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A pirin-like protein from a marine denitrifying bacterium, Pseudomonas stutzeri Zobell has been het-
erologously expressed in E. coli and purified to homogeneity with metal-affinity and gel filtration
chromatographies. The recombinant pirin-like protein has exhibited quercetinase activities upon the
incorporation of a divalent metal ion, while its biological role remains unclear. In the case of Cu2þ the
holo-protein demonstrated the highest activities and spectroscopic properties typical of type II Cu
protein. A 3D-structual model constructed using the crystal structure of human pirin as temperate in-
dicated that the metal biding site is constructed with 3His1Glu located in the consensus sequences in the
N-terminal domain.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Flavonoids are one class of secondary metabolites of plants.
Dietary plant flavonoids have been proposed to contribute to
cancer prevention, neuro-protection, and cardiovascular health
though their anti-oxidant, anti-inflammatory, pro-apoptotic, and
anti-proliferative activities [1,2]. Terrestrial plants secrete flavo-
noids such as flavone, flavonol, flavanone, flavanonol, flavan and
isoflavon from their roots to send signals towards symbiotic bac-
teria or to avoid attacks from other bacteria [3,4]. Recent studies
have shown that marine plants also utilize flavonoids for protec-
tion [5,6].

Quercetin (3,5,7,3′,4′-pentahydroxy-flavone) is produced in
germinating seedlings by UV or blue light, and is widely contained
in plants as glycosides, rutin and quercitrin [7,8]. Quercetin is a
polyphenolic compound together with anthocyanin and catechin
etc. These polyphenolic compounds have received special atten-
tion for their anti-inflammatory actions arising from scavenging
capacity of free radicals [9,10].

Quercetin is converted into the corresponding depside (phe-
nolic ester 2-protocatechuoylphloroglucinol carboxylic acid) and
carbon monoxide by quercetin 2,3-dioxygenase (2,3QD) or quer-
cetinase (Scheme 1) [11]. Transformations of flavonols such as
quercetin can be divided into three or four processes: microbial
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bioconversion, anaerobic or aerobic prokaryotic catabolism, and
aerobic eukaryotic microbial catabolism [12]. Quercetinase has
been found in various molds [13–17] and some bacteria such as
Bacillus subtilis [18]. Beside catabolic roles ascribable to eukaryotic
quercetinase, detoxification role of this enzyme against deleterious
effects has also been postulated inside bacteria.

Amino acid sequence and higher order structure of querceti-
nases indicated that this enzyme has a strong resemblance with
pirin [12,19], which concerns in apoptosis and cellular stress in
eukaryotic organisms and in seed germination and transcription of
light- and ABA (abscisic acid)-regulated gene in plants. Both
quercetinase and pirin belong to cupin superfamily which has one
(monocupin) or two (bicupin) domains comprised of characteristic
β-stranded motifs and intervening loops with the consensus se-
quences containing His and Glu residues [11]. It has been clarified
that metal ions such as Cu2þ , Fe2þ , and Ni2þ are required to exert
quercetinase activities, whilst it is not necessarily clear whether
pirins play a role as sensor for metal ions [20]. While pirins and
quercetinases have strong structural resemblances, their require-
ments for metal ions are different. This fact urged us to study
quercetinase activity of pirin, although the bindings of divalent
metal ions to pirins have already been reported [21].

Metabolisms of flavonoids, especially of quercetin, by micro-
organisms in terrestrial plant rhizosphere, have been studied in
some detail [12,22]. However, few studies have been performed on
defense of microorganisms from flavonoids secreted by aquatic
plants. We have selected Pseudomonas stutzeri Zobell, formerly
Pseudomonas perfectomarina (CCUG 16156¼ATCC 14405) for the
study on decomposition of flavonoids. P. stutzeri is a Gram-nega-
tive bacterium adapted for a variety of circumstances, and
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Scheme 1. Oxygenolysis of quercetin catalyzed by quercetinase.
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accordingly, very broad for its phenotypic and genotypic diversity.
The Zobell strain of P. stutzeri is a marine isolate, and has been a
model organism for denitrification because of its potential uses for
agriculture, bioremediation and waste water treatment. However,
quercetinase activities of this anaerobic denitrifier have never
been studied yet in spite of detailed studies on the enzymes
concerned in denitrification [23]. We planned to search and study
a protein classified into pirin from P. stutzeri Zobell and its quer-
cetinase activities.
2. Methods

2.1. Chemicals

Quercetin, fisetin, keamferol, and myricetin were purchased
from Wako chemicals (Japan). Galangin and taxifolin were ob-
tained from Sigma, morin from TCI (Japan), and luteolin from LKT
laboratories (U.S.A.). Flavonoid stock solutions were prepared in
dimethyl sulfoxide. All other chemicals were of analytical grade.

