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By profiling the transcriptomes of individual cells, single-cell RNA sequencing provides unparalleled resolution to study

cellular heterogeneity. However, this comes at the cost of high technical noise, including cell-specific biases in capture ef-

ficiency and library generation. One strategy for removing these biases is to add a constant amount of spike-in RNA to

each cell and to scale the observed expression values so that the coverage of spike-in transcripts is constant across cells.

This approach has previously been criticized as its accuracy depends on the precise addition of spike-in RNA to each sample.

Here, we perform mixture experiments using two different sets of spike-in RNA to quantify the variance in the amount of

spike-in RNA added to each well in a plate-based protocol. We also obtain an upper bound on the variance due to differ-

ences in behavior between the two spike-in sets. We demonstrate that both factors are small contributors to the total tech-

nical variance and have only minor effects on downstream analyses, such as detection of highly variable genes and

clustering. Our results suggest that scaling normalization using spike-in transcripts is reliable enough for routine use in sin-

gle-cell RNA sequencing data analyses.

[Supplemental material is available for this article.]

Single-cell RNA sequencing (scRNA-seq) is a powerful technique
for studying transcriptional activity in individual cells. Briefly,
RNA is isolated from single cells, reverse transcribed into cDNA,
and sequenced using massively parallel sequencing technologies
(Shapiro et al. 2013). This can be performed using microfluidics
platforms like the Fluidigm C1 (Pollen et al. 2014), with protocols
such as Smart-seq2 (Picelli et al. 2014) that usemicrotiter plates; or
with droplet-based technologies (Klein et al. 2015; Macosko et al.
2015) that can profile thousands of cells. Gene expression is quan-
tified by mapping read sequences to a reference genome and
counting the number of reads mapped to each annotated gene.
To avoid amplification biases, individual transcript molecules
can also be tagged with unique molecular identifiers (UMIs)
(Islam et al. 2014), such that sequencing to saturation and count-
ing UMIs will yield the number of transcripts of each gene in a cell.
Regardless of whether reads or UMIs are used, not all transcript
molecules will be captured and sequenced due to cell-specific
inefficiencies in reverse transcription (Stegle et al. 2015). The pres-
ence of these cell-specific biases compromises the direct use of the
read/UMI count as a quantitative measure of gene expression.
Normalization is required to remove these biases before the gene
counts can be meaningfully compared between cells in down-
stream analyses.

A common normalization strategy for RNA-seq data uses a set
of genes that have constant expression across cells. This set can
consist of predefined “housekeeping” genes, or it can be empirical-
ly defined under the assumption that most genes are not differen-

tially expressed (DE) between cells (Anders and Huber 2010;
Robinson and Oshlack 2010; Lun et al. 2016a). Any systematic dif-
ferences in expression between cells for this non-DE set of genes
must, therefore, be technical in origin, e.g., due to differences in
library size or composition bias (Robinson and Oshlack 2010).
Counts are scaled to eliminate these differences, yielding normal-
ized expression values for downstream analyses. This gene-based
approach works well for bulk sequencing experiments in which
the population-wide gene expression profile is stable. However,
it may not be suitable for single-cell experiments in which strong
biological heterogeneity complicates the identification of a reli-
able non-DE set. For example, housekeeping genes may be turned
onor off by transcriptional bursting, whereas processes like the cell
cycle may trigger large-scale changes in the expression profile that
preclude a non-DE majority.

An alternative normalization approach is to use spike-in RNA
for which the identity and quantity of all transcripts is known
(Stegle et al. 2015; Bacher and Kendziorski 2016). The same
amount of spike-in RNA is added to each cell’s lysate, and the
spike-in transcripts are processed in parallel with their endogenous
counterparts to generate a sequencing library. This yields a set of
read (or UMI) counts for both endogenous and spike-in transcripts
in each cell. Normalization is performed by scaling the counts for
each cell such that the counts for the spike-in genes are, on aver-
age, the same between cells (Katayama et al. 2013). The central as-
sumptions of this approach are that (1) the same amount of spike-
in RNA is added to each cell; and (2) the spike-in and endogenous
transcripts are similarly affected by cell-to-cell fluctuations in cap-
ture efficiency. Under these assumptions, any differences in the

Corresponding author: marioni@ebi.ac.uk
Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.222877.117.
Freely available online through the Genome Research Open Access option.

© 2017 Lun et al. This article, published inGenome Research, is available under
a Creative Commons License (Attribution 4.0 International), as described at
http://creativecommons.org/licenses/by/4.0/.

