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The stochastic dynamics and regulatory mechanisms that govern differentiation of individual human neural precursor cells

(NPC) into mature neurons are currently not fully understood. Here, we used single-cell RNA-sequencing (scRNA-seq) of

developing neurons to dissect/identify NPC subtypes and critical developmental stages of alternative lineage specifications.

This study comprises an unsupervised, high-resolution strategy for identifying cell developmental bifurcations, tracking the

stochastic transcript kinetics of the subpopulations, elucidating regulatory networks, and finding key regulators. Our data

revealed the bifurcation and developmental tracks of the two NPC subpopulations, and we captured an early (24 h) tran-

sition phase that leads to alternative neuronal specifications. The consequent up-regulation and down-regulation of stage-

and subpopulation-specific gene groups during the course of maturation revealed biological insights with regard to key reg-

ulatory transcription factors and lincRNAs that control cellular programs in the identified neuronal subpopulations.

[Supplemental material is available for this article.]

Given their defining characteristics to self-renewand give rise to al-
ternative cell fates, human embryonic stem cells (hESC) have be-
come the workhorse to model early human development in vitro
(Nicholas et al. 2013; Zhu and Huangfu 2013; Ziller et al. 2015).
More recently, exciting advances in self-organizing cell cultures
are providing organoids that retain some degree of cellular com-
plexity found in developing tissues (Lancaster and Knoblich
2014; Jo et al. 2016; Qian et al. 2016; Yin et al. 2016). However,
the heterogeneity of the cells and the presence of rare cell sub-
types, such as those undergoing short-lived cell fate transitions
within themixed population,make it difficult for traditional geno-
mics approaches to identify exquisite spatiotemporal molecular
changes that underlie cell fate decisions. Thus, unanswered ques-
tions arise regarding whether seemingly identical cells developing
within a population exhibit similar intrinsic properties (Jaitin et al.
2015; Stegle et al. 2015; Trapnell 2015; Moris et al. 2016).

Single-cell RNA sequencing (scRNA-seq) analyses have been
recently used to identify novel cell types in complex mixtures
(Yan et al. 2013; Treutlein et al. 2014; Zeisel et al. 2015; Fuzik
et al. 2016; Scialdone et al. 2016), establish developmental kinetics
(Kim and Marioni 2013; Deng et al. 2014), and reveal discrete

events in transitions between cell states (Buganim et al. 2012;
Bendall et al. 2014; Moignard et al. 2015; Trapnell 2015; Olsson
et al. 2016). To date, many studies have shown the heterogeneity
of neural precursor cells (Johnson et al. 2015; Llorens-Bobadilla
et al. 2015) and neurons (Molyneaux et al. 2007; Pollen et al.
2014; Darmanis et al. 2015; Usoskin et al. 2015) in mouse and hu-
man brain by scRNA-seq. However, due to complexity of data anal-
ysis of cellular dynamics, coupled with the biological variability
(birth, death, and differentiation) of individual cells, as well as
the presence of technical, environmental, and intracellular noise
(Kuznetsov 2001, 2003; Kuznetsov et al. 2002; Kim and Marioni
2013; Kharchenko et al. 2014; Buettner et al. 2015; Daigle et al.
2015; Vu et al. 2016), it remains a challenge to interpret the hetero-
geneity and dynamics of NPC to neuron transitions (Camp et al.
2015; Bakken et al. 2016; Yao et al. 2017). Given the lack of syn-
chronous development, the molecular patterns that switch on
and switch off pathways governing alternative neuronal fate
choices (Ming and Song 2011) are not clear. Thus, to dissect the
landscape of neural cell development processes, both experimen-
tal and computational methodologies are required to identify
and track the dynamics of molecular changes within individual
cells as they develop (Shalek et al. 2013).

To date, several computational methods have been reported
that profile developmental processes, such as Monocle (Trapnell
et al. 2014), Wanderlust (Bendall et al. 2014), Wishbone (Setty
et al. 2016), SLICER (Welch et al. 2016), Diffusion Pseudotime
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(Haghverdi et al. 2016), Destiny (Angerer et al. 2016), and SCUBA
(Marco et al. 2014). These methods attempt to order cells into
smooth continuous spatiotemporal trajectories to model
development. However, Destiny lacks unsupervised statistics;
Wanderlust typically is perfomed on few genes (<50); and
Monocle, Diffusion Pseudotime,Wishbone, and SCUBA are biased
(Bacher andKendziorski 2016; Rizvi et al. 2017) or depend on a few
well-known markers to define the bifurcation. Based on topologi-
cal data analysis (TDA), recently published scTDA (Rizvi et al.
2017) has overcome some of the limitations. However, apart
from smooth continuous spatiotemporal trajectories of cell devel-
opment, there may be other transient developmental processes
such as discontinuous cell development and stochastic cell fate
changes (Moris et al. 2016). For example, without going through
classic intermediate stages, haematopoietic stem cells can give
rise to differentiated cells directly (Notta et al. 2016). Thus, com-
pulsively ordering all the cells into smooth trajectories by compu-
tational algorithmsmaymiss important biological information. In
addition, after defining cell subtypes andmapping developmental
trajectories, little has been done to analyze unique devleopmental
tracks of different cell subtypes. More and deeper biological mean-
ing could be addressed by (1) seperating the different cell subtypes
and cell states of a givenmixed population; (2) definingwhat is the
mechanism underlying the specification of different cell subtypes
and different cell states; and (3) understanding what are the dy-
namic differences between distinct subpopualitons that arise dur-
ing development.