2.2. Construction of the expression system of the pirin-like protein in
E. coli

The 5′-UTR region containing Shine-Dalgarno sequence and the
open reading frame coding for the pirin-like protein with 6xHis-
tag at C-terminus was amplified by PCR using two primers (P1: 5′-
ggaattcggaggaagcgaagatggcccaacgggaaattc-3′, containing the
EcoRI recognition site (underline), Shine-Dalgarno sequence (bold
letters), and coding sequence for the N-terminal region of the
pirin-like protein; P2: 5′-cgggatcctcaatgatgatgatgatgatgggc-
cagtgtcccatcgcgaaa-3′, containing the BamHI site (underline) and
the C-terminal region of the protein with 6xHis-tag (italic letters))
and a genomic DNA fragment of P. stutzeri Zobell as template.

The amplified gene fragment was digested with EcoRI and
BamHI, and inserted into pUC18 vector to yield an expression
plasmid pUC-2,3QD. To avoid co-expression of LacZ-fused pirin-
like protein, a stop codon was introduced at an upstream of the SD
sequence by PCR mutagenesis using two primers (5′-gaattcgt-
gaggaagcgaagatggcc-3′, 5′-cttcctcacgaattcgtaatcatggt-3′). The re-
sultant plasmid was designated as pUC-2,3QD*.

2.3. Purification of the recombinant pirin-like protein

E. coli BL21 cells transformed with pUC-2,3QD* were cultured
in LB medium supplemented with 50 μg/ml ampicillin at 37°C for
overnight with shaking (150 rpm). The recombinant protein was
induced with 0.2 mM IPTG. The cells were collected by cen-
trifugation and disrupted by sonication in 20 mM Tris-H2SO4, pH
8.0. After centrifugation, the supernatant of the crude extract was
applied onto a His-Accept resin column (Nacalai tesque, Japan) for
Ni-affinity chromatography. After the column was washed with
the same buffer containing 300 mM NaCl and 20 mM imidazole,
proteins were eluted with the buffer containing 300 mM NaCl and
300 mM imidazole. The gel filtration using Superdex 200 (GE
healthcare, U.S.A.) has been performed to obtain pure protein.

2.4. Determinations of protein concentration and amino acid
sequence

Protein concentration was determined with the BCA protein
assay kit (Pierce, U.S.A.) and bovine serum albumin as a standard
protein. The N-terminal amino acid sequence of the recombinant
protein was analyzed by a Shimadzu PPSQ-33A protein sequencer.

2.5. Construction of the 3D structure model

The 3D model structure for the P. stutzeri pirin-like protein was
generated by SWISS-MODEL (http://swissmodel.expasy.org/) using
human pirin (PDB ID: 4HLT) as a template.

2.6. Enzyme assays

Quercetinase activity of the pirin-like protein has been de-
termined from the absorption change at 380nm
(ε¼ 18,700 M�1 cm�1) for the reaction mixture containing 50 μM
quercetin, 100 mM NaCl and 5%(V/V) DMSO in 50 mM Tris–HCl
buffer at 25°C. One unit is defined as the amount of the enzyme
catalyzing the decomposition of 1 μmol of quercetin (flavonol) per
min. Production of carbon monoxide as co-product has been as-
certained from the reaction with PdCl2 soaked on filter paper to
give black solid precipitates of elemental palladium [17]. Kinetic
parameters, Km and Vmax values were determined based on tri-
plicate data by using Igor Pro ver. 5.03. The pH dependence study
of quercetinase activity has been performed using 50 mM Britton–
Robinson buffer. Thermal stability of the holo-protein has been
studied by incubations at ambient temperatures for 30 min. In
addition to quercetin, enzymatic activities for fisetin, galangin,
kaemferol, morin, myricetin, taxifolin, and luteolin are also
studied.

