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Abstract

In recent years Dynamic Time Warping (DTW) has emerged as the distance measure of choice for 

virtually all time series data mining applications. For example, virtually all applications that 

process data from wearable devices use DTW as a core sub-routine. This is the result of significant 

progress in improving DTW’s efficiency, together with multiple empirical studies showing that 

DTW-based classifiers at least equal (and generally surpass) the accuracy of all their rivals across 

dozens of datasets. Thus far, most of the research has considered only the one-dimensional case, 

with practitioners generalizing to the multi-dimensional case in one of two ways, dependent or 

independent warping. In general, it appears the community believes either that the two ways are 

equivalent, or that the choice is irrelevant. In this work, we show that this is not the case. The two 

most commonly used multi-dimensional DTW methods can produce different classifications, and 

neither one dominates over the other. This seems to suggest that one should learn the best method 

for a particular application. However, we will show that this is not necessary; a simple, principled 

rule can be used on a case-by-case basis to predict which of the two methods we should trust at the 

time of classification. Our method allows us to ensure that classification results are at least as 

accurate as the better of the two rival methods, and, in many cases, our method is significantly 

more accurate. We demonstrate our ideas with the most extensive set of multi-dimensional time 

series classification experiments ever attempted.
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1 Introduction

The research community seems to have converged on the belief that Dynamic Time Warping 

(DTW) is remarkably hard to beat as a time series distance measure, across a host of domain 

applications, and a host of tasks; including clustering, classification and similarity search 

(Ding et al. 2008; Papapetrou et al. 2011). Moreover, the most often cited reason for not 
using DTW, its relatively high time complexity, has recently become a non-issue. In 

particular, amortized over a subsequence search or subsequence monitoring task, DTW is 

slower than Euclidean Distance by less than a factor of two (Rakthanmanon et al. 2013). As 

a practical matter, carefully optimized DTW is much faster than all but the most carefully 

optimized implementations of Euclidean Distance (Aach and Church 2001). For example, a 

modern cell phone, using the state-of-the-art DTW subsequence monitoring algorithm 

(Rakthanmanon et al. 2013), can easily process streams arriving at several thousand Hertz. 

However, such devices only produce data at about 100Hz.

Virtually all attempts to improve time series classification in the last two decades have 

focused on the single-dimensional case, with the assumption that the generalization to the 

multi-dimensional case is trivial. There are two obvious ways DTW can be generalized to 

the multi-dimensional case: Fig. 1 gives a visual intuition, which we formalize later in this 

work. For clarity, we refer to the two methods as DTWD and DTWI (with D standing for 

Dependent and I for Independent).

The vast majority of researchers seem to think that it makes no difference which method is 

used, as evidenced by the fact that they usually do not explicitly bother to tell the reader.

With some introspection we can see that there are actually several possibilities:

• There is no difference between DTWD and DTWI; they produce the same values 

for all time series.

However, we can immediately dismiss this possibility; as shown in Fig. 1, the two methods 

generally produce different distance values, and thus could produce different class labels if 

classifying an object using the Nearest Neighbor (NN) algorithm.

The next possibility seems to be the one implicitly assumed by the community:

• DTWD and DTWI can produce different distance values, but this makes no 

difference in the classification accuracy.

As we shall show, this is not the case. The choice of DTWD vs. DTWI can make a 

significant difference in the classification accuracy.

Given that DTWD and DTWI can have different classification accuracies, one might then 

imagine that the following is the case:

• While DTWD and DTWI can produce different classification accuracies, it so 

happens that one of the two is always superior on all problems. If we could 

prove, or experimentally demonstrate this, we could “retire” the weaker measure.
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This idea is tempting and has some precedents in similar situations in the literature. 

However, as we shall show, it is not the case. Datasets exist where DTWD significantly 

outperforms DTWI and vice-versa.

This would appear to be the end of the discussion. For a given problem, we can use cross-

validation to determine which method to use, then simply hard-code it into our classifier. 

However, there are two reasons why this is not the last word. First, we do not have the 

luxury of cross-validation when we have very small training sets, a situation that is very 

common when cold-starting a gesture recognition system or when labeled data is expensive. 

Secondly, we are not done moving down the hierarchy of possibilities. In particular:

• For any given domain, it may be that, on an individual class-by-class, or even 

exemplar-by-exemplar basis, DTWD and DTWI can produce different results, 

and that we could predict which of the two methods to trust at classification time.

This possibility is less intuitive than the others. It is not clear that the utility of the measures 

should vary within a single domain, and, if it did, correctly predicting which measure was 

most likely to have been correct on a case-by-case basis seems like an untenable 

undertaking.

In this work, we show for the first time that this last possibility is correct. The utility of 

DTWD and DTWI varies on an instance-by-instance basis, and our technique, 

DTWA(DTWAdaptive), can predict at run time with high accuracy in terms of which of them 

is more likely to be correct (Shokoohi-Yekta et al. 2015; Shokoohi-Yekta 2015).

Before leaving this section, we will give a visual and initiative example of our claims. While 

we normally think of DTW in the context of “true” time series, it has also been used to 

classify (suitably represented) text, spectrographs, shapes (Keogh et al. 2006), and, as shown 

in Fig. 2, colors (Zhu and Keogh 2010).

Because color is typically represented in a three dimensional RGB space, it naturally forms a 

multidimensional time series, as shown The two pairs of examples shown in Fig. 3 are 

markedly different. In the pair of heraldic shields, each color needs to warp independently. A 

detailed, high-resolution examination of the images suggests why. While the blue 

background appears identical in each shield, the gold coloring of the deer is much darker in 

the uppermost example (this is easier to see in the large format images available at Footnote 

1). This difference is probably explained by the fact that the book took four years to 

produce, and maintaining exact hues over that time period would have been very difficult, 

especially with 16th century pigment technology.

To make this clearer, we picked a single point just left of center on each channel of the 

lighter shield and recolored and thickened the hatch line that illustrates the warping. As we 

can see, in the blue channel the line is vertical, indicating no warping, in the green channel 

the line leans forward, and in the red channel the line leans backwards. This observation 

immediately explains the unintuitive clustering shown in Fig. 2 right. By using DTWD we 

forced all channels to warp in a single compromised way. If we simply use DTWI we do 
obtain the correct clustering here.
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This discussion seems to argue in favor of using DTWI, at least for images. However, there 

are examples in which all color channels warp in the same way, as in the butterflies in Fig. 3 

bottom (see also Fig. 5 of Zhu and Keogh (2010)). This happens if one image is simply sun-

faded, or it can be an artifact of the scanning process. In such situations we are better off 

using DTWD which finds the best warping by pooling evidence from all three sources of 

information.