Results

Gene expression analysis by single-cell RNA sequencing

of neuronal differentiation

To gain insight into the molecular and cellular mechanisms that
govern neurogenesis and develop an approach for studying devel-
opmental processes by scRNA-seq, we first sought to discern the
gene expression patterns that confer developmental fates on hu-
man hindbrain/spinal cord neurons differentiated from neural
precursor cells (NPCs). This in vitromodel of neurogenesis provid-
ed the opportunity to analyze single-cell transcriptome data to
define subpopulations of developing human neurons and to tease
out the regulatory networks that govern alternative cell fate deci-
sions associated with neurogenesis. Cultures of hESC cultures (H9
cell line) were treated for 8 d with small molecule inhibitors of
the GSK3, SMAD, and NOTCH signaling pathways (Li et al.
2011), which gave rise to a seemingly homogenous population of
SOX2+ (97.7%) and NESTIN+ (100%) NPCs (Fig. 1A). NPCs (day
0)were shifted to culturemedia supplemented onlywith neurotro-
phic factors, thus permittingmultilineage neurogenesis. To reduce
technical noise, scRNA-seq was performed on two independent
differentiation experiments. After 30 d of nondirected differentia-
tion, the cultures contained primarily TUJ1+ (98.3%) and MAP2+

(85.7%) neurons (Fig. 1A; Supplemental Fig. S1A,B) with predomi-
nantly hindbrain/spinal cord specification (Supplemental Fig.
S1C), plus a few (<5%) other neuronal subtypes (TH+, 5-HT+,
GABA+) (Supplemental Fig. S1B) and very few glial cells. Sequence
data of each individual single cell shows that a majority (>90%) of
cells expressed hindbrain/spinal cord neural cell markers such as
HOX genes (Mazzoni et al. 2013; Philippidou and Dasen 2013;
Thompson et al. 2014; Lu et al. 2016), but fewcells (<5%) expressed
forebrain and midbrain markers (Supplemental Fig. S1C,D). The
hindbrain potential of our derived NPC is consistent with a previ-

ous report showing that NPC derived in this manner gave rise to
hindbrain neurons when transplanted in vivo (Li et al. 2011).

Single cells were isolated at discrete time points (days 0, 1, 5,
7, 10, and 30) with the aim of capturing developmental transition
events. The wide time range allowed us to interrogate gene expres-
sion dynamics at early stages of neurogenesis and during the sub-
sequentmaturation process.We captured 88–96 single cells at each
time point followed by library preparation and deep sequencing of
transcripts derived from individual cells (Fig. 1B; Supplemental
Table S1). To reduce technical noise and to increase the statistical
confidence of the single-cell gene-expression profiling, the cells
and expressed genes were filtered using quality control criteria
(Methods; Supplemental Fig. S2, overview). In total, 8957 genes
from 483 cells produced high-quality expression data by scRNA-
seq (Supplemental Table S2).

A global comparison of the single-cell expression profiles
across all six time points was performed. We found that NPCs
(day 0) and differentiated neurons (day 30) expressed fewer genes
than the intermediate time points (days 1, 5, 7, and 10) (Fig. 1C),
which was confirmed in experiment 2, in which single cells were
collected on days 0, 3, 7, and 14 (Supplemental Fig. S3). The
gene expression profiles were assessed across all cells at each time
point (Supplemental Fig. S4A). Genes expressed in >80% cells at
a given time point were considered to be highly penetrant, where-
as genes expressed in <20% cells were considered as low pene-
trance genes. The penetrance plots show that on day 0, only
25% of genes were high penetrance and 15% of genes were low
penetrance. Interestingly, 51% of genes were high penetrance
and only 3%were lowpenetrance on day 1, indicating a coordinat-
ed gene switch-on process resulting in a less heterogeneous popu-
lation of cells relative to day 0, and the data from experiment 2
showed similar results (Supplemental Fig. S4B). The dynamics of
gene penetrance were concordant with the changes in the total
number of expressed genes (Fig. 1C; Supplemental Fig. S3). The dy-
namics of gene expression associated with cell heterogeneity were
confirmed by principal component analysis (PCA) (Supplemental
Fig. S5A), and the variance percentage of each principal compo-
nent was determined (Supplemental Fig. S5B). The PCA shows
that cells broadly clustered together based on their time of differ-
entiation. It is also apparent from the PCA analysis that day 1 cells
were least heterogeneous and then transcriptional heterogeneity
increased, becoming greatest among the neurons at day 30.

Collectively, the single-cell gene expression data show that
there was a fair degree of heterogeneity within the starting NPC
population and then again at the end stage of differentiation
(Supplemental Figs. S4, S5). Interestingly, there appeared to be a
rapid constriction in population heterogeneity within one day of
the shift to conditions that promoted neural differentiation,
which we argue is due to the differentiation program driving cells
predominantly toward neuronal development and away from de-
velopment of astrocytes, oligodendrocytes, and other glial cells.

To explore the gene expression dynamics as NPCs became
neurons, 15 pairwise comparisons were performed across all six
time points (Fig. 1D). Single-cell differential expression (SCDE)
methodology identified 3986 significantly (P < 0.05) differentially
expressed genes (DEG) (Supplemental Table S3). Interestingly, for
each pairwise comparison, therewere peaknumbers ofDEG at stat-
istical significance of P < 10−7 in experiments 1 and 2 (Fig. 1E;
Supplemental Fig. S6A,B). This tight statistical cutoff produced a
set of 528 and 279 dynamically expressed genes from experiments
1 and 2, respectively (Supplemental Table S4). Of the derived 279
genes from experiment 2, 71.7% were significantly differentially
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expressed in experiment 1 (Supplemental Fig. S6C). These data in-
dicated that the tight statistical cutoff provided a highly reliable set
of 528 dynamic classifier (DC) genes, which were then used to
build an unsupervised hierarchical cluster for all cells across all
six time points using a bootstrapping method (Fig. 1F). As ex-
pected for a time course of differentiation and as seen in the PCA
plots (Supplemental Fig. S5), we found that amajority of cells com-
ing from the same time points grouped together, and groups of
cells from adjacent time points weremore transcriptionally similar
than cells from more widely interrupted time points. The 528
DC genes are potentially useful markers for defining inter-
mediate cell types in hindbrain/spinal cord neuron development
(Supplemental Fig. S7).