2.7. Spectroscopic characterizations of the CU-pirin-like protein

Absorption spectra have been measured on a Shimadzu UV-
2600 spectrometer or on a JASCO V-560 spectrometer, to both of
which a temperature controller has been attached, using quartz
cells with 1 mm or 10 mm path-length. Circular dichroism (CD)
spectra have been measured on a JASCO J-720 spectropolarimeter.
Electron paramagnetic resonance (EPR) spectrum has been mea-
sured on a JEOL JES-RE1X X-band spectrometer at 77 K.
3. Results and discussion

3.1. Amino acid sequence and model structure of the pirin-like
protein

We have cloned the gene coding for the pirin-like protein from
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Fig. 1. The amino acid sequence alignment of quercetinases and pirin-like proteins, quercetinases from A. japonicus (Acc: Q7SIC2), P. olsonii (Acc: ABV24349), B. subtilis (Acc:
P42106), and pirins from E. coli (Acc: P46852), human (Homo sapiens, Acc: AAV38390), and P. stutzeri Zobell. The white letters on the black background are the common
conserved residues of quercetinases and pirins. The conserved residues of quercetinases or pirins are shown by the light-gray and the dark-gray shadows, respectively. The
coordination residues of metal ions are marked by asterisk and box.
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the genome of P. stutzeri Zobell (ATCC 14405) by PCR based on the
sequence obtained with genome walking prier to the construction
of the expression system (data not shown). The sequence of cloned
genome fragment is identical to the reported one (GenBank ac-
cession number of EHY79687.1).

The amino acid sequence of the pirin-like protein from P.
stutzeri Zobell (Fig. 1) shares 21–34% identities with the querceti-
nase sequences from P. olsonii, A. japonicus, A. flavus, A. niger, B.
subtilis, and Streptomyces. Higher homologies in amino acid se-
quences are found for pirins, e.g. 37% and 39% for the E. coli and
human proteins, respectively. Judging from the difference in se-
quence conservation patterns between quercetinase and pirin
(Fig. 1), it is clear that the pirin-like protein from P. stutzeri belongs
to the pirins. These sequence homologies indicated that the pre-
sent P. stutzeri pirin-like protein is comprised of two domains,
therefore belongs to bicupin. A modified characteristic consensus
sequence for cupin superfamily, G(X)5HXH(X)3,4E(X)6G (motif 1,
underlines are the ligands for metal ion) is present in the
N-terminal domain (domain 1 in Fig. 1): GFPPHPHRGFETITYMLEG.
On the other hand, another consensus sequence G(X)5PXG(X)2H
(X)3N (motif 2), is also located in the N-terminal domain, although
considerably modified for pirins: QWMTAARGVIHSEMP.

The structural model constructed using the human pirin (PDB
ID: 4HLT) as template (Supplemental Fig. 1) appears to be con-
sisted of two–domains, each of which has the β-sandwich cupin
fold as in the X-ray crystal structures of fungal (A. japonicas [24])
and bacterial (B. subtilis [25]) quercetinases or bacterial (E. coli
[26]) and human [27] pirins. Supplemental Fig. 1 also indicates the
presence of α helix in the C-terminal end. Analogous helix is also
found in human pirin in harmony with a high homology in amino
acid sequence (Fig. 1).

The CD spectrum in the UV region (Supplementary Fig. 2) in-
dicated that the pirin-like protein is rich in β�structures and
loops (estimated helix content is less than 20%, vide infra). The side
chains of the His59, His61, His103 and Glu105 residues involved in
the consensus sequence are closely located in the cavity formed in
the N-terminal domain, which is smaller in size compared to those
found in quercetinases. Thus, a potential binding site for divalent
metal ions appears to be constructed with the conserved amino
acid residues.

3.2. Construction of the expression system of the pirin-like protein
and purification of the recombinant protein

To construct the expression system of the pirin-like protein, the
open reading frame of the gene attached a 6X-His tag coding se-
quence at 3′-terminal end with 5′-UTR region containing SD-se-
quence was inserted into the cloning site of pUC18. However, the
two protein molecules with analogous molecular masses (31 and
33 kDa) were expressed. Determination of the N-terminal amino
acid sequence of 33 kDa protein indicated that the N-terminal 10
amino acids of LacZ protein encoded by the vector was fused to the
31 kDa protein. Both the LacZ-fused protein (33 kDa) and the tar-
get pirin-like protein (31 kDa) exhibit quercetinase activities upon
the incorporation of divalent metal ions (not shown). However, it
was impossible to separate them by chromatographies. Therefore,
we inserted a stop codon just before the SD sequence by PCR
mutagenesis, and succeeded in obtaining the recombinant protein
to afford a single band on SDS-PAGE (Supplemental Fig. 3).

