Table 2.
Procedure Learn_Threshold (trainData) | |
---|---|
Input: Labeled data, trainData; | |
Output: Adjusted threshold, threshold; | |
| |
1 | [S_iSuccess, S_dSuccess] ←find_Scores (trainData); |
2 | if (S_iSuccess == ϕ && S_dSuccess ==ϕ) |
3 | threshold ← 1; |
4 | else if (S_iSuccess ==ϕ&& S_dSuccess != ϕ) |
5 | threshold ← max(S_dSuccess) ; |
6 | else if (S_iSuccess !=ϕ && S_dSuccess == ϕ) |
7 | threshold ← min(S_ iSuccess) ; |
8 | else if (S_iSuccess! = ϕ && S_dSuccess != ϕ) |
9 | threshold ← Decision_Tree (S_iSuccess, S_dSuccess); |
10 | end if |