Identifying and tracking subpopulations of differentiating

neurons

One major advantage of single-cell over bulk-cell analysis is the
ability to identify subpopulations that have independent trajecto-

ries and thereby determine the gene regulatory networks that
uniquely specify the individual subpopulations. We noticed
from the hierarchical clustering thatmixed populations of cells ap-
peared during the time course (Fig. 1F). We hypothesized that
these cells were transient intermediates that would reveal unique
developmental lineages that give rise to distinct neurons from pro-
genitors. To identify subpopulations, unsupervised hierarchical
clustering was performed for each time point by bootstrapping
based on the same 528 DC genes (Fig. 2A). Then all genes differen-
tially expressed between subpopulations within a given time point
were identified by SCDE (P < 0.05) (Supplemental Table S5). The
analysis revealed two clearly distinguishable subpopulations of
similar abundance at day 0. On days 1 and 5, there were three sub-
populations, and on days 7, 10, and 30, there were two. To estab-
lish the relationship of the subpopulations, we looked for the
DEG that were common in subpopulations between any two
neighboring time points. For example, there are 58 DEG in com-
mon between “a” and “b” subpopulations of day 0 and “a,” “b,”
and “c” subpopulations of day 1 (Supplemental Fig. S8;

Figure 1. Transcriptional profiling and statistical properties of gene expression data of the neuronal differentiation process. (A) Immunostaining shows
expression of markers for ES cells (NANOG), NPC (SOX2/NESTIN), and neurons (TUJ1). (B) Summary of workflow for capture and quality assessment of
single cells at each time point. (C) Box plots show the number of expressed genes for each filtered cell at days 0, 1, 5, 7, 10, and 30 during neuron differ-
entiation. Each dot represents one cell. (D) Summary of 15 pairwise comparisons (upper) that identified 3986 DE genes between any two of six time points
at P < 0.05 (Supplemental Table S3). The table shows the numbers of DE genes for each pairwise comparison. (E) After comparing any two time points as
shown inD, to enhance pattern detection of DE genes for downstreamanalysis, curveswere drawnbased on the gene density and−log10 (P-value) for all DE
genes in experiment 1 (orange line) and experiment 2 (green line), respectively (E), from which, 528 genes were obtained (Supplemental Table S4) with
fold change >1.5 and P-value <10−7. (F) Hierarchical cluster analysis for all six time points was performed by bootstrapping based on the derived 528 genes
from E. Hierarchical cluster analysis was calculated for the cells clustering with the R package “pvclust” using Correlation distance, the Ward clustering
method, and the number of bootstrap set to 10,000.
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Supplemental Table S6). Similarly, there are 129, 135, 128, and 48
commonDEGbetween subpopulations of days 1 and 5, days 5 and
7, days 7 and 10, and days 10 and 30, respectively (Supplemental
Table S6). A heatmapwas generated based on the expression levels
of the commonDEG (Fig. 2B). To establish connections of subpop-
ulations between neighboring time points in a statistically rigor-
ous manner, Pearson correlations based on the common DEG
between subpopulations of two neighboring time points were de-
termined (Fig. 2C). These analyses established that two subpopula-
tions, called “a” and “b,” at day 0 begat two subpopulations “a”

and “b,” respectively, on day 1. The cor-
responding “a” and “b” lineage cells
were also clearly distinguishable on day
5, although the differences between
them had diminished. By days 7, 10,
and 30, the “a” and “b” subpopulations
were no longer clearly distinguishable
and collapsed to a single subpopulation,
which we termed “ab.” This correlation
analysis also indicated that a third subpo-
pulation “c” appeared on day 1, likely de-
rived from the “b” lineage cells. As the
“a” and “b” lineages converged into the
“ab” lineage, lineage “c” cells became
more distinct from the “ab” lineage by
day 5. To summarize, our approaches to
model developmental trajectories re-
vealed three lineages: the “a” and “b”
subpopulations were both present in
our starting NPC; the “c” lineage arose
from “b” on day 1 and persisted until
day 30; the “a” and “b” lineages con-
verged to form a single lineage “ab” by
day 7; and two major subpopulations of
differentiated neurons emerged from
these lineages over the 30-day time
course.

To gain biological insight, we exam-
ined the ontology of genes (gene set 1)
that distinguished the “a” from “b” line-
ages (Fig. 2B; Supplemental Table S7).
The Gene Ontology (GO) of gene set 1
identified “anterior/posterior pattern-
ing” and “development proteins” as be-
ing significantly different in these two
lineages (Fig. 2D). The data also showed
that another set of DEG (gene set 2)
(Fig. 2B; Supplemental Table S7) distin-
guished “c” lineage cells from “ab” cells,
especially at days 5, 7, and 10. The GO of
gene set 2 showed enrichment for genes
associated with neuronal function (Fig.
2E), indicating that the “c” lineage devel-
oped into neurons earlier than the “ab”
lineage. GO was also performed for the
genes differentially expressed between
“ab” and “c” subpopulations of day 30.
This showed that “ab” subpopulation ex-
pressed genes related to “mitosis signal-
ing” (Supplemental Fig. S9A), indicating
that the “ab” subpopulation was com-
prised of immature neurons. Indeed,

flow cytometry showed that some cells (<20%) at day 30 were in
G2/M phase and thus were not fully differentiated, post-mitotic
neurons (Supplemental Fig. S9B).

Tracking subpopulation trajectories reveals key regulators

of neuronal differentiation

We reasoned that tracking the gene expression dynamics of indi-
vidual subpopulations would allow us to parse developmental
processes that would be masked by bulk cell analysis. After

Figure 2. Defining and tracking of subpopulations throughout the time course of differentiation. (A)
Hierarchical cluster analysis for each time point was performed by bootstrapping based on the derived
528 DC genes as Figure 1F. (B) A heat map showing common DE genes between cell subpopulations
in any two neighboring time points after defining the clusters at each time point. (C) The Pearson cor-
relation coefficients between any two cell subpopulation for two neighboring time points were calculat-
ed based on the common DE genes between subpopulations of any two neighboring time points. The
common DE genes between neighbor time points are as shown. The correlation values are shown with
highest values as indicated (red numbers, black line). Gene ontologies associated with gene set 1 (D) and
gene set 2 (E) were generated by David analysis (Bioinformatics 6.7). The top GO terms are shown with
representative genes highlighted with blue (gene set 1) and brown (gene set 2). The x-axis indicates the
−log (Benjamini P-value).
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building up the connection of the subpopulations from day 0 to
day 30 (Fig. 2C), we determined the gene expression patterns
unique to the different subpopulations during the progression
of the lineages across the time course of differentiation. GO anal-
ysis was first performed for genes differentially expressed between
all cells of day 0 and day 1 (Fig. 3A, left). We found that the up-
regulated genes have “neuron differentiation” and “cell motion”
related pathways, whereas “cell cycle” related pathway genes were
down-regulated, as expected for neuronal differentiation.
Interestingly, the data show specific gene expression dynamics
of subpopulations when GO analysis was performed for “a,”
“b,” and “c” subpopulations from day 0 to day 1 (Fig. 3A, middle
and right); cell cycle pathway genes were not down-regulated in
the “a” subpopulation (Fig. 3A, middle), but were down-regulated
in “b” and “c” subpopulations of day 1 compared with the “b”
subpopulation of day 0 (Fig. 3A, right).