3.3. Requirement of metal ions for quercetinase activities

The pirin-like protein as isolated did not exhibit activities to
quercetin and other flavonols, fisetin, galangin, kaempferol, morin,
myricetin, taxifolin, and luteolin. Therefore, divalent metal ions
were reacted with the apo-proteins. We could observe flavonol
dioxygenase activities (quercetinase activities as a narrow sense)
of the holo-proteins from the absorption changes for



Fig. 2. Titrations for quercetinase activities of the pirin-like protein from P. stutzeri Zobell as a function of increasing concentrations of added Cu2þ (Fig. 2A) and Fe2þ

(Fig. 2B) ions. Conditions: protein concentration, 4 μM, in 10 mM potassium phosphate buffer (pH 6.0) supplemented with 0.1 M NaCl.
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decompositions of substrates and also from the formation of CO by
the Pd2þ reduction. Relative activities for every substrate were
changed in the following order: Cu2þ4Fe2þ4Zn2þ»Mn2þ , Co2þ ,
Ni2þ�0. The specific activity of the Cu2þ-acted pirin-like protein
against quercetin was 1.2 U/mg. The fact that Zn2þ also exhibited
oxygenase activities, although considerably low, indicates that the
central metal ion does not perform a redox change but constructs
the active center to activate flavonols and O2. According to the
studies on quercetinase [11,19], Cu2þ and Fe2þ are most fre-
quently required divalent metal ions. Recently, other metal ions
such as Ni2þ , Co2þ , and Mn2þ-requiring quercetinases have also
been reported [20]. Different activities shown by divalent metal
ions would be due to differences in their Lewis acid character and
steric requirement. Cu2þ ion favors the five- to six-coordinated
structures with one or two elongated axial bonds according to
small molecule studies. Otherwise, the tetrahedrally hindered
four-coordinated structure is favored by Cu2þ ion [15,24–26].

To explore how many metal ions are required for quercetinase
activities, titrations for Cu2þ and Fe2þ have been performed.
Figs. 2A and B unequivocally show that exactly one Cu2þ or Fe2þ

ion is bound to a pirin-like protein. This experimental fact coin-
cides with the prediction from the 3D-strcutrue model which
shows a single potential metal binding site in the N-terminal do-
main of the pirin-like protein (Supplementary Fig. 1).
Table 1
Relative flavonol dioxygenase activities of the Cu-pirin-like protein and analyzes of
CO formation.

Substrates Relative activity
(%)a

CO formation

Quercetin 3,5,7,3′,4′-pentahydroxy-
flavone

100 þ

Myricetin 3,5,7,3′,4′,5′-hexahydroxy-
flavone

460 þ

Fisetin 3,7,3′,4′-tetrahydroxy-flavone 28 þ
Kaempferol 3,5,7,4′-tetrahydroxy-flavone �0 �
Galangin 3,5,7-trihydroxy-flavone �0 �
Morin 3,5,7,2′,4′-pentahydroxy-

flavone
�0 �

Taxifolin 3,5,7,3′,4′-pentahydroxy-2,3-di-
hydro-flavone

�0 �

Luteolin 5,7,3′,4′-tetrahydroxy-flavone �0 �

a Measurement conditions: protein concentration, 50 nM; 50 μM flavonol in
50 mM Tris–HCl buffer (pH 7.5) supplemented with 0.1 M NaCl and 5%(V/V) DMSO.
3.4. Enzymatic activities

The relative oxidation activities of the Cu-pirin-like protein
against quercetin, myricetin, fisetin, kaempferol, galangin, morin,
taxifolin, and luteolin are tabulated in Table 1 together with si-
multaneous qualitative analyzes of CO formation. The present Cu-
pirin-like protein exhibited narrow substrate specificities, the high
oxidation activities to quercetin and myricetin differing from other
quercetinases. The kinetic parameters, Km and Vmax values for
quercetin and myricetin are 13 μM and 1.2 U/mg, respectively, and
9.4 μM and 5.3 U/mg, respectively. The Km values are analogous to
the values reported for quercetinases, while the Vmax values are
considerably low (45–180 U/mg for fungal quercetinases) [12],
presumably because quercetinase activity is not intrinsic to the
present pirin-like protein. Expecting an increase in activity by
enlarging the entrance of cavity to accommodate the bulky sub-
strates, we performed a mutation at the non-coordinating Phe56
for Ala. However, enzymatic activities were significantly decreased
presumably because the mutant molecule became unstable (data
not shown).

Considerably broad dependencies of activity in the pH range of
3.5–11.5, highest at pH ca. 7.0–7.5, are shown in Fig. 3A. The op-
timum pH value of the Cu-pirin-like protein is 1.0–1.5 pH units
higher than those of the fungal quercetinases [12]. Fig. 3B indicates
that the present Cu-pirin-like protein exhibits the highest activity
at ca. 40°C but loses activity at 90°C.