Research

27:1795–1806 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/17; www.genome.org Genome Research 1795
www.genome.org

mailto:marioni@ebi.ac.uk
mailto:marioni@ebi.ac.uk
mailto:marioni@ebi.ac.uk
http://www.genome.org/cgi/doi/10.1101/gr.222877.117
http://www.genome.org/cgi/doi/10.1101/gr.222877.117
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


coverage of the spike-in transcripts between cellsmust be artifactu-
al in origin and should be removed by scaling. One particular ad-
vantage of this strategy is that it does not make any assumptions
about the endogenous expression profile, unlike the non-DE ap-
proach described above. This means that spike-in normalization
can be applied in situations inwhich large-scale changes in expres-
sion (e.g., related to changes in total RNA content, or involving
highly heterogeneous populations containing many cell types)
are expected and of interest (Lun et al. 2016b; Nestorowa et al.
2016).

There are two common criticisms of spike-in normalization
that challenge the validity of its central assumptions. The first is
that the same quantity of spike-in RNA may not be consistently
added to each sample (Robinson and Oshlack 2010), and the sec-
ond is that synthetic spike-in transcripts may not behave in the
same manner as endogenous transcripts (Grün and van
Oudenaarden 2015) (i.e., the two sets of transcripts have unequal
capture efficiencies, caused by differences in their biophysical
properties). Any differences in spike-in quantity or behavior across
cells will compromise the accuracy of spike-in normalization
(Risso et al. 2014). In some cases, it may also be difficult to gauge
howmuch spike-in RNA should be added, especially if the quanti-
ty of endogenous RNA per cell is unknown, resulting in insuffi-
cient spike-in coverage for normalization. These criticisms may
contribute to the limited use of this normalization strategy in
the scRNA-seq literature (Bacher and Kendziorski 2016). However,
if one were to dismiss the use of spike-in normalization, there
would be no general alternative for removing cell-specific biases
in scRNA-seq data sets where a non-DE majority of genes cannot
be assumed. Thus, it is of particular interest whether or not the
aforementioned criticisms of spike-in normalization are relevant
to real scRNA-seq experiments. To our knowledge, this has yet to
be rigorously studied.

Results

Overview

In this paper, we conduct a series of experiments to estimate the
reliability of spike-in normalization in single-cell transcriptome
studies using plate-based protocols. We use mixtures of two dis-
tinct spike-in RNA sets to quantify the variance of the added
spike-in volume across cells and show that it is quantitatively
negligible in real experiments across a range of conditions. We
also obtain an upper bound on the cell-to-cell variability in the dif-
ferences in behavior (i.e., the fold changes in the capture efficien-
cies) between the two spike-in sets. Simulations indicate that
both factors have only minor effects on the results of downstream
analyses, such as detection of DE and highly variable genes. These
results suggest that spike-ins can be safely used for routine normal-
ization of scRNA-seq data.

We emphasize that we are only interested in the performance
of spike-in RNA for scaling normalization. This involves the calcu-
lation of cell-specific scaling factors to remove relative biases be-
tween cells. We are not investigating the performance of spike-in
RNA for the absolute quantification of endogenous transcriptmol-
ecules (Svensson et al. 2017), which would require estimation of
the absolute bias in each cell. We are also not studying the use of
spike-ins for batch correction (Tung et al. 2017), which would re-
quire modeling of gene-specific batch effects beyond simple cell-
specific scaling. Both of these tasks are separate to scaling normal-
ization and will not be addressed here.

Description of the mixture experiments

We aimed to assess the variability in the added spike-in quantity
across cells. To do so, we performed mixture experiments using
two distinct spike-in sets (Fig. 1)—the External RNA Controls
Consortium (ERCC) set and the Spike-in RNA Variants (SIRV) set.
An equal volume of each spike-in set was added separately to all
wells of a 96-well microtiter plate. Each well contained a single
lysed mouse cell—a mouse 416B myeloid progenitor cell or tro-
phoblast stem cell (TSC)—thus mimicking real experimental con-
ditions. The resulting pool of endogenous/spike-in RNA in each
well was used to generate a cDNA library, using a modified version
of the Smart-seq2 protocol (Methods). This process was repeated
for all wells, and high-throughput sequencing was performed on
all libraries.

For each library, reads were mapped to the genome and as-
signed to genes to quantify expression. The total count was com-
puted across all transcripts of each spike-in set in each well. The
log2-ratio of the totals between the two sets was computed for
each well, and the variance of this log-ratio was computed across
wells. Any variability in spike-in volume addition shouldmanifest
as an increase in the variability of the log-ratio, given that the
spike-in sets were added independently to each well.