We then tracked the dynamic expression of somewell-known
markers within the identified subpopulations. For example, the ex-
pression of cell cycle–related genes, HMGA1 and CENPF, were
down-regulated faster and greater in the “c” subpopulation, and
the expression of neuronalmarkers,DCX and STMN2, were up-reg-
ulated greater and faster in the “c” subpopulation (Fig. 3B). These
unique gene expression dynamics of different subpopulations pro-
vide us detailed information regarding neuron development, re-
sults that may be obscured by conventional smooth continuous
trajectory-basedmethods. For example, bulk gene expression anal-
ysis (Q-RT-PCR) of the neural cellmarker PAX6 indicated that it did
not change from day 0 to day 10 (Fig. 3C). However, our analysis
shows initially low PAX6 expression in the “a” subpopulation
that dramatically increased from day 0 to day 1, whereas its ex-
pression was consistently high in the “b” subpopulation (Fig.
3D). The accuracy of our scRNA-seq data was confirmed by immu-

nostaining analysis, which showed that
45.2% of cells were PAX6+ on day 0,
whereas there were 92.4% and 97.5%
PAX6+ cells on days 1 and 5, respectively
(Supplemental Fig. S10A,B). Several other
subpopulation-specific gene expression
patterns were noted, including a cell cy-
cle–related gene (HMGA2), stem cell
markers (LIN28A and CDX2), neuronal
cell markers (MAP2, KLF7, and HES6),
HOX genes (HOXC10, HOXC9, and
HOXA3), early B cell factors (EBF1,
EBF2, and EBF3), and PAX family mem-
bers (Supplemental Fig. S11). These data
indicate that our subpopulation analyses
are sensitive and accurate in identifying
unique gene expression dynamics during
neuronal differentiation, information
that may have been masked by bulk
cell analysis or by applying analytical
tools that assume continuous smooth
trajectories.

Encouraged by our observations of
unique gene expression dynamics that
allowed us to track subpopulations, we
searched for key regulators of the alterna-
tive developmental processes. Our hier-
archical clustering showed the “c”
subpopulation that arose on day 1 was
most similar to the “b” subpopulation
(Fig. 2A,C). GO analysis revealed that
the “b” and “c,” but not “a,” subpopula-
tions displayed significant neuronal fea-
tures on day 1 (Supplemental Fig. S12).
We hypothesized that there would be
key genes expressed in “b” and “c” sub-
populations that promote neuronal dif-
ferentiation, whereas other key genes
would be expressed in the “a” subpopula-
tion that inhibit neuronal differentia-
tion. As expected, our subpopulation
analysis identified previously reported
transcription factors and lincRNAs that
play important roles during neuronal dif-
ferentiation. For example, well-known
neurogenesis related key genes PAX6

Figure 3. Subpopulation analysis reveals specific gene expression dynamics. (A) Gene ontologies asso-
ciated with DEG comparing day 1 and day 0 (left), day 1 “a” and day 0 “a” subpopulation (middle), and
day 1 “b” and “c” and day 0 “b” subpopulation (right) were generated by David analysis (Bioinformatics
6.7). The top GO terms are shown. The different GO terms are labeled with orange with representative
genes. The x-axis indicates the −log (Benjamini P-value). (B) Dot plots show the representative cell cycle
genes (HMGA1, CENPF) and neuronmarkers (DCX, STMN2) in different subpopulations as indicated for
all six time points. The y-axis represents the gene expression level. Each small dot represents a cell, and the
large dot indicates the medium expression of a given cell subpopulation. The error bar represents varia-
tion of the given gene in a given cell subpopulation. (C) Q-RT-PCR shows the expression level of PAX6 at
six time points as shown, and the y-axis represents the fold change of PAX6mRNA level. (D) The expres-
sion level of PAX6 in different cell subpopulations of different time points was shown in dot plots as in B.
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(Osumi et al. 1997, 2008), MEIS1 (Zhang et al. 2002), RMST (Ng
et al. 2013), NEUROD1 (Gao et al. 2009; Zhang et al. 2013),
NEUROD4 (Ohsawa et al. 2005), and ASCL1 (Ming and Song
2011; Kim and Marioni 2013) were highly expressed in “b” and
“c,” but not “a” subpopulations on days 0 and 1 (Fig. 3D;
Supplemental Fig. S13). In another example, the neuronal differ-
entiation repressor RESTwas down-regulated uniquely in “c” sub-
population on days 10 and 30 (Supplemental Fig. S13).

Encouraged by these results, we sought to identify novel tran-
scription factors and lincRNAs that play important roles during
neurogenesis. Similar to the gene expression dynamics of PAX6
and ASCL1, our subpopulation analysis showed that POU3F2,
PBX1, and MIAT maintained high expression in “b” and “c” sub-
populations (Fig. 4A), and their expression significantly increased
in the “a” subpopulation after day 0. These dynamic changes of
POU3F2 and MIAT were masked in bulk gene expression analysis
(Supplemental Fig. S14). To assess the biological importance of
these genes, we performed gene disruption studies that showed
that knockdown of POU3F2, MIAT, or PBX1 expression signifi-
cantly blocked neuronal differentiation (Fig. 4B,C), indicating
that these genes are critical at early stages of differentiation.
Similarly, we found WNT5A, but no other WNTs, was highly ex-
pressed in the “a” subpopulation and lowly expressed in the “b”
subpopulationonday 0, and its expression in both subpopulations
was down-regulated during neuronal differentiation (Fig. 4D;

Supplemental Fig. S15). The importance of WNT down-regulation
for neurogenesis was confirmed using theWNT signaling activator
CHIR99021, which blocked neuronal differentiation (Fig. 4E).

Elucidating subpopulation-specific gene regulatory networks

Deciphering gene regulatory networks is useful to understand reg-
ulation of complex biological processes, such as cellular lineage
specification (Levine and Davidson 2005; Pimanda and Göttgens
2010; Arda et al. 2013; Shubin 2017). We wanted to identify the
gene regulatory networks underlying subpopulation development
in our in vitromodel of neurogenesis. Starting from the scRNA-seq
data obtained for each subpopulation, we reconstructed the gene
interaction networks using the MetaCore database as a source of
experimentally validated interactions. From this information, we
derived networks that encompass interactions of known effect
(i.e., activation or inhibition) and the directionality of those inter-
actions. This afforded us the opportunity to perform complex
modeling of the subpopulation-specific regulatory circuits that
control key gene expression programs within each subpopulation.
In the regulatory network corresponding to subpopulation “c” on
day 1 (Fig. 5A), the interactions among the genes in themost influ-
ential regulatory circuit shows thatASCL1 is a hub gene in this net-
work that plays an important role when “c” subpopulation arises
on day 1. Similar network analyses were performed for other

time points. NEUROD1, identified as
a network hub on days 5 and 10, positive-
ly regulates other neurogenesis-related
genes, such as ELAVL4, ST18, EBF2,
NEUROD4, HES6, and MAP2 (Fig. 5B,C).
In addition, PAX6 was found to be a
hub gene on day 0 (Supplemental Fig.
S16A) that regulates MEIS1 and MEIS2.
REST, a master negative regulator of
neuronal differentiation (Gao et al.
2011; Ng et al. 2013), was found to be
at the hub of a network on days 10 and
30, negatively regulating other genes,
such as well-known neuron-related
genes NEUROD1, DCX, INA, and SOX11
(Fig. 5C; Supplemental Fig. S16B). In to-
tal, these gene regulatory network analy-
ses between cell subpopulations of a
given time point revealed regulatory
pathways comprised of active and inac-
tive hubs that underlie the regulation of
neurogenesis.

Our single-cell analysis identified
195 transcription factors that were differ-
entially expressed between subpopula-
tions within the 30-d time course
(Supplemental Table S8). A gene regula-
tory network based on these 195 tran-
scription factors was built (Fig. 5D). The
results clearly show that ASCL1, PAX6,
NEUROD1, and MEIS1 are key positive
regulators, each of which is negatively
regulated by REST. Hierarchical cluster-
ing (Supplemental Fig. S17) of the ex-
pression patterns of these transcription
factors in subpopulations together with
subpopulation developmental tracking

Figure 4. Subpopulation analyses reveal key regulators. (A) Similar to Figure 3B, the expression levels of
genes in different cell subpopulations of different time points is shown in dot plots. (B) Knockdown of
gene expression experiments was performed for TFs POU3F2, PBX1, and lincRNA MIAT and DANCR dur-
ing neuronal differentiation (the empty plko.1 vector served as a negative control). (C) Neuron marker
TUJ1 (green) and Astrocyte marker GFAP (red) after 7 d of knock down of these candidates.
Immunostained images were quantified by Columbus Analysis System to determine the neuron differen-
tiation efficiency. (D) The expression level of WNT5A in different cell subpopulations of different time
points is shown in dot plots. (E) NPCs were cultured in neuron differentiation media with different con-
centrations of WNT signaling activator CHIR99021. Seven days later, immunostaining was performed for
neuron marker TUJ1 (red), and nuclei were stained with DAPI (blue). The concentration of CHIR99021 is
as shown.
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(Figs. 3D, 4A; Supplemental Fig. S13) from days 0 to 30 showed
that (1) PAX6, POU3F2, PBX1, MEIS1, and MEIS2 were highly ex-
pressed in the “b” subpopulation of days 0 and 1; (2) NEUROD4,
ONECUT1, NEUROD1, EBF1, EBF2, EBF3, ASCL1, ST18, and HES6
were higher in “c” subpopulation on all days; and (3) REST expres-
sion gradually decreased and showed differential expression in
subpopulations on days 10 and 30. Combining the network anal-
yses of cell subpopulations with experimental validation (Figs. 4,
5; Supplemental Figs. S13, S16, S17), a simple model was devel-
oped to show the activation and repression of key genes underly-
ing neuronal differentiation (Fig. 5E). Further exploration of the
hundreds of factors identified in this study will add new insights
to the molecular details that specify alternative human neuronal
cell types.

Discussion

With the advent of scRNA-seq, elegant work has been done to
identify cell subtypes in mixed populations (Jaitin et al. 2014;
Patel et al. 2014; Treutlein et al. 2014; Zeisel et al. 2015; Olsson
et al. 2016; Poulin et al. 2016; Dulken et al. 2017). However, it re-
mains a major challenge to understand the mechanisms and dy-
namics by which distinct cell subtypes arise during development
(Trapnell 2015). To understand the transcription processes and
identify key steps of transcription regulation that govern develop-
mental processes, suitable experimental and computational meth-
ods are needed to exploit fully the application of scRNA-seq. Our
scRNA-seq results provided a detailed view of the differentiation
processes governing the birthing of neuronal cell subpopulations
from NPCs.

Ample evidence shows that that
dynamic heterogeneity is functionally
relevant to cellular decision making
(Moris et al. 2016). For example, dynam-
ically changedNANOG and POU5F1 (also
known as OCT4) expression mediate
the self-renewal and differentiation of
hESC, suggesting some overall control
of the heterogeneity (Niwa et al. 2000;
Chambers et al. 2007; Kalmar et al.
2009; Singer et al. 2014). Thus, elucidat-
ing distinct developmental tracks could
help to understand the molecular dy-
namics that govern alternative cell fate
decisions. To do this, one efficient way
is to order the cells in a smooth develop-
mental trajectory (Trapnell et al. 2014;
Shin et al. 2015), but it remains challeng-
ing to distinguish different subtypes and
alternate lineages based on standard ex-
pression profiling and computational ap-
proaches. Instead of compulsively
ordering the cells into smooth trajecto-
ries, we considered both continuous
and discontinuous developmental pro-
cesses. First of all, since hierarchical clus-
ter analysis has the particular ability to
identify rare or transient cell populations
(Buettner et al. 2015; Grün et al. 2015;
Moris et al. 2016), the individual cells
in each time point were first clustered

by DEG set identification (Fig. 1E; Supplemental Fig. S6). This al-
lowed us to define two subtypes of NPCs on day 0 and a small
cell subpopulation “c” that emerged on day 1 and had a unique
transcription profile (Fig. 2A). The hierarchical clustering indicates
that there are likely more than two subpopulations, but we chose
to be conservative in defining the subpopulation. Analyzing addi-
tional single cells at each time point and increasing the number of
time points, especially in the first 24 h where we detected many
changes, would refine the numbers of subpopulations and im-
prove lineage tracking. A build of connections based on the com-
mon DEG of subpopulations between the neighboring time
points helped us capture the cell state transitions among “a,”
“b,” “c,” and “ab” subpopulations of days 0, 1, and 5 (Fig. 2C).

It has been recently reported that scTDA,which utilizes all ex-
pression data in one step regardless of any prior factors, such as
time, could uncover asynchronous cell development (Rizvi et al.
2017). In contrast, our analysis first considered time factor. The
subpopulations were identified by hierarchical clustering based
on pairwise comparisons between time points, which revealed
subpopulation developmental tracks over time. Using our data,
scTDA identified 204 genes of which only 29 were in our 528 dy-
namic classifier set (Supplemental Fig. S18A). Although the identi-
fied gene lists are different, we do observe a similar, overall
developmental trend from day 0 to day 30 (Supplemental Fig.
S18B). However, when WNT5A and DCX were used to compare
scTDA and our approach (Supplemental Fig. S18C,D), scTDA was
unable to show the dynamic expression pattern we revealed for
these key genes in different cell subpopulations during neuronal
differentiation (Figs. 2A,B, 3B, 4D).

Based on these analyses, important biological information
was revealed. First, our data show that the anterior/posterior

Figure 5. Network analyses of subpopulations reveal underlying mechanism. Gene regulatory net-
works were assembled based on differential gene expression to define key regulatory pathways that con-
trol development of the unique “c” subpopulation. Networks were generated for day 1 (A), day 5 (B), and
day 10 (C). The genes labeled in red and green are expressed at low and high levels, respectively, in the
“c” cell subpopulation relative to the other cell subpopulation at a given time point. (D) A regulatory net-
work analysis was performed for the 195 TFs that were identified as differentially expressed across all the
cell subpopulations and all time points. Purple highlighted genes were chosen for functional validation in
Figure 4. (E) A simple model for the dynamic regulators of neuronal development. PAX6, MEIS1, MEIS2,
ASCL1, and NEUROD1 are well-known key genes during neurogenesis that were identified by our subpo-
pulation analysis; POU3F2, MIAT, and PBX1 were newly identified by our subpopulation analysis and are
critical during neurogenesis. REST, which is identified by our subpopulation analysis, is a well-known re-
pressor during neurogenesis.
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patterning pathways are differentially expressed among neural
precursor cells (day 0) (Supplemental Fig. S19). It is well established
that WNT signaling regulates the regional identity along the ante-
rior–posterior axis by specifyingHOX genes during neural develop-
ment (Nordström et al. 2006; Philippidou and Dasen 2013; Moya
et al. 2014). However, there are 19 WNT members and 39 HOX
members; which WNT member regulated which HOX gene is dif-
ficult to discern using bulk population-level studies and some-
times yields contradictory information (Ille and Sommer 2005).
Subpopulation analysis of our two independent experiments
shows the WNT5A coexpressed with specific HOX genes such as
HOXC8, HOXC9, HOXC10, and HOXA3 in neural stem cells
(Supplemental Fig. S20A,B), and these HOX genes could pattern
neural stem cells into hindbrain and spinal cord neurons
(Philippidou and Dasen 2013), which is consistent with fate-map-
ping studies in vivo (Li et al. 2011). These data suggest that the
developmental potential of the NPCs we patterned in vitro are al-
ready lineage restricted. Interestingly, it was recently been reported
that WNT5A is highly expressed in apical neural progenitor cells
and lowly expressed in nonapical neural progenitor cells in human
brain (Johnson et al. 2015), indicating that our derived NPC may
reflect the heterogeneity of neural progenitor cells in humanbrain.
Therefore, we conclude that the in vitro NPC differentiation pro-
cess we used mimicked normal developmental processes and
thus serves as a useful model.

Second, although key regulators are thought to play an im-
portant role to balance self-renewal and differentiation of each in-
dividual cell (Pina et al. 2012; Kumar et al. 2014; Nair et al. 2015),
current genomic methods are not sensitive enough to reveal these
key genes. For example, (1) PAX6, POU3F2, MEIS1, MIAT, and
RMST were not observed to significantly change when analyzed
by bulk gene expression analysis (Fig. 3C; Supplemental Figs.
S14, S21); and (2) some significantly up-regulated TFs and
lincRNAs during neuronal differentiation based on bulk cell anal-
ysis, such as ELAVL3, RUNX1T1, LINC00461, BCL11A, andMYT1l
(Supplemental Fig. S22A), failed to establish their importance dur-
ing early stages of neurogenesis by our functional validation
(Supplemental Fig. S22B,C). Assuming that the gene expression
dynamical system could be used to define the state of a cell, hetero-
geneities can be used to infer the mechanisms of transitions be-
tween different states of a developmental system (Moris et al.
2016). It might be an efficient and accurate way to identify key
genes by their dynamics of different subpopulation during neuron
differentiation. Indeed, our scRNA-seq data identified distinct sub-
populations with unique expression dynamics (Figs. 3D, 4A;
Supplemental Fig. S13). The functional validation studies show
that POU3F2, PBX1, and MIAT are critical for differentiation of
hindbrain/spinal cord neurons (Fig. 4B,C). Although it might be
expected to see a shift in the bifurcated alternative lineages with
gene knockdowns, this was not observed. Additional experiments
using tightly regulated, temporally controlled perturbations are re-
quired to adequately test this prediction.

Third, 195 transcription factors (Supplemental Table S8)
and 138 lincRNAs (Supplemental Table S9) were found differen-
tially expressed in different subpopulations at different time
points. The regulatory network analysis based on these TFs pro-
vides an interesting view of biological features associated with
subtype-specific neuronal differentiation (Fig. 5). For example,
ASCL1, NEUROD1, and NEUROD4 are highly expressed in a
few cells of “c” subpopulation during an early transition
stage (Supplemental Figs. S13, S17). These data demonstrate
that subpopulation analysis is sufficiently sensitive to identify

key dynamic regulators, even in a few cells or during short transit
periods.

Finally, the regulatory network analysis of subpopulations in
given time points provides us insight on continuous or discontin-
uous developmental tracks. For example, ASCL1 is a core gene in
the “c” subpopulation of day 1 (Fig. 5A), whereas NEUROD1 is a
core gene in the “c” subpopulation of day 5 (Fig. 5B). This would
lead one to hypothesize that ASCL1 and NEUROD1 are sequen-
tially active during “c” subpopulation generation (Supplemental
Fig. S23A) based on currentmethods that consider smooth contin-
uous trajectory. However, based on our subpopulation analysis at
each time point, one could conclude that either ASCL1 or
NEUROD1 is sufficient for cells of the “c” subpopulation genera-
tion without sequential activation of ASCL1 and NEUROD1
(Supplemental Fig. S23B,C). There have been indications about
this because overexpression of a single transcription factor
NEUROD1 (Zhang et al. 2013) or ASCL1 (Pang et al. 2011;
Chanda et al. 2014) in hESC is sufficient to generate neurons,
whereas forced expression of ASCL1 and NEUROD1 together in
hESC is muchmore efficient (Pang et al. 2011). Instead of building
only smoothdevelopmental trajectories, our data provide anunsu-
pervised approach to building specific subpopulation trajectories
and enables one to find critical developmental bifurcations and
thereby gain meaningful insights into specification of alternative
cell fates.

Conclusions

In summary, we developed an experimental design for scRNA-seq
time course analysis and computational approaches to dissect the
stochastic neuronal differentiation process in vitro. This strategy
provides selection, clustering, and tracking of scRNA-seq subtran-
scriptome profiles at discrete times which can be used for other
cell developmental or response-stimulated processes. Our results
suggest that (1) NPCs comprising two precursor subtypes drive dis-
tinct neuronal cell subpopulation; (2) a 1-d time period after initi-
ation of NPC differentiation is critical for switch-on of the NPCs
precursors in both cell subtypes, and we succeeded to capture a rel-
atively small “c” neuronal subpopulation that arises on day 1 and
enlarges afterward; (3) dynamic gene expression analysis of subpo-
pulation and functional validation helped us identify key regula-
tors of hindbrain/spinal cord neuronal differentiation; and (4)
network analysis based on DEG between subpopulations shed
light on continuous and discontinuous neuronal development.

Methods

Cell culture

Human embryonic stem cells (hESCs, H9) were cultured inmTeSR1
complete medium (mTeSR1 [#05851, Stem Cell Technologies]: 5×
Supplement [#05852, Stem Cell Technologies] = 4:1). H9 cells
were passaged using Dispase (#07923, Stem Cell Technologies) at
a dilution of 1:6–1:10.

Neural induction

H9 cells cultured inmTeSR1 completemedium for 1–2 dwere then
used for neural induction as published (Li et al. 2011). Briefly,
20%–30% confluent H9 cells were treated with CHIR99021,
SB431542, and Compound E in neural induction media, changed
every 2 d; 7 d later, the cells were split 1:3 by Accutase (# 25-058-CI,
Corning) and seeded on matrigel-coated plates. ROCK inhibitor
(1254, Tocris) was added (final concentration 10 µM) to the
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suspension at passaging. Cells were then cultured in neural cell
culture medium. These derived cells are neural precursor cells
(NPC), which were used for further studies.

Neuronal differentiation

Spontaneous neuronal differentiation was performed as previous-
ly described (Li et al. 2011). Briefly, the derived 2 × 105 NPCs were
seeded on poly-l-lysine (P4707, Sigma) and laminin (L2020,
Sigma)-coated six-well plates in neural cell culture medium. The
next day, the cells were cultured in neuron differentiation medi-
um: DMEM/F12(11330-032), Neurobasal (21103-049), 1× N2
(17502-048), 1× B27 (17504-044), 300 ng/mL cAMP (A9501), 0.2
mM vitamin C (A4544-25), 10 ng/mL BDNF (450-02), 10 ng/mL
GDNF (450-10) until day 30.

Immunostaining

H9, NPCs, neurons, or cells at different time points during neuro-
nal differentiation were fixed in 4% paraformaldehyde for 15–25
min, then washed twice with PBS and once with PBS plus 0.1%
Triton X-100 (PBST) for 5 min. Cells were then incubated in block-
ing buffer (PBST+ 10% normal serum) for 30–60 min. Before
addition of the primary antibody, which was incubated with the
cells overnight at 4°C. The next day, cells were washed in PBST
and incubated with Alexa Fluor-conjugated secondary antibody
(Invitrogen) for 1 h at room temperature. Nuclei were visualized
by DAPI staining as in Supplemental Table S10.

Single-cell capture and library preparation

Single cells were captured using standard protocol of C1 single-cell
auto prep system (Fluidigm, PN 100-5950 B1). Briefly, neural cells
at different time points during neuron differentiationwere dissoci-
ated by Accutase, then 250,000/mL cell suspension was loaded
into the C1 instrument. To prepare single-cell libraries, cDNA
products from each single cell were harvested from C1 chip fol-
lowed by concentration and quality assessment using PicoGreen
dsDNA Assay kit (P11496) and Agilent High sensitivity kit (PN
5067-4626). The libraries were generated using Illumina Nextera
XT library preparation kit (FC-131-1096, 15032354) after dilution
of cDNA to 0.15–0.25 ng/µL.