3.5. Spectroscopic characterizations

Absorption spectrum of the pirin-like protein as isolated is
shown in Fig. 4A as broken line. Only one absorption band is ob-
servable at 280 nm (ε¼35,000 M�1 cm�1), indicating the protein
is in the apo-form (vide supra). With the action of excess Cu2þ ions
on apo-protein, the absorption bands appeared at ca. 650 nm (not
shown), the wavelength that Cu2þ ions in water never give the
absorption band. The prolonged incubation of a stoichiometric
amount of Cu2þ ion with the apo-protein molecule also gave the
same spectrum (full line in Fig. 4A). The 650 nm band is assigned
to the d–d band from the Cu2þ ion bound to the pirin-like protein.
The intensity (ε¼�100 M�1 cm�1) is in the range reported for
Cu-proteins containing a type II Cu (εo�500 M�1 cm�1) [28].
Absorption spectra of other Cu-quercetinases have not been pub-
lished yet, and accordingly, comparison is not possible.

The CD spectrum of the Cu-pirin-like protein is shown in
Supplementary Fig. 2 as full solid line, indicating that protein



Fig. 3. (A) pH dependence and (B) optimum temperature of the quercetinase activity of the Cu-pirin-like protein from P. stutzeri Zobell. Quercetinase activity was determined
at different pH with 50 mM Britton–Robinson buffer (Fig. 3A), and 50 mM Tris–HCl buffer, pH 7.5 (Fig. 3B).
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conformation did not change practically after the incorporation of
Cu2þ ion into protein molecule. The CD spectrum in the visible
region afforded some CD bands at around 650 nm (shown else-
where after ascertaining reproducibility).

Fig. 4B shows the EPR spectrum of the holo-protein. It appears
that a single tetragonal Cu2þ species is present with the spin
Hamiltonian parameters of g‖¼2.26, g⊥¼2.06, A‖¼167 mT
(17.6�10�3 cm�1) typical for type II Cu with the binding of 2N2O
to 4 N atoms [29]. The presence or absence of water molecules or a
hydroxide ion in an equatorial or the axial coordination position
(s) is unclear from the EPR parameters. Nevertheless, the EPR
parameters and the correlation of the g‖ vs. A‖ values are indicative
for the binding of the conserved His59, His61, His103 and Glu105
to Cu2þ ion. Type II Cu EPR signals have been reported for the
quercetinase from A. japonicus: g‖¼2.33 and A‖¼15 � 10�3 cm�1

in MES buffer, pH 6.0 (minor species: g‖¼2.29 and
A‖¼13�10�3 cm�1) (Major and minor species have been con-
sidered to have the six-coordinated and distorted five-coordinated
structures, respectively) [30]. In the present study, the Tris–HCl
buffer, pH 8 was used to ensure the bindings of ligand groups to
Cu2þ . Therefore, the Cu2þ-EPR signal with a highly planar
Fig. 4. Absorption (A) and EPR (B) spectra of the Cu-pirin-like protein from P. stutzeri Zo
Measurement conditions: protein concentration, 21 μM, in 50 mM Tris–HCl buffer (pH 7.5
length quartz cell and the EPR spectrum measured at 77 K with 9.2 GHz microwave.
character might have been obtained due to the binding of a hy-
droxide ion in the place of a water molecule, and minor species is
practically negligible.
4. Conclusions

We constructed an expression system of a pirin-like protein
from P. stutzeri Zobell in E. coli. The recombinant protein was ex-
pressed as the mixture of the target pirin-like protein and LacZ
fusion at its N-terminus, but the pure recombinant protein mole-
cules could be obtained by introducing the stop codon at the up-
stream region of the SD sequence. One divalent metal ion was
incorporated into an apo-protein molecule and exhibited querce-
tinase activities, highest for Cu2þ ion. Furthermore, we performed
detailed kinetic analysis for the pirin derived from a microbe for
the first time and revealed that the present pirin-like protein has
unique specificities considerably different from quercetinases re-
ported hitherto. Absorption, CD, and EPR spectra of the Cu protein
indicated that the coordination of all or some of His59, His61,
His103 and Glu105 located in the consensus sequences for cupin
bell. Absorption spectrum of the apo protein is shown with broken line in Fig. 4A.
). The absorption spectrumwas measured at room temperature using a 10 mm path
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superfamily. The biological role of the present pirin-like protein
still remains unclear, but the fact that a divalent metal ion such as
Cu2þ is required for quercetinase activities will be closely con-
cerned with the involvement of this protein in a transcription
process for regulation. In the next stage we will focus our study to
explore this uninsured evolutional question, especially higher
structural homology of the present pirin-like protein with the
human pirin.
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