen gel stretched 20% strain under a 

fast strain rate (100 %/s) fitted by (a,c,e) the ad hoc and (b,d,f) discrete spectral approaches. 

(c) Three time constants were estimated at 4.63 s, 30.6 s and 1250 s using the ad hoc 
approach. Using the discrete spectral approach the spectrum shows that relaxation of the 

collagen has six main time constants at about 0.3 s, 0.7 s, 2.6 s, 16.1 s, 72.7 s and 1520 s.
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