We also repeated the experiment by adding volumes of “pre-
mixed” spike-in solution where the two spike-in sets had been
pooled at a 1:1 ratio. This ensures that there is no well-to-well var-
iability in the relative quantities of RNA from the two spike-in sets.
The variance of the log-ratio across these premixed-addition wells
provides a baseline level of variability in the protocol (e.g., due to
sequencing noise). The variance of volume addition was then esti-
mated as the difference in the variance estimates from the pre-
mixed-addition wells and from the wells with separate addition
of spike-ins.

We stress that the use of two different spike-in sets in each
well is critical to this experiment. Any well-specific biases should
cancel out when the log-ratio is computed between sets in the
same well. This allows the contribution of the variance of volume
addition to be quantified separately from other factors such as
the variability of capture efficiency and sequencing depth across
wells.

We performed both the premixed and separate-addition ex-
periments on the same plate to avoid plate effects (Hicks et al.
2015; Tung et al. 2017). For the separate-addition experiment,
we also reversed the order of addition of the two spike-in sets to
determine if this affected the variance estimate. Finally, we gener-
ated data from replicate plates to ensure our results were reproduc-
ible. Thiswas done in a range of conditions, i.e., using different cell
types, by different operators, and with sequencing at different
locations.

We used a protocol based on microtiter plates rather than
microfluidics as it is easier to customize the spike-in addition
step in the former. Our experimental design requires two separate
additions of spike-in RNA to each reaction (Methods). This is not
straightforward to achieve on, say, the Fluidigm C1 chip, where
the added volume for each reagent depends on the design on the
reaction chamber. Our focus on data fromplate-based protocols re-
flects their widespread use in single-cell studies (Islam et al. 2011;
Wilson et al. 2015; Scialdone et al. 2016; Segerstolpe et al. 2016).
Obviously, the procedure we describe here can be adapted to any
protocol where the spike-in addition can be easily modified, e.g.,
plate-based CEL-seq (Hashimshony et al. 2016) or STRT-seq
(Islam et al. 2011).
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Mathematical framework for variance decomposition

Denote the log2-transformed total read count for well i and spike-
in set s as

Tis = log2 LilsVisRis

∑
ts

rts cts

[ ]
+ 1is,

where the sum is taken over all unique transcripts ts in s. The other
terms are defined as follows:

• cts , a constant specifying the concen-
tration (in terms of transcripts per
unit of volume) of ts;

• rts , a constant specifying the optimal
transcript molecule-to-cDNA fragment
capture rate for ts;

• Ris, a random variable representing the
average capture efficiency in i for all
transcripts in s;

• Vis, a random variable representing the
volume of solution of s added to i;

• Li, a random variable representing the
baseline cDNA fragment-to-read con-
version rate for i; and

• ls, a constant that scales Li depending
on the “sequenceability” of transcripts
in s.

The product of all of these terms de-
fines the expected number of reads for
each ts in well i, and the sum of the prod-
ucts across all ts is the expected total
count of set s in i. In addition, ɛis repre-
sents the effect of sequencing noise on
the log-total count, where E(ɛis) = 0 and
var(1is) = s2

lib(s).
We assume that Ris, Vis, and ɛis are

mutually independent of each other, as
they describe separate steps in the proto-
col. We also assume that Vi1 and Vi2 are
independent for sets s = 1 and 2, as each
spike-in set is added separately to each
well. Similarly, ɛi1 and ɛi2 are assumed
to be independent, as sequencing noise
for each transcript should be unaffected
by that of other transcripts. (However,
Ri1 and Ri2 are not independent due to
well-specific factors affecting capture ef-
ficiency for all transcripts.) Further de-
tails on these variables are provided in
Section 1 of the Supplemental Material.

Let s = 1 represent the ERCC spike-
in set and s = 2 represent the SIRV spike-
in set. The log2-total count across all
spike-in transcripts in the ERCC and
SIRV set is Ti1 and Ti2, respectively. In
the experiment where each spike-in set
is added separately to each well, we
denote the log2-ratio of the total counts
between the two sets as θi =Ti1− Ti2 for
well i. This can also be written as

ui = log2(Vi1) + 1i1 − log2(Vi2) − 1i2 + Fi + log2
l1
∑

t1 rt1 ct1
l2
∑

t2 rt2 ct2

[ ]
,

where Fi = log2(Ri1/Ri2) and represents the log-fold change in the
average capture efficiency between the two sets (i.e., the difference
in behavior of the transcripts). Computing the variance of θi yields