Lentivirus packaging for RNAi experiments

Candidate genes were knocked down in NPC using plko.1 lentivi-
ral system. Briefly, HEK293T cells were transfected with plko.1,
psPAX2, and VSVg at the ratio of 4:3:1. Culture medium was
changed 12 h after transfection. Virus was collected after an addi-
tional 36 h and used for NPC infection. NPCs were changed to
fresh medium. Short hairpin RNAs cloned in PLKO.1 vector are
shown in Supplemental Table S11.

Read processing, mapping, gene expression estimating,

and quality control

Sequence datawere processed andmapped to the human reference
genome (hg19) using TopHat (v2.0.11) (Kim et al. 2013) with
Bowtie2 (v2.2.1) (Langmead and Salzberg 2012). Gene expression
levels were quantified with HTSeq-count (v0.6.1p1) (Anders et al.
2015). The expression counts were performed with the human
gene annotation (GENCODE release 19) (Harrow et al. 2012),
which yielded 57,820 genes from 553 captured cells. Following
the counting of mapped reads, additional quality control criteria
were applied to remove low-quality cells and low-expressed genes.

We applied the following criteria for cell quality control:

1. Total number of mapped reads in each cell >1 million.
2. Number of genes detected >Q1− 1.5 × IQR in each time point

(Q1 denotes first quartile, IQR denotes interquartile range).

We sequentially applied the following criteria for gene quality
control:

1. Percentage of cells containing at least one read for a given gene
in each time point >20% to control number of cells expressing
the gene (13,786 genes refer to “gene quality control 2” in
Supplemental Fig. S2).

2. Percentage of cells containing at least five reads for a given gene
in each time point >15% to control expression level of the gene
(8957 genes, refer to “gene quality control 1” in Supplemental
Fig. S2).

After applying these quality criteria, we obtained 8957 expressed
genes and 483 cells for downstream analysis. The gene expression
levels were normalized using DEseq2 (v 1.13.16) (Love et al. 2014).

Differential expression analysis during neuron differentiation

To identify DEG between neuron development time points, we
conducted differential expression analysis using single-cell differ-
ential expression (SCDE) (Kharchenko et al. 2014), a Bayesian ap-
proach for finding DE genes accounting for frequent dropout
events and biological variability within single-cell data. The sin-
gle-cell data of each time point were compared. Pairwise DE genes
were defined as adjusted P-value <0.05. Figure 1D shows the num-
ber of DE genes in comparison between days. Our results reveal
nonuniform time course variation of the number of DE genes,
mostly in the transition period between day 0 and day 1.

After the determination of DE genes, a total of 3986 DE genes
were identified in the scRNA-seq during neuron development. To
enhance pattern detection of significant DE genes for downstream
analysis, 528 DE genes were obtainedwith fold change >1.5 and P-
value <1 × 10−7.

Cell subpopulation analysis

We obtained 528 DE genes as mentioned earlier in differential ex-
pression analysis. Hierarchical clustering was used to cluster sub-
populations of the cells in each time point. In each time point,
two clusters were selected empirically based on the most distinct
expression profile of cells except day 1 and day 5. For days 1 and
5, we selected three clusters since transition of cell subpopulations
were observed. Finally, we annotated 14 cell subpopulations for
downstream analysis.

Next, we performed differential expression analysis between
pairs of cell subpopulations in each time point. We first selected
genes that were expressed in at least 50% of the cells in any subpo-
pulation. A genewas considered expressed if it had a read count≥1.
For each pair of cell subpopulations in each time point, SCDE was
used to identify the number of DE genes with P < 0.05 (gene qual-
ity control 2). To identify DE genes that could influence the tran-
sition of cell subpopulations between neighbor time points, the
commonDE genes between two neighbor time points were identi-
fied. In total, we found 58, 129, 135, 128, and 48 DE genes which
are common in day 0 versus day 1, day 1 versus day 5, day 5 versus
day 7, day 7 versus day 10, and day 10 versus day 30, respectively.
Using the common DE genes of cell subpopulations between
neighboring time points, we identified the transition of expression
profiles for cell subpopulations between neighboring time points
by Pearson correlation coefficient. The Pearson correlation coeffi-
cients were calculated between the cell subpopulation in the earli-
er time point to the cell subpopulation in neighboring timepoints.
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The transition of cell subpopulations was defined by the highest
correlation coefficient between time points.

Gene regulatory network analysis

In order to build the gene regulatory networks corresponding to
each cell subpopulation, single-cell transcriptomics data was ana-
lyzed to identify the DEG between different cell subpopulations
of a given time point (P < 0.05). Then the derived DE genes were
used to reconstruct the interaction network including high quality
gene–gene interaction information. For this purpose, we used the
DE gene data and compiled the high-confidence interaction net-
works querying the MetaCore database from Thomson Reuters,
which gave us the possibility of building gene regulatory networks
of differentiating cell subpopulations (Crespo et al. 2013a,b;
Zickenrott et al. 2016). After building the gene regulatory networks
for the cell subpopulations, we identified themost relevant regula-
tory motifs, including the gene circuits that could have a more in-
fluential effect in the regulation of the gene expression patterns
characteristic of each cell subpopulation (Zickenrott et al. 2016).
The comparative analysis of these regulatory circuits allowed us
to identify the regulatory genes that may play a role in the stabili-
zation of the subpopulation phenotype and whose perturbation
may have a significant effect and trigger transitions between cell
subpopulations during neuronal differentiation.

Data access

The scRNA-seq data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/) under accession number GSE102066, and the raw
data have been submitted to the Sequence Read Archive (SRA;
https://www.ncbi.nlm.nih.gov/sra) under accession number
SRP097299 and to the NCBI BioProject (https://www.ncbi.nlm.
nih.gov/bioproject/) under accession number PRJNA360884.
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