Our work has two implications for the time series research community: we free researchers/

implementers from having to decide which technique to use for their problem; and, because 

error(DTWA) will be minimum[error(DTWD), error(DTWI)], they can use our method safe 

in the knowledge that they did not choose the suboptimal method.

However, this greatly understates the case, as the correct inequality implied by our workis 

the more unintuitive error(DTWA) ≤ minimum[error(DTWD), error(DTWI)]. That is to say, 

on some datasets our method can be significantly more accurate than either of the rival 

methods.

2 Definitions and background

We present the definitions of key terms that we use in this work. For our task at hand, each 

object in the dataset is a time series.

Definition 1

A Time Series T = t1, t2, …, tn is an ordered set of real values. The total number of real 

values is equal to the length of the time series. A dataset D = {T1, T2,…, Tm} is a collection 

of M such time series.

We are interested in multi-dimensional time series:

Definition 2

Multi-Dimensional Time Series (MDT) consist of M individual time series (M ≥ 2) where 

each time series has n observations:

If we wish to compare two time series, we could use the ubiquitous Euclidean distance. 

However, the DTW distance subsumes the Euclidean distance as a special case and has been 

shown to be significantly more accurate in virtually all domains (Ding et al. 2008; 

Rakthanmanon et al. 2013). Unlike the Euclidean distance’s strict one-to-one alignment, 

DTW allows a one-to-many alignment, as illustrated in Fig. 1. To align sequences using 

DTW, an n-by-n matrix is constructed with the (i, j) element being the squared Euclidean 

distance d (qi, cj) between the points qi and cj. A warping path P is a contiguous set of 
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matrix elements defining a mapping between Q and C. The tth element of P is defined as pt 

= (i, j)t, so we have:

The warping path that defines the alignment between the two time series is usually subject to 

several constraints: the warping path must start and finish in diagonally opposite corner cells 

of the matrix, the steps in the warping path are restricted to adjacent cells, and the points in 

the warping path must be monotonically spaced in time. In addition, virtually all 

practitioners using DTW also constrain the warping path in a global sense by limiting how 

far it may stay from the diagonal (Ding et al. 2008; Papapetrou et al. 2011). A typical 

constraint is the Sakoe–Chiba Band which states that the warping path cannot deviate more 

than R cells from the diagonal (Ding et al. 2008; Papapetrou et al. 2011; Rakthanmanon et 

al. 2013). This constraint prevents pathological warpings (for example, a single heartbeat 

mapping to ten heartbeats) and is at the heart of the LBKeogh lowerbounding technique, 

which is used in virtually all speedup techniques for DTW (Aach and Church 2001; Ding et 

al. 2008).

While there are exponentially many warping paths that satisfy the above conditions, we are 

only interested in the path that minimizes the warping cost:

(1)

This path can be found using dynamic programming to evaluate the following recurrence, 

which defines the cumulative distance D(i, j) as the distance d(i, j) found in the current cell 

and the minimum of the cumulative distances of the adjacent elements (Kruskal and 

Liberman 1983; Rabiner and Juang 1993):

(2)

While this recursive function is elegant and can be tersely implemented, in practice the 

community uses an iterative algorithm, which is faster and amiable to various early 

abandoning optimizations (Aach and Church 2001; Ding et al. 2008). Moreover, the iterative 

algorithm implementation only constructs and considers a single column of the matrix at a 

time and, thus, has a space complexity of just O(n).

The Euclidean distance between two sequences is a special case of DTW, where the tth 

element of P is constrained such that pt = (i, j)t, i = j = t. This review of DTW is necessarily 

brief; we refer the interested reader to Aach and Church (2001), Ding et al. (2008), Kruskal 

and Liberman (1983), and Rabiner and Juang (1993) for more details.
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2.1 Generalizing to the multi-dimensional case

The DTW distance, as formalized in Eq. 2, is applicable to only single-dimensional time 

series, leaving open the question of how to extend it to the multi-dimensional time series 

(MDT) case. Consider both Q and C as two M-dimensional time series; we show two 

possible approaches for doing this, DTWI and DTWD:

Definition 3—DTWI is the cumulative distances of all dimensions independently measured 

under DTW. If DTW(Qm,Cm) is defined as the DTW distance of the mth dimension of Q 
and the mth dimension of C, we can write DTWI as:

(3)

In Eq. 3, each dimension is considered to be independent, and DTW is allowed the freedom 

to warp each dimension independently of the others. The case when M is two was shown in 

Fig. 1b.

We can also compute the multi-dimensional DTW in a manner that forces all dimensions to 

warp identically, in a single warping matrix. In other words, the independence of dimensions 

is no longer allowed, and we assume mutual dependence between all dimensions. We define 

DTWD as:

Definition 4—DTWD is calculated in a similar way to DTW for single-dimensional time 

series (Eq. 2), except that we redefine d(qi, cj) as the cumulative squared Euclidean distances 

of M data points instead of the single data point used in the more familiar one-dimensional 

case. Formally, if qi, m is the ith data point in the mth dimension of Q and cj, m is the j data 

point in the mth dimension of C, we replace d(qi, cj) in (Eq. 2) with:

(4)

To make our distance measure invariant to scale and offset, we need to z-normalize each 

dimension of the time series before computing their DTW distance. As demonstrated in 

Keogh and Kasetty (2003), even tiny differences in scale and offset rapidly swamp any 

similarity in shape. Note that this allows us to meaningfully compute either variant of the 

multi-dimensional DTW, even if the individual dimensions are not commensurate or are in 

different units, such as accelerations and rotations.

Using both DTWD and DTWI distance measures to classify a time series exemplar, T , four 

different cases may occur:

1. T gets correctly classified by both DTWI and DTWD.

2. T gets misclassified by both DTWI and DTWD.
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3. T gets classified correctly by DTWI but misclassified by DTWD.

4. T gets classified correctly by DTWD but misclassified by DTWI.

We are only interested in cases 3 and 4. We call such exemplars iSuccess and dSuccess, 

respectively:

Definition 5—iSuccess is the set of time series exemplars that are classified correctly under 

DTWI but misclassified under DTWD.

Definition 6—dSuccess is the set of time series exemplars that are classified correctly 

under DTWD but misclassified under DTWI.

Having reviewed the necessary formal definitions, we are now in a position to introduce our 

observations about the relative merits of DTWD and DTWI.

3 Observations

We begin with some informal notation. We say a dataset is “in D” if we expect DTWD to 

achieve higher accuracy and “in I” if we anticipate DTWI will be more accurate. In the 

introduction we claimed that there are datasets in which we expect DTWD to outperform 

DTWI and vice versa. A natural question to ask is under what conditions we can expect each 

of these methods to be superior. As we shall see, one of the fundamental contributions of this 

work is to make this question moot by producing an algorithm that is always at least as good 
as the better choice. Nevertheless, it is instructive to ask and attempt to answer this question.