var(ui) = 2s2
vol + s2

lib(1) + s2
lib(2) + var(Fi),

where s2
vol is the variance of both log2(Vi1) and log2(Vi2). The vol-

ume addition procedure is the same for each spike-in set, so Vi1

Figure 1. Schematic of the experimental design to assess the variability of spike-in addition in a plate-
based scRNA-seq protocol. (A) A cell is sorted into each well of a plate and lysed. For one set of wells, an
equal volume of each spike-in set is added separately, along with the reverse transcription (RT) reagents.
For another set of wells, an equal volume of a pooled mixture of the two spike-ins is added into each well
(done twice to keep the protocol consistent). Reverse transcription, PCR amplification, library generation,
and sequencing were then performed. (B) The log2-ratio between the total counts of the two spike-in sets
was computed for each well. The variance of the log-ratio was estimated from all wells with separate ad-
dition of spike-ins and from wells with addition of the premixed pool. The difference between these two
estimates represents the variance attributable to volume addition.
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and Vi2 should have the same distribution. We consider the vari-
ance of Fi because Ri1 and Ri2 are not independent (due towell-spe-
cific factors, as previously mentioned).

In the experiment where the spike-in sets are premixed before
addition, Vi1 = aVi2 for some constant a representing the propor-
tions in which the two sets aremixed. (This should be close to uni-
ty.) If the samepremixed solution is added to eachwell, the relative
volume of ERCC spike-ins to SIRV spike-ins must be constant for
all wells. This means that the log2-ratio for the premixed experi-
ment is

u∗i = log2(a) + 1i1 − 1i2 + Fi + log2
l1
∑

t1 rt1 ct1
l2
∑

t2 rt2 ct2

[ ]
.

As a is constant for all i, the variance of u∗i becomes

var(u∗i ) = s2
lib(1) + s2

lib(2) + var(Fi).

This represents the technical variance attributable to the rest
of the scRNA-seq protocol. To obtain an estimate of the variance of
the volume addition step, simple arithmetic yields

s2
vol =

var(ui) − var(u∗i )
2

.

It should be stressed that this variance estimate is relevant
to all experiments using the same protocol for spike-in addi-
tion, even if the identity or concentration of the spike-in set is
different.

Generally, scaling normalization of RNA-seq data is per-
formed by dividing all counts in each library by a library-specific
constant, known as the “size factor.” For spike-in normalization,
the size factor for cell i is directly proportional to the sumof counts
for the spike-in transcripts, i.e., 2Tis . This reflects the fact that spike-
in normalization aims to eliminate systematic differences in the
coverage of spike-in set s between cells, thus correcting for well/
cell-specific technical biases. (We assume each well contains a

cell andwill use “cell” and “well” interchangeably in the following
text.) Any variance due to volume addition (s2

vol) or technical noise
(s2

lib(s)) will reduce the precision of Tis and of the size factor esti-
mates (Supplemental Fig. 1), thus reducing the effectiveness of
spike-in normalization.

Estimating the variance of volume addition

Using our mathematical framework, we estimated the variance
components based on the data from our mixture experiments.
We observed that the log-ratios θi and u∗i computed from each plate
were roughly normally distributed (Supplemental Fig. 2). Thus, we
fitted a linear model to each set of log-ratios and used the residual
variance of the fit as our estimate of var(θi) or var(u∗i ). Linear
models are particularly useful as they allow blocking on additional
structure in the experimental design. We used a one-way layout to
account for shifts in themean log-ratio due to addition order or on-
cogene induction (Methods). The value of Tis was also similar be-
tween wells with premixed or separate addition of spike-ins,
which simplifies the calculation of s2

vol (for details, see
Supplemental Fig. 3; Supplemental Material, Section 1). Finally,
the order of spike-in addition did not significantly affect the vari-
ance estimates for the separate-addition wells in most plates
(Supplemental Fig. 4).

Our results indicate that s2
vol is consistently smaller than

var(u∗i ), i.e., the variance in the rest of the protocol (Fig. 2A).
Indeed, no significant difference was detected between the
estimated var(θi) and var(u∗i ) of each plate. This indicates that var-
iability of spike-in volume addition is a minor contributor to the
technical variability of the spike-in counts. To put these estimates
into context, consider that the variance of the log-size factors Tis

across cells is at least one order of magnitude larger than s2
vol

(Fig. 2B). This indicates that the error in the size factors due to
variable volume addition is negligible relative to the amount of
scaling that is performed to account for differences in sequencing
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depth and capture efficiency across wells, i.e., var(log2Li) and
var(log2Ris). We also computed the variance of the log2-ratio of
total counts for the mouse genes against one of the spike-in sets.
This represents the biological fluctuations in total RNA content
across cells and was, again, at least an order of magnitude larger
than s2

vol (Supplemental Fig. 5). These results show that the
variance of volume addition is small compared to other technical
and biological sources of variability in a scRNA-seq experiment,
and thus is unlikely to have a major effect on spike-in
normalization.

Estimating the variance of differential behavior

The variance of Fi is also relevant as it determines the effect of dif-
ferences in behavior between distinct sets of transcripts. Even
when the average capture efficiency differs between sets, spike-
in normalization is still appropriate provided that the fold
change in efficiency is the same in all wells. Consider a situation
in which there is a consistent increase in efficiency in the spike-
in set relative to endogenous transcripts (Svensson et al. 2017).
This scales up the counts for the spike-in transcripts in all wells
by the same factor, which ultimately cancels out between wells,
i.e., the log-fold changes of endogenous or spike-in transcripts
between wells are unaffected. However, if the fold change in effi-
ciency varies across wells, the accuracy of spike-in normalization
is compromised. This is because specific changes in efficiency for
the spike-in transcripts are confounded with general changes in
efficiency for all transcripts in the well. Differences in the cover-
age of spike-in transcripts may not represent technical biases af-
fecting other transcripts, precluding their use for normalizing
all counts.

The variance of Fi quantifies the extent towhich spike-in nor-
malization is affected by well-to-well differences in efficiency be-
tween the spike-in sets. In our mathematical framework, the
variance of u∗i provides an upper bound for the variance of Fi.
Our estimate of var(u∗i ) is an order of magnitude lower than the es-
timated variances of the log-size factors in each plate (Fig. 2) and of
cellular RNA content (Supplemental Fig. 5). This indicates that
the potential variance in the differences in spike-in behavior,
although greater than s2

vol, is still relatively small compared to
other biases in the system, e.g., fluctuations in cellular RNA
content and well-to-well variability in global capture efficiency.
To elaborate, consider that the maximum var(Fi) corresponds to
an error of 2

�����
0.015

√
≈ 8% in the size factor estimates. This error is

small, especially when we consider that spike-in normalization in-
volves scaling the counts for each cell by at least 2

����
0.15

√
≈ 30% in

our data sets. These results suggest that variance in spike-in behav-
ior across cells is unlikely to have a strong effect on scaling
normalization.

Here, Fi is only computed between two spike-in sets. In prac-
tice, the more relevant differences are those between synthetic
spike-in and endogenous transcripts. The variance of such differ-
ences is likely to be larger than var(Fi), given the greater variability
in sequence composition and length of endogenous transcripts.
Nonetheless, the SIRV and ERCC spike-ins do exhibit some vari-
ability in their biophysical properties (Supplemental Fig. 6). For ex-
ample, the SIRV transcripts have more variable length and lower
GC content compared to the ERCC transcripts. This suggests
that Fi will include at least some of the differences in behavior
between synthetic and endogenous RNA, such that var(Fi) can be
used as a rough estimate of the magnitude of the associated
variability.

Quantifying the effect of stochastic noise during sequencing

We also performed simulations to gauge the contribution of s2
lib(s)

to var(u∗i ) (SupplementalMaterial, Section 2.1). Counts for spike-in
transcripts were simulated such that any variability in the log-ra-
tios was only caused by stochastic sampling noise, i.e.,
s2
lib(1) + s2

lib(2). Our results suggest that much of the estimated vari-
ance of u∗i in Figure 2 is driven by sampling noise (Supplemental
Fig. 7). Specifically, we estimated the variance due to sampling
noise to be 0.005–0.012 (using the original spike-in coverage for
each plate), compared to estimates of 0.010–0.015 for var(u∗i ) in
Figure 2. Both s2

lib(1) + s2
lib(2) and var(Fi) contribute to var(u∗i ), so

these results suggest that the contribution of sampling noise is
comparable to or greater than the impact of differences in spike-
in behavior.

We also observed that the variance due to sampling noise was
robust to moderate decreases in the coverage of the spike-in tran-
scripts in this simulation. In ideal experiments, spike-in transcripts
would take up 5%–10% of the library size for each cell (50,000–
100,000 reads in our data). Upon decreasing coverage in silico,
we observed an increase in s2

lib(1) + s2
lib(2) due to the elevated effect

of noise at low counts (Supplemental Fig. 7). However, even at
40%–50% coverage, the variance due to noise was still an order
of magnitude lower than the variance due to cell-specific biases
(Fig. 2B) or biological variability (Supplemental Fig. 5). These re-
sults suggest that spike-in normalization is still reliablewhen lower
amounts of spike-in RNA are added. This is especially relevant
to data sets in which the spike-in coverage is lower than recom-
mended, due to difficulties in determining the appropriate con-
centration of spike-ins to add to each cell when the quantity of
endogenous RNA is unknown.