Assume that the data in question corresponds to an event. An event could be an arrhythmic 

heartbeat, the writing of the letter ‘Z,’ a golf swing, a bird call, a self-driving car parallel 

parking, etc. Further assume that we have multi-dimensional time series recordings of such 

events. It is possible that each dimension is simply recording two views of the same physical 

phenomena. For example, consider the MFCC coefficients of the bird call shown in Fig. 4.

It is clear that while the coefficients are (somewhat) independent in the Y-axis values they 

can take on, they are not independent in the time axis. In the second bird call all the relevant 

peaks and valleys move by exactly the same amount in the time axis. Because of this 

structure, we strongly expect that this dataset is in D. In contrast, consider the event shown 

in Fig. 5 of a cricket umpire signaling TV-Replay, in which the umpire traces a rectangle 

representing a television screen.

Here we have measured a multi-d time series that consists of the X-axis acceleration of 

sensors worn on each wrist. Note that, in contrast to the bird call example, the two time 

series are very unlikely to be perfectly dependent in how they evolve in the time axis. Try as 

he might, the umpire could not move both hands in a perfectly symmetric fashion. There are 

at least two possible and non-exclusive sources of difference:

• Lag Here, we imagine that the umpire favors his dominant hand, and the other 

hand follows at a more or less constant speed, but a fraction of a second behind.
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• Loose Coupling Here, the event does cause two or more things to happen, both 

of which are recorded as a time series, but there is more freedom in the 

performance of the event. For example, if the event is the umpire wishing to 

signal a Leg-Bye, he will tap his raised knee with this hand. However, while he 

typically uses his dominant hand to do this, he may touch either knee. Moreover, 

his “free” hand may rest by his side, or he may raise it, and even waive it slightly, 

to drawn attention to the fact he is making a signal. This variability in 

performance means that two wrist-worn sensors are only very loosely coupled 

for this event.

In the next section, we will explicitly test the effects of these factors with some experiments. 

To do this we consider a dataset that we are sure is in D, and then we synthetically add 

increasing amounts of lag and loose coupling to see if this would move the dataset into I .

We consider a handwriting dataset, which we are confident is in D. Because we are 

considering the X and Y accelerations of the point of the writing tip of a pen, the two 

dimensions are physically coupled. Here, an event is the production of one of the twenty-six 

lower-case letters. We estimate the error rate of classification by randomly dividing the 5000 

objects into a stratified 1000/4000 train test split thirty times and reporting the average error 

rate.

It is critical to note that, in this dataset, if we were considering only the one-dimensional 

case, our synthetic modifications of the data would make essentially no difference to the 

distances DTW returns, or the overall error rate. As shown in Fig. 6, even a huge change in 

the lag makes almost no difference to the single-dimensional DTW case.

Thus, all effects shown in thenext two sections are due not to the effects of modifying the 

data objects per se, but to the effect this has on DTWD and DTWI.

3.1 The effect of lag

We induce lag in one of two ways. First, for each object we add Random Lag of K by 

shifting just the Y-axis by an amount randomly chosen from the range [0, K]. Second, we 

add a Fixed Lag variant by shifting just the Y-axis by increasing values of K. For clarity, in 

this variant all objects will have the same lag of exactly K. In Fig. 7 we show the effect of 

varying the amount of Random Lag from zero to forty.

In Fig. 8 we show the effect of varying the amount of Fixed Lag, again from zero to forty.

If we consider just the values at either end of the range, this provides us with the first 

experimental evidence that datasets exist that are strongly in D, along with datasets (albeit 

contrived here) that are strongly in I. More generally, the trend lines in the figure confirm 

our claim that Lag is one of the elements responsible for datasets falling in D or I. Note that 

the effects are not small; the wrong choice of DTWD or DTWI here can almost double the 

error rate.
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3.2 The effect of loose coupling

We create synthetic loose coupling by adding increasing amounts of random warping to just 

the Y-axis of each exemplar. For brevity, and to enhance the flow of the presentation, we 

relegate the explanation (and the actual code) of how we do this to the supporting website.1 

However, we note that the modified data is plausible and realistic data. For example, if we 

use it to regenerate the original letters, they are readable and believable as a person’s 

handwriting. Fig. 9 shows the effect of increasingly loose coupling.

Once again, these results provide us with evidence that some datasets are in D and some are 

in I, and that loose coupling can be a reason for this division.

3.3 Implication of observations

At first blush we might interpret the above results as implying that all datasets lie on a 

spectrum between being strongly in D and strongly in I. If true, then the only task left to us 

is to discover where on the spectrum a dataset falls so that we can use the correct technique.

However, this idea has two difficulties. For some datasets we may not have enough training 

data to learn whether we are in D or in I with high confidence. The second issue is simply 

that the assumption that all datasets lie on such a spectrum misses a crucial point. It is 

possible that the suitability for DTWD or DTWI occurs at a class-by-class level, or even an 

exemplar-by-exemplar level, not at a dataset-by-dataset level.

It is easy to imagine such examples. Suppose we have accelerometers on both wrists of a 

tennis player, and our classification task is to label data into the following shot types 

{serve | forehand | lob | other}. For many exemplars we might expect DTWI to 

work best, since the hands are generally loosely coupled in tennis. However, for some 

classes, such as the backhand, most players use a two-handed grip, temporarily coupling the 

two accelerometers. This would give us a class-by-class-level difference in the suitability of 

the warping technique. Moreover, some players, notably French professional Jo-Wilfried 

Tsonga, switch between one-handed and two-handed back-hand shots during the game. This 

would give us an exemplar-by-exemplar level difference in the suitability of the warping 

technique.

3.4 Further discussion

The reader may wonder why we need DTWD at all. It appears that DTWD is just a special 

case of DTWI, and therefore unnecessary. In other words, if both warping paths created by 

DTWI happen to be the same, the results are logically equivalent to DTWD. Since there is 

nothing preventing this from happening, one might imagine that DTWD is simply subsumed 

as a special case of DTWI, and the results above are an error or anomaly of some kind.

The reason why we need both DTWd and DTWI is subtle and underappreciated. When we 

perform a DTWI calculation and find it produces a relatively small distance, it may have 

achieved this with radically different warpings for each axis.

1Project webpage: https://sites.google.com/site/dtwAdaptive.
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In contrast, DTWD must use the same warping for both dimensions. Thus, in a sense, the 

fact that it could achieve a small distance, in spite of the same warping constraint, is extra 
evidence of similarity.