Finally, we performed simulations to assess the effect of noise
on the precision of the spike-in size factors themselves
(Supplemental Material, Section 2.2). This was performed using
our 416B and TSC data sets as well as public data from existing
studies (Grün et al. 2014; Islam et al. 2014; Buettner et al. 2015;
Kolodziejczyk et al. 2015; Scialdone et al. 2015; Zeisel et al. 2015;
Hashimshony et al. 2016). In each data set, we observed that sam-
pling noise resulted in ≈5% error in the estimates for the spike-in
size factors (Supplemental Fig. 8). In comparison, the size factors
routinely varied by >30% across cells (Supplemental Fig. 9).
Thus, the loss of precision due to noise is small and can probably
be ignored during spike-in normalization.

Assessing the downstream effect of variability

with simulations

We assessed whether the results of downstream analyses using
spike-in normalization were sensitive to fluctuations in the total
spike-in counts due to variability in spike-in addition, behavior,
or sequencing noise. First, we obtained data from scRNA-seq
experiments that used spike-in RNA. This included a number of
public data sets (Grün et al. 2014; Islam et al. 2014; Buettner
et al. 2015; Kolodziejczyk et al. 2015; Scialdone et al. 2015;
Segerstolpe et al. 2016) as well as our 416B and TSC data. We
then performed analyses such as detection of differentially ex-
pressed genes (DEGs) and highly variable genes (HVGs), as well
as dimensionality reduction and clustering of cells. This was
done without anymodification of the data to obtain a set of “orig-
inal results.”

Next, we designed simulations based on each of the real data
sets (Methods). Briefly, the total spike-in count for each well was
rescaled by a randomly sampled factor with variance equal to
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our experimental estimate of spike-in variance. Counts for the in-
dividual spike-in transcripts were rescaled to reflect this new total,
thus yielding a simulated data set. Downstream analyses were per-
formed using the original counts for the endogenous genes and
the simulated counts for the spike-in transcripts. The new results
were then compared to the original set of results from each analy-
sis. Any differences indicate that the analysis is sensitive to spike-in
variability in real experiments. The advantage of this simulation
design is that only the spike-in counts are modified. No simula-
tions or resampling were performed for the counts of the endoge-
nous genes, preserving the realistic nature of the data in each

simulation and ensuring that only spike-in variability can cause
differences in the analysis results.

For DEG detection, we applied edgeR (Robinson et al. 2010)
andMAST (Finak et al. 2015) to the original and simulated data af-
ter spike-in normalization. edgeR represents methods designed for
DE analyses of bulk RNA-seq data, whereas MAST represents
bespoke single-cell methods. In both cases, we observed only mi-
nor (<5%) changes to the set of significant DEGs upon introducing
spike-in variability in each data set (Fig. 3A). Similar results were
also observed in the top 200 DEGs with the smallest P-values,
with <10% of the genes in the set changing across iterations in
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Figure 3. Effect of spike-in variability on DEG or HVG detection in simulated data. (A) The percentage change in the set of DEGs detected in each data set
at a FDR of 5% by edgeR or MAST. This was also calculated for the top set of 200 DEGs with the smallest P-values. Simulations were performed to detect
DEGs in our 416B data set after inducing expression of a CBFB-MYH11 oncogene compared to an mCherry control (Methods), between mouse embryonic
stem cells (mESCs) in G1 and G2/M phases of the cell cycle (Buettner et al. 2015), or betweenmESCs cultured in different conditions—serum, ground state
(2i), or alternative ground state (a2i) (Grün et al. 2014; Kolodziejczyk et al. 2015). (B) The percentage change in the set of HVGs detected in each data set at
a FDR of 5%, using themethod of Brennecke et al. (2013) based on the squared coefficient of variation (CV2) or with amethod based on the variance of log-
expression. This was also calculated for the top set of 200 HVGswith the smallest P-values. Simulations were performed to detect HVGs in our 416B and TSC
data sets, in liver cells (Scialdone et al. 2015), and in mESCs (Kolodziejczyk et al. 2015). All values represent the mean of 20 simulation iterations, and error
bars represent standard errors.
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all scenarios. For HVG detection, we used methods based on the
coefficient of variation (Brennecke et al. 2013) or the variance of
log-expression values (Lun et al. 2016b). Again, onlyminor chang-
es were observed in most data sets (Fig. 3B), for both the set of sig-
nificant HVGs and for the top 200 HVGs with the smallest P-
values. These results suggest that the detection and ranking of
DEGs andHVGs are largely robust to variability in spike-in volume
or behavior. Indeed, genes that were not consistently detected
across simulation iterations tended to have weak log-fold changes
for DEGs or small biological components for HVGs (Supplemental
Fig. 10). This is expected because genes on the borderline of signif-
icance are more susceptible to random fluctuations in the size
factors.

For dimensionality reduction, we restricted ourselves to prin-
cipal components analysis (PCA) on the normalized expression
profiles of all cells. Although t-distributed stochastic neighbor em-

bedding (van der Maaten and Hinton 2008) is commonly used,
its robustness is difficult to evaluate due to its randomness. We
used a scRNA-seq study of the human pancreas (Segerstolpe et al.
2016) to generate PCA plots of the first three principal compo-
nents for both the original and simulated data. At each simulation
iteration, coordinates of all cells in the simulated plots were
mapped onto the corresponding original plots to determine the
sensitivity of the original locations to spike-in variability. Figure
4A indicates that changes in the location of each cell across simu-
lation iterations were generally minor. In particular, movement of
cells across iterations did not compromise the separation of differ-
ent cell types. Thus, spike-in variability does not appear to affect
the visual interpretation of PCA plots.

Finally, we performed hierarchical clustering and applied a
tree cut to identify clusters of cells in the original data. This was re-
peated at each simulation iteration to obtain a corresponding set of

Figure 4. Effect of spike-in variability on dimensionality reduction and clustering in simulated data, based on real scRNA-seq data for cells extracted from
a healthy human pancreas (Segerstolpe et al. 2016). (A) PCA plots of the first three principal components, in which each cell is colored according to its
annotated cell type from the original study. The circle around each cell contains 95% of remapped locations across the simulation iterations, and represents
the deviation in location due to spike-in variability. (B) Clusters were identified from the original data by hierarchical clustering with Ward’s criterion, fol-
lowed by a tree cut with k of 2, 5, or 10. This was repeated at each simulation iteration, and the maximum Jaccard index between each original cluster and
any of the simulated clusters at the same kwas computed. Each value represents themean of 20 simulation iterations, and the error bars represent standard
errors. (C) The maximum Jaccard index for each original cluster generated with Ward’s criterion compared to clusters generated from complete-linkage
clustering of the original data.
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simulated clusters. For each original cluster, we computed the
Jaccard index with respect to each of the simulated clusters and re-
corded the maximum value across all simulated clusters. A large
maximum Jaccard index means that most of the cells in the origi-
nal cluster are still grouped together in the simulation, i.e., the
original cluster is (mostly) successfully recovered in one of the sim-
ulated clusters. We observed that the maximum Jaccard indices
were moderate to large (Fig. 4B), with values above 0.6 for most
of the original clusters. To put this into context, we reclustered
the original data using a different algorithm. This yielded smaller
Jaccard indices for all clusters (Fig. 4C), indicating that spike-in var-
iability has less effect on the results than the choice of clustering
method.

Discussion

In this article, we performed mixture experiments to quantify the
variability of spike-in RNA addition across wells in a plate-based
scRNA-seq protocol. We also obtained a rough estimate of the
well-to-well variability in the differences in behavior between
two different sets of spike-in transcripts. Both values were at least
an order of magnitude smaller than the variance of spike-in cover-
age across cells, suggesting that differences in spike-in volume or
behavior were not major sources of error in the context of spike-
in normalization. This was supported by simulations in which
the introduction of realistic levels of spike-in variance yielded
only minor changes in the results of DEG and HVG analyses as
well as PCA and clustering. Our results indicate that spike-in nor-
malization is reliable enough for routine use in scRNA-seq data
analyses. The common criticisms of using spike-in RNA for scaling
normalization are only weakly relevant, if at all, to single-cell tran-
scriptome studies, and can generally be ignored.

Our conclusions differ from those of Risso et al. (2014), in
which spike-in normalization is not considered reliable enough
for analyses of bulk RNA-seq data.We speculate that this difference
may be due to the difficulty of adding an appropriate amount of
spike-in RNA at the population level. For example, should spike-
in RNA be added at a constant ratio with respect to the concentra-
tion of endogenous RNA, or to the number of cells in the sample? If
the endogenous RNA concentration or the number of cells deter-
mines the amount of spike-in RNA to be added, these will need
to be experimentally quantified for each sample. In that case,
how accurate is the quantification, and what effect do errors
have on the downstream analysis? These questions are not rele-
vant to single-cell experiments for which the obvious approach
is to add the same amount of spike-in RNA to each individual cell.

It is worth mentioning another common criticism of the use
of spike-in RNA—namely, that the optimal concentration (to
reach the suggested 5%–10% of total library size) depends on the
amount of endogenous RNA in each cell. This is not straightfor-
ward to gauge for biological systems that are not well studied. If in-
sufficient spike-ins are added, sampling noise will increase and the
precision of spike-in normalization will deteriorate. However, we
do not consider this to be a matter of reliability. It is not surprising
that suboptimal performance is obtainedwhen inappropriate con-
centrations of reagents are used, and spike-in RNA is no exception.
Pilot experiments can be performed to identify the most suitable
spike-in concentration to use for a given biological system, just
like they would be used to determine the optimal dissociation
conditions, lysis buffer, amplification cycles, and so on. Once
the optimal concentration is determined, it can be used for all ex-
periments on that system, and the choice of concentration ceases

to be an issue. In contrast, the variability of volume addition and of
spike-in behavior cannot be easily controlled even if all other pa-
rameters are optimized.