We can illustrate this with the simple experiment shown in Fig. 10. Here we have three 2-

dimensional time series. Subjectively we would surely group them {{A,B},C}, as B is 

created by simply copying A, shifting the “patterns” one place to the right, and adding a tiny 

“bump” in the 3rd value of B. Nevertheless, if we cluster these objects with DTWI, we get 

an extraordinarily unintuitive result, suggesting {{A,C},B}.

This may be easier to appreciate with an analogy. Imagine we have two distance measures, 

NAMED and NAMEI, that measure the distance between a target person’s name (say, “Anne 

Price”) and the set of names we find in a small address book. The underlying measure we 

assume is a string edit distance. The NAMEI function calculates the most similar first and 

last names independently, perhaps finding “Anne Smith” and “Bob Price” in the address 

book to produce a distance of zero. In contrast, the NAMED function calculates the distances 

dependently, that is to say, from the same individual. Imagine that NAMEI reports a distance 

of one, having found a person called ‘Anna Price’. While the latter distance of one is greater 

than the former distance of zero, we would almost certainly be more impressed by the 

similarity of the latter.

The example illustrated in Fig. 10 shows DTWD outperforming DTWI so forcefully that the 

reader may now wonder why we need DTWI at all. As previously noted, DTWD uses the 

same warping path for all dimensions to measure their distances. Therefore, DTWD may not 

be a suitable distance measure for instances with lag, simply because of using only one 

warping path (recall the three diverse warping paths for each of the color channels shown in 

Fig. 3 top). For exemplars including lag between dimensions, DTWI is capable of measuring 

the distances independently and being invariant to the lag. We illustrate this in Fig. 11.

Here instances A and B should belong to the same cluster since both are the same, except B 
includes a large lag in the second dimension (illustrated in red). As shown in Fig. 11, DTWD 

clusters A and C into the same subtree, simply because there is no lag in the second 

dimension of C. However, DTWI correctly clusters A and B the same because the lag in the 

second dimension of B is ignored by DTWI.

The reader may wonder if our observations are true but irrelevant, as we have only 

demonstrated our claims for contrived data up to this point. In our experimental section we 

give compelling evidence on several real-world datasets, but here we give a visually intuitive 

example. In Fig. 12 we show two dimensions of the telemetry from an oil refinery. In the 

first day shown, these two time series have near-perfect correlation, suggesting a very tight 

coupling. However, in the first half of the next day a connecting valve is closed, and the two 

time series become almost completely uncoupled.

More generally, we have made similar observations in many datasets in scientific and 

medical domains. It seems quite common that the strength and type of relationship 
(correlation is not quite the right word here) between two time series can ebb and flow over 

time, and neither DTWI nor DTWI is always best.
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Finally, before continuing, we must discount a solution that may have occurred to the reader, 

perhaps based on visual inspection of Fig. 1. One might imagine that a large dissimilarity 

between the warping paths in DTWI could indicate that the exemplar comparison in question 

is best suited to DTWI. However, this is not the case. In general, it is possible that two 

warping paths could be arbitrarily different, but reflect identical DTW distances. In Fig. 13 

we illustrate this with a toy example. While this example uses symmetric data to elucidate 

our point, this observation is more generally true.

4 Proposed framework

In essence, our task reduces to a meta-classification problem. Given an instance to classify, 

we must first decide whether it is “an object best classified by DTWI” or “an object best 

classified by DTWD.” More formally:

Problem Statement Given that we are using NN-DTW to classify an exemplar Q, 

and that we have discovered the nearest neighbor to Q under both DTWI and 

DTWD, if the classes of the two nearest neighbors differ, predict the distance 

function most likely to be correct.

Our problem statement is superficially similar to a “gating network” in a Mixture of Experts 

(ME), a technique frequently used in neural networks and some other classifiers (Yuksel et 

al. 2012). Using the divide and conquer principle, several “experts” that are either regression 

functions or classifiers are created such that they specialize in a particular region of the input 

space. The gating network defines those regions where the individual expert opinions are 

trustworthy, and uses a probabilistic model to combine the expert’s opinions.

There are many variants of ME (see Yuksel et al. (2012) and references therein). However, in 

contrast to most versions, we have a much narrower task. We have exactly two experts, and 

we are “weighting” their opinions only in a strictly binary sense.

We propose the following solution to our problem. Offline, on the training data, we will 

compute a threshold. At query time, we will compute a score S, and choose which method to 

trust based on the value of S relative to the threshold. In order to best explain our framework, 

we first explain how our classification model works, given that a threshold has been learned 

from the trainData. Later, in Sect. 4.2, we consider the task of learning the threshold. If we 

have a lack of labeled data, we outline two possible approaches. We can either learn the 

threshold from a different dataset, from the same or similar domain, or we can simply 

hardcode the threshold to one, which gives us much of the benefit of our observation. We 

have explored both ideas in Footnote 1.

4.1 Adaptive classifier for MDT

Table 1 outlines our classification algorithm. In line 1 the algorithm finds the nearest 

neighbor distance in the training set for Q under DTWD, minD. In line 2 we find the nearest 

neighbor distance under DTWI, minI. In line 3 the procedure divides minD by minI, which 

is our scoring function, S. In lines 4 to 8 the algorithm compares our scoring function, S, to 

the previously learned threshold. If S is greater than the threshold, we believe that Q is most 

likely in I and thus return DTWI as the distance measure for classification, whereas if S is 
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less than or equal to the threshold, we predict that Q is most likely in D, and the function 

returns DTWD.

We formally define our scoring function as:

(5)

The epsilon in the denominator is to prevent division by zero, a value that is theoretically 

possibility but never observed. While S can change in the range of [ε, ∞], in practice we 

find its value to always be in the range of [0.5, 2].

Having explained our simple classification algorithm, all that remains is to explain how we 

set the threshold (and why). In fact, hardcoding the threshold to a value of exactly one works 

very well and allows the algorithm in Table 1 to beat the rival methods. However, we can 

further improve the accuracy by tuning the threshold, so in the next section we will explain 

how that is done.

4.2 Learning the adjusted threshold

In order to learn the threshold we use in Table 1, we first need to identify the iSuccess (def. 
5) and dSuccess (def. 6) exemplars in the training set using cross validation (Table 3). As 

shown in Table 2, we consider four cases based on whether iSuccess and dSuccess are empty 

sets or not.

In line 1 we run the subroutine in Table 3 to find all the S scores for iSuccess and dSuccess, 

and then we consider four cases on the two sets. Line 2 is the case in which both sets are 

empty, so the problem (at least the training data) is independent of D or I, and picking either 

DTWI or DTWD will make no difference in classifying the data. Therefore, we assign the 

value one, an arbitrary number, to the threshold in line 3. We note that this case is possible, 

but we never observed it.

In line 4 we test to see if S_i Success is empty and S_dSuccess is non-empty. If so, the 

dataset is almost certainly in D, and we need to set the threshold such that the S score for all 

dSuccess exemplars will be less than the threshold. Therefore, in line 5 the threshold gets 

assigned to the maximum value of S_dSuccess.

The opposite case, in which S_dSuccess is empty and S_iSuccess is non-empty (line 6), 

offers evidence that the dataset is in I , and we need to set the threshold such that the S score 

for all iSuccess exemplars will be greater than the threshold. We ensure this (in line 7) by 

assigning the threshold to the minimum value of S_iSuccess.

In practice, the three cases above are rare, and in lines 8 to 10 we find the threshold for the 

most common case in which both S_iSuccess and S_dSuccess are non-empty sets. The best 

threshold is a value that maximizes the total number of S_iSuccess with values greater than 

the threshold and S_dSuccess with values less than the threshold. Finding such a threshold is 

essentially the decision tree problem of maximizing the information gain by finding the 
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optimal split point. For more details on information gain, we refer the interested reader to Ye 

and Keogh (2009) and Quinlan (1986).

Recall the function find_Scores (trainData) called in Table 2. The function uses cross 

validation to find the two sets, iSuccess and dSuccess, then calculates the S scores (Eq. 5) 

for all their exemplars. The algorithm is described in Table 3. In line 1 we apply cross 

validation to the entire trainData. In line 2 we calculate the nearest neighbor distance under 

DTWD for each exemplar, and in line 3 we do the same under DTWI. In lines 4 to 7, if the 

exemplar in the trainData is classified correctly under DTWD and misclassified under 

DTWI, the S score (Eq. 5) is calculated and gets added to S_dSuccess. In line 8 to 11, if the 

exemplar is misclassified under DTWD and classified correctly under DTWI, we calculate 

the S score and add it to S_iSuccess.

4.3 The intuition behind our scoring function, S

In this section we explain the intuition behind our scoring function (Eq. 5), introduced in 

Sect. 4.1. We will show how the ratio of the nearest neighbor distance under DTWD (minD) 

and DTWI (minI) is capable of discriminating multi-dimensional time series in I from 

exemplars in D. For any time series in I, each dimension is at least somewhat independent; 

therefore, exemplars that are from the same class and are warped/shifted independently in 

each dimension exist in the training set. Figure 14 top shows a time series in I, Q I and its 

nearest neighbor in the training set, CI.

Note that in our proposed algorithm in Sect. 4.1 the nearest neighbors under DTWI and 

DTWD are not necessarily the same; however, for simplicity of presentation we consider CI 

as the nearest neighbor under both DTWI and DTWD. Since QI is in I and its dimensions are 

warped independently, the DTWI distance will be less than or equal to the DTWD simply 

because DTWI is allowed the freedom to find the nearest distance independently in each 

dimension. In Fig. 14 top, DTWI calculates the distance in two different paths, whereas 

DTWD has only one path to pick which is a combination of the two paths in DTWI and 

eventually produces a larger distance. For any instance in I, minD is larger and minI gets 

smaller; therefore, minD/minI tends to be larger.

In Fig. 14 bottom we show an instance, QD, which is in D. In this case the nearest neighbor 

in the training set, CD, will be an exemplar in which both dimensions are dependently 

warped. In such a case, the warping path for both dimensions in DTWI are the same as, and 

similar to, the path in DTWD. In contrast to the previous case, DTWI does not take 

advantage of different warping paths in order to achieve a lower distance score compared to 

DTWD. However, we show for the same warping path, the distance under DTWI is larger 

than the DTWD distance. Since DTWD and DTWI both take the same path, we can compare 

their cumulative distances in a meaningful way.

If qi, m is the ith data point in the mth dimension of QD and cj, m is the jth data point in the 

mth dimension of CD, for the two-dimensional case in Fig. 14 bottom, we can show the 

following:
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Accordingly, for a time series in D, minD is smaller and minI gets larger; therefore, minD/

minI tends to be smaller. We considered a two-dimensional time series here and assumed 

that for a query in I, the path in DTWI and DTWD are exactly the same; however, we can 

simply generalize the above illustration to dimensions greater than two, and for queries in I, 
different but similar paths for both DTWI and DTWD.

We have shown that our scoring function, S (cf. Eq. 5), tends to produce larger values for 

queries in I and smaller values for queries in D, as illustrated above; thus, our scoring 

function is capable of discriminating time series in I from exemplars in D. We will 

demonstrate the effectiveness of our scoring function with extensive experiments in the next 

section.

5 Experiments

We have designed all our experiments to ensure that they are very easy to reproduce. A 

supporting webpage (see Footnote 1) contains all the code, datasets, and raw data 

spreadsheets used in this work. Moreover, although this work is completely self-contained, 

the webpage contains additional experiments for the interested reader.

In addition to comparing to DTWD and DTWI, we also compare to the classification using 

each individual dimension, which we refer to using the notation DTW(1st), DTW(2nd), etc.

It is important to note that all experiments use exactly the same base algorithm, one nearest 

neighbor, and exactly the same train/test splits. Thus, any differences in results can be 

attributed solely to the distance measure used.

It is known that the warping window width can slightly affect the classification accuracy. As 

this issue is orthogonal to our work, we simply set the warping window constraint for DTW 

to be 20% for all experiments (Ding et al. 2008).

5.1 Recognition of cricket umpire signals

Cricket is a very popular game in British Commonwealth countries. The game requires an 

umpire to signal different events in the game to a distant scorer/bookkeeper. The signals are 

communicated with motions of the hands. For example, No-Ball is signaled by touching 

each shoulder with the opposite hand, and TV-Replay, a request for an off-field review of 
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the video of a play, is signaled by miming the outline of a TV screen (cf. Fig. 5). A complete 

dictionary of signals can be found in Footnote 1.

The dataset introduced in Ko et al. (2005) consists of four umpires performing twelve 

signals, each with ten repetitions. The data, recorded at a frequency of 184Hz, was collected 

by placing accelerometers on the wrists of the umpires. Each accelerom-eter has three 

synchronous measures for three axes (X, Y and Z). Thus, we have a six-dimensional MDT 

from the two accelerometers and we can combine any number of them to create a multi-

dimensional classification problem. Figure 15 shows the data for two example signals, Six 

and Leg-Bye. To signal Six, the umpire raises both hands above his head. Leg-Bye is 

signaled with a hand touching the umpire’s raised knee three times.

We used 40% of the data for training and use the rest as testing data. The classification 

results using various combinations of dimensions are shown in Table 4.

Note that all combinations support our original claims that neither DTWD nor 

DTWIdominates the other, and that on all datasets, DTWA is at least as accurate as the better 

of DTWD and DTWI, and often more accurate.

Above we considered only pairs of dimensions, however, the results generalize for any-sized 

subsets of dimensions. Obviously, adding more dimensions does not guarantee improved 

accuracy. In Hu et al. (2013) the authors outline a strategy for choosing which dimensions to 

add to an MDT. Note, however, that this issue is completely orthogonal to our contributions; 

Table 4 suggests that whatever set of dimensions you choose, you are better off with DTWA 

than any other method.

5.2 Accelerometer-based gesture recognition

There is increasing interest in using gesture commands for interacting with and controlling 

external devices. The results in Kela et al. (2006) suggest that different people often have 

different interpretations of even simple gestures, and thus it is necessary to learn 
personalized classifiers on an individual basis.

A widely used benchmark dataset, introduced in Liu et al. (2009), consists of the 

performances of the gestures shown in Fig. 16 by eight participants. To produce realistic 

variability in performance, the data was collected on multiple days over three weeks. On 

each day the participant held a Nintendo Wii remote and repeated each of the eight gestures 

ten times.

The dataset consists of 4480 gestures in total: 560 for each participant. The accelerometer 

has three axes (X, Y and Z); thus, we have a three-dimensional MDT form, and we can 

combine them to create a two or three multi-dimensional classification problem. We 

combined every pair of dimensions to create all possible two-dimensional time series and 

combined all three for the three-dimensional case. The classification results are shown in 

Table 5.

As before, the results support our claim that DTWA is at least as accurate as the better of 

DTWD or DTWI.
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5.3 Word recognition from articulatory movement data

Silent “speech” recognition may potentially facilitate oral communication in people with 

severe voice impairments, for example, after laryngectomy, a surgical removal of larynx due 

to the treatment of cancer (Wang et al. 2012, 2013, 2014). Silent speech recognition is to 

recognize words or sentences from non-audio data (e.g., tongue and lip movement data) 

(Wang et al. 2014). An Electromagnetic Articulograph (EMA) (Yunusova et al. 2009) is an 

apparatus used to measure the movement of the tongue and lips during speech. The motion 

tracking using EMA is registered by attaching small sensors on the surface of the articulators 

(e.g., tongue and lips). The spatial accuracy of motion tracking using EMA AG500 is 0.5 

mm (Yunusova et al. 2009). We consider the EMA dataset in Wang et al. (2013) which 

contains data collected from multiple native English native speakers producing 25 words. 

Twelve sensors were used in data collection, each providing X, Y and Z time-series 

positions with a sampling rate of 200 Hz. As shown in Fig. 17 the sensors are located on the 

forehead, tongue; from tip to back in the midline, lips and jaw. The three head sensors (Head 

Center, Head Right, and Head Left) attached on a pair of glasses were used to calculate 

head-independent movement of other sensors. Tongue sensors were named T1, T2, T3, and 

T4, from tip to back. For more details about the data collection procedure and description, 

please refer to Wang et al. (2013).

Of the total of 36 available dimensions, for brevity and simplicity, we show only some 

random combinations of dimensions extracted from the sensors on the tongue tip (T1), the 

upper lip (UL) and lower lip (LL). The classification results are shown in Table 6.

Yet again, the results support our claim that DTWA is at least as accurate as the better of 

DTWD or DTWI.

5.4 Revisiting the semi-synthetic data

We reconsider the handwriting data set used in Sect. 3. Recall that the data is real, but 

manipulated in ways such that it changed from being in D to being in I. In Fig. 18 we revisit 

these problems, this time using DTWA. Once again these experiments offer strong support 

for our claims about DTWA dominating DTWI and DTWD.

5.5 Human activity recognition using smart watches

Providing accurate and exploitable information on human activity has become an active field 

in pervasive computing (Ding et al. 2008; Lara and Labrador 2013). Activity recognition 

using a smart watch has the potential to be highly useful in modern healthcare by monitoring 

the patients’ activities and automatically reporting summaries to healthcare providers 

(Rawassizadeh et al. 2014). In order to detect a specific set of gestures or behaviors during 

daily activities we can simply use a rejection threshold, which classifies the target gestures 

from (the much larger space of) non-target activities (Hu et al. 2013). However, in order to 

detect such gestures/behaviors we need to know the best distance measure to classify the 

gestures. For this purpose we designed a simple experiment. We asked two users to wear a 

Samsung Gear 2 and execute 100 performances of eight different gestures. We collected the 

accelerometer data (X, Y and Z) with a sampling rate of 50 Hz. The eight gestures 

performed by users and a sample accelerometer data is shown in Fig. 19.
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We combined every pair of dimensions to create all possible two-dimensional time series 

and combined all three for the three-dimensional case. The classification results are shown 

in Table 7.

As with previous experiments, the results support our claim that DTWA is at least as 
accurate as the better of DTWD or DTWI.

5.6 Learning the threshold with sparse training data

The reader may wonder if it is possible to learn the threshold if we have little labeled data to 

work with. For example, this is a common situation when beginning to use a new gesture-

based system (the so-called “cold start” problem).

As noted in Sect. 4.1 in our paper, simply hardcoding the threshold to a value of one gives us 

much of the benefit of our observation. However, tuning the threshold does help, and we 

want to obtain the best possible accuracy.

Without claiming to have completely solved this problem, we outline one possible approach 

here. Our idea is that we can learn the threshold from a different dataset from the same or 

similar domain. In essence this is a simple form of transfer learning.

For example, if a company releases a smartwatch with gesture recognition capabilities, a 

good “universal” threshold could be learned and set at the factory. This would allow the 

system to work well “out-of-the-box,” and possibly be refined and personalized over time.

We have conducted an experiment to demonstrate this idea. For the Gesture Recognition 
dataset in Sect. 5.2 in our paper, we combined all three dimensions of X, Y and Z from the 

accelerometer and created two completely disjointed datasets, G1 and G2. We learned the 

threshold from G1 and used the same threshold to classify G2. The results are shown in 

Table 8.

The results tentatively suggest that by adopting the threshold value from a different dataset 

in the same domain, we can achieve approximately the same accuracy we would have 

achieved by learning the threshold from a (large sample) of the native dataset.

5.7 What causes a time series to be in D or I?

For all of the experiments considered above, the data sets included a mixture of exemplars in 

I and D. If this was not true, DTWA could not have had a lower error-rate. However, an 

interesting question we have glossed over thus far is what causes an individual time series 

exemplar to be in D or I? Is it an intrinsic property of the individual exemplar itself or a 

property of the exemplar in relation to a particular data set? We conducted a wide-ranging 

investigation of the exemplars’ characteristics in various domains to see if any feature(s) 

stands out as a discriminator of time series in I vs. in D. We considered the correlation, 

complexity, Euclidean distance, Minimum Description Length, etc. of dimensions and did 

not find any useful discriminator.

We have designed a simple experiment which strongly suggests (at least for the data set 

considered) that the existence of exemplars in I or D strongly depends on the entire data set. 
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A time series, which is in I, may later be in D if we use a different training set for classifying 

that item. In addition, just the size of the training set can have a significant impact on 

whether exemplars fall in I or D.

Once again we revisit the handwriting data set we used in Sect. 3. In all iterations we 

randomly sample ten exemplars from each of twenty-six classes as the test set (a total of 260 

items). In the first iteration we randomly pick only a single instance for each class and 

define it as the train set. Then we classify the test set using DTWD and DTWI separately and 

also count the number of items in iSuccess and dSuccess (cf. Definitions 5 and 6). In the 

second iteration we randomly pick two instances for each class as the train set and repeat the 

same steps. We continue the iterations until we reach seventeen exemplars per class. The 

results are shown in Fig. 20.

We believe we can interpret Fig. 20 as follows. First (and only incidentally here), Fig. 20 

right supports our claim that DTWA is at least as accurate as the better of DTWD or DTWI, 

as the green curve for DTWA dominates all the other approaches for the entire range of 

training data sizes. Note that all five approaches have almost the same (very high) error-rate 

when the training set is very small. This is simply because there is very little space for them 

to differ. In the limit, had we started one value to the left, with zero data, all approaches 

would have had the exact same error-rate, the default rate.

As the training dataset gets larger, all approaches benefit, just as we expect. However, 

DTWA benefits the most. This is because as the training dataset gets larger, there is a greater 

possibility that some objects to be classified can benefit from choosing the more suitable of 

the two multi-dimensional variants of DTW. To see this more clearly, in Fig. 20 left we 

measured the number of objects in iSuccess and dSuccess for the experiments shown in Fig. 

20 right. We see that for small train sets the number of items in iSuccess and dSuccess are 

low. However, when the size of the train set increases, the number of instances in iSuccess or 

dSuccess begins to increase in spite of the fact that the size of the test sets remains constant.

There is one observation in Fig. 20 left that we have to explain. After some point, the 

number of items in iSuccess and dSuccess begins to decrease. Why is this? The reason is 

that, for large enough training sets, there is a greater chance that the nearest neighbor, under 

both DTWI and DTWD, will be the same (true) class. This will make our DTWA 

unnecessary (but not harmful to accuracy). A similar effect has been shown for the error-

rates of (one dimensional) DTW versus ED classifiers (See Fig. 1 of Shieh and Keogh 

(2009)). For small datasets, DTW and ED often make different decisions about which item 

is the nearest neighbor, but as the datasets get larger they tend to agree more and more often, 

eventually converging to the same error-rate (Shieh and Keogh 2009; Ratanamahatana and 

Keogh 2004).

In a sense, these observations seem to cast limits on the utility of our proposed ideas. DTWA 

will be no better (but critically, no worse) in the case that the training dataset is 

pathologically small or is arbitrarily large. However, the situation in between is clearly the 

most common. For example, in virtually all gesture recognition systems it is assumed that 

the user is willing to provide at least five to ten examples of a gesture so that we can 
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estimate variability of performance (Kela et al. 2006; Liu et al. 2009; Gillian et al. 2011; Ten 

Holt et al. 2007; Aach and Church 2001; Tang and Dannenberg 2014). But, clearly, we do 

not expect an individual user to provide one thousand labeled examples of a gesture.

6 Related work

We have deferred a discussion of related work until now when the reader can appreciate the 

nature of our contributions. While there are hundreds of research efforts that use DTW in a 

multi-dimensional setting (Ridgely and Tudor 2009; Kela et al. 2006; Ko et al. 2005; Liu et 

al. 2009; Petitjean et al. 2012; Wang et al. 2013), we are not aware of any work that 

discusses the relative merits of DTWI and DTWD, or even explicitly notes that they are 

alternatives. The vast majority of researchers seem to think that it makes no difference which 

method is used, as evidenced by the fact that they usually do not bother to explicitly tell the 

reader (Liu et al. 2009; Aach and Church 2001; Kale et al. 2012; Tang and Dannenberg 

2014). In paper (Liu et al. 2009) they define DTW as a dynamic programming algorithm, 

which calculates the matching cost and finds the corresponding shortest path. However, it is 

not clear how they generalize it to the multidimensional case. A handful of papers do 

mention that there exist two ways of computing dynamic time warping in multi-dimensional 

time series. For example, the authors in Petitjean et al. (2012) choose DTWD for classifying 

satellite images because they argue that satellite images have dependent dimensions in their 

time series. Other papers, such as Gillian et al. (2011), Aach and Church (2001), and de 

Mello and Gondra (2008), use DTWD without pointing out the alternative approach of 

DTWI. The authors in Ten Holt et al. (2007), Bashir and Kempf (2008), and McGlynn and 

Madden (2011) use other methods similar to DTWI such as adding up all dimensions and 

dealing with a single dimension time series. For instance, Bashir and Kempf (2008) applies 

DTW to the data obtained from the sum of all channels in different dimensions. The authors 

in Ten Holt et al. (2007) normalize and smooth each dimension and then use the total 

difference among dimensions to find the best synchronization with the regular DTW 

algorithm.

The ubiquity of multi-dimensional time series, especially given the recent explosion of 

interest in wearable devices, has produced significant research in speeding up DTW 

(Rakthanmanon et al. 2013), choosing which subset of dimensions to use (Hu et al. 2013), 

choosing a setting for the warping window constraint (Ding et al. 2008), etc. However, all 

such work is orthogonal to (and compatible with) our contributions. We have created an 

annotated bibliography of which papers use DTWI vs. DTWD (Footnote 1).

As we noted above, there is significant research in “gating networks” and related techniques 

for choosing which classifier to use on a given region of the input space (Yuksel et al. 2012). 

However, to the best of our knowledge, these ideas have never been applied to time series 

and are only superficially related to the task at hand.

7 Conclusions

In this work we demonstrate for the first time that of the two obvious ways to do multi-

dimensional NN-DTW classification, neither is always superior. We show that the 
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differences are not trivial, as the wrong choice can double the error rate. We introduce a 

simple algorithm that can pick the method that is most likely to predict the correct class on a 

case-by-case basis. Our algorithm is simple to implement, and its overhead is 

inconsequential in terms of both time and space.

For concreteness we have confined our remarks and empirical demonstrations to 

classification problems, but note that distance measures are at the heart of many time series 

data mining tasks, including clustering, summarization, motif discovery (Hao et al. 2013), 

rule mining (Shokoohi-Yekta et al. 2015; Shokoohi-Yekta 2015), and many forms of 

anomaly detection. In future work we will expand our consideration of our ideas to these 

tasks.

Finally, in this work we have focused on intuitively explaining our observations/ideas and 

showing strong empirical evidence for them. However, we plan to revisit our work with a 

more theoretical framework and prove several useful properties of DTWA.
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Fig. 1. 
top left Two multi-dimensional time series. a The DTWD distance between them is 3.2. b 
The DTWI distance between them is 2.4. All elements of this visual key are formally defined 

below
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Fig. 2. 
I Two pages from a sixteenth century family history. The heraldic shield featuring the golden 

deer on a blue background is the family crest of Lucas Fugger. II A clustering of three of the 

shields under DTWD shows an unintuitive result, the two examples of the Fuggers are not 

grouped together
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Fig. 3. 
The color histograms of four objects taken from sixteenth century manuscripts. From left to 
right the red, green and blue channels are presented. Each channel has been independently 
aligned by DTW. top The two examples from family crest of Lucas Fugger have radically 

different warpings in each of the three color channels, perhaps reflecting the fact that the 

book was created over a 4 year period. bottom In contrast, the two butterfly examples have 

essentially identical alignments (Albertus 1734) (Color figure online)
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Fig. 4. 
Three coefficients from the MFCC space of a Southern Chestnut-Tailed Antbird (Myrmeciza 
hemimelaena). This bird’s call is typically transcribed as “klee-klee” (Ridgely and Tudor 

2009); thus, the above shows two calls, the second being significantly briefer
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Fig. 5. 
left A cricket umpire signaling “TV-Replay.” right The Dynamic Time Warping distance 

between two time series of the X-axis from the right and left hand
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Fig. 6. 
For the one-dimensional case, adding lag to one of the time series can change the warping 
drastically, without changing the distance by a significant amount
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Fig. 7. 
The effect of adding Random Lag on the classification accuracy of DTWD and DTWI
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Fig. 8. 
The effect of adding Fixed Lag on the classification accuracy of DTWD and DTWI
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Fig. 9. 
The effect of adding Fixed Warping on the classification accuracy of DTWD and DTWI
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Fig. 10. 
Three 2-dimensional time series (raw values shown in inset) single-linkage hierarchically 

clustered using DTWD (top) and DTWI (bottom). Here DTWDproduces an intuitive 

clustering, closely linking A and B, whereas DTWI uses its greater representational 

flexibility to produce a bizarre result, finding A to be identical to C
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Fig. 11. 
Three 2-dimensional time series (raw values shown in inset) single-linkage hierarchically 

clustered using DTWD (top) and DTWI (bottom). Here DTWIproduces an intuitive 

clustering, closely linking A and B, whereas DTWD uses only one warping path to measure 

distances therefore producing a bizarre result, finding A to be identical to C. Compare to 

Fig. 10
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Fig. 12. 
Two dimensions from a two-day sequence from the telemetry of a Delayed Coker. In the last 

12 h of Day One, the two pressure readings are tightly coupled, but in the first twelve hours 

of Day Two, they are almost completely uncoupled
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Fig. 13. 
An example of two warping paths that are very different, but reflect identical DTW distances 

of 2.80
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Fig. 14. 
top Computing the S score for a two-dimensional time series in I. bottom S score calculation 

of a two-dimensional time series in D
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Fig. 15. 
X, Y and Z acceleration data from the right hand (left), a representation of the umpire’s 

body position (center), and the X, Y and Z acceleration data from the left hand, for the two 

umpire signals Six and Leg-Bye
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Fig. 16. 
Gesture vocabulary adopted from Kela et al. (2006). The dot denotes the start and the arrow 

the end of the gesture
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Fig. 17. 
The coordinate system and sensor locations on a participant’s forehead, tongue, lips, and jaw 

in data collection using EMA. Labels are described in text
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Fig. 18. 
The experiments shown in Figs. 7, 8 and 9, revisited using the DTWA technique
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Fig. 19. 
left Sample accelerometer data (X, Y and Z) of a gesture. middle A Samsung Gear 2 used to 

collect activity data. right the eight different gestures considered in our experiments
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Fig. 20. 
left The number of elements in iSuccess and dSuccess for train sets of different sizes. right 
The effect of data set size on accuracy of classification

Shokoohi-Yekta et al. Page 42

Data Min Knowl Discov. Author manuscript; available in PMC 2017 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Shokoohi-Yekta et al. Page 43

Table 1

Adaptive classification algorithm

Procedure adaptive_Classifier (Q, trainData, threshold)

Input: A time series query, Q, the labeled data, trainData, a threshold;

Output: An adaptive distance measure to classify Q, DTWA ;

1 minD ← Nearest_Neighbor_Distance_D (Q, trainData);

2 minI ← Nearest_Neighbor_Distance_I (Q, trainData);

3 S ← minD / minI;

4 if S > threshold

5     DTWA ← DTWI ;

6 else

7     DTWA ← DTWD ;

8 end if

9 Return DTWA
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Table 2

Learning the adjusted threshold

Procedure Learn_Threshold (trainData)

Input: Labeled data, trainData;

Output: Adjusted threshold, threshold;

1 [S_iSuccess, S_dSuccess] ←find_Scores (trainData);

2 if (S_iSuccess == ϕ && S_dSuccess ==ϕ)

3     threshold ← 1;

4 else if (S_iSuccess ==ϕ&& S_dSuccess != ϕ)

5     threshold ← max(S_dSuccess) ;

6 else if (S_iSuccess !=ϕ && S_dSuccess == ϕ)

7     threshold ← min(S_ iSuccess) ;

8 else if (S_iSuccess! = ϕ && S_dSuccess != ϕ)

9     threshold ← Decision_Tree (S_iSuccess, S_dSuccess);

10 end if
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Table 3

An algorithm to find iSuccess and dSuccess and compute S scores for all their exemplars

Procedure find_Scores (trainData)

Input: Labeled data, trainData;

Output: S scores for iSuccess and dSuccess, S_iSuccess and S_dSuccess;

1 for n ← 1 to size(trainData)

2   minD ← Nearest_Neighbor_Distance_D (trainData(n), trainData);

3   minI ← Nearest_Neighbor_Distance_I (trainData(n), trainData);

4   if (trainData(n).label == Nearest_Neighbor_D ().label &&

5       trainData(n).label != Nearest_Neighbor_I ().label )

6     S_dSuccess.add (minD / minI);

7   end if

8   if (trainData(n).label != Nearest_Neighbor_D ().label &&

9       trainData(n).label == Nearest_Neighbor_I ().label )

10     S_iSuccess.add (minD / minI);

11   end if

12 end for
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