We used the Smart-seq2 protocol in our study to reflect its
widespread use in the scRNA-seq literature. However, our estimate
of s2

vol is agnostic to how reverse transcription, amplification, and
sequencingwere performed, as these steps are represented by other
mathematical terms. Thus, we expect our conclusions to be broad-
ly applicable to any scRNA-seq protocol where spike-in RNA is add-
ed in a similar manner (using repeater pipettes) (Methods).
Different results will be obtained using other methods for spike-
in addition, e.g., with robotics systems or microfluidics, in which
volume handling may be even more precise. Our experimental
framework may also be useful for evaluating the precision of
spike-in addition when developing new scRNA-seq protocols or
setting up existing protocols in new laboratories, to ensure that
spike-in RNA is added correctly to each cell.

The term var(Fi) represents the variability in the difference in
behavior between the SIRV and ERCC spike-in sets across wells.
However, arguably a more relevant quantity is the variability in
the difference Pis between synthetic spike-in and endogenous
RNA, as this affects the accuracy of normalization. It may be possi-
ble to obtain a rough estimate of var(Pis) by using pooled cellular
RNA from another organism as one of the spike-in sets
(Brennecke et al. 2013), so that var(u∗i ) provides an upper bound
on the variance in the differences in behavior between synthetic
and endogenous RNA. We chose not to do so because of the diffi-
culty in reproducibly using the same pool of cellular RNA across
batches and in calibrating the concentration of RNA to be added
to each well. Use of UMI counts may also provide a tighter bound
on var(Fi) or var(Pis) by reducing the contribution of amplification
noise to s2

lib(s) and var(u∗i ). Another considerationwith endogenous
RNA is the variability of lysis between cells, which we neglect to
consider in our framework; this is inherently difficult to assess
with external spike-in RNA and may require other methods to
quantify.

One interesting question is how to choose between spike-in
normalization and approaches that assume a non-DE majority of
genes. This choice depends on whether total RNA content in
each cell is of interest (Lun et al. 2016b). Spike-in normalization
will preserve changes in total RNA content between cells, whereas
non-DE methods will treat such changes as bias (as a majority of
genes are affected) and remove them. This suggests that spike-in
normalization is preferable in applications in which changes in
total RNA content can be easily associated with a biological pro-
cess, e.g., T cell activation and cell cycling. In contrast, non-DE
normalization may be more suitable for comparisons between
distinct cell types, where the up- or down-regulation of specific
genes (conditional on the total RNA content of the cell) is more
informative. Obviously, this choice is subject to the experimental
context. If a non-DE majority cannot be assumed, spike-in
normalization should be used; conversely, spike-in RNA cannot
be easily added in droplet-based techniques, thus requiring non-
DE methods.

We stress that our study only examined the reliability of
spike-ins for “relative” normalization, i.e., to make counts com-
parable across cells. We do not consider the reliability of spike-
ins for absolute quantification, i.e., to determine the number of
molecules of each transcript in each cell. This is more difficult
to evaluate as accuracy is affected by the magnitude of the dif-
ferences in the behavior of spike-in and endogenous transcripts.
In contrast, relative normalization is only affected by variability
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in the differences in behavior across wells, as we have previously
discussed.

Methods

Obtaining and culturing 416B cells and TSCs

Themurinemultipotentmyeloid progenitor cell line 416B (Dexter
et al. 1979) was stably transduced with a TetOn construct of the
CBFB-MYH11 (CM) oncogene (type A cDNA), using an in-frame
F2A-mCherry protein as a reporter. As a control, cells were alterna-
tively transduced with a version of the construct lacking the CM
cDNA. Cells were maintained in RPMI medium, supplemented
with 10% fetal calf serum and antibiotics. Expression of the CM
oncogene or the mCherry control was induced by treatment
with 1 µg/mL of doxycycline, and induction was confirmed after
24 h by measurement of mCherry levels by fluorescence activated
cell sorting (BD Fortessa).

Murine TSCs were kindly provided by Dr. Jennifer Nichols
(Wellcome Trust andMRCCambridge StemCell Institute) and cul-
tured by Liliana Antunes (Wellcome Trust Sanger Institute) on
mouse embryonic fibroblast (MEF) feeders with TSC culturing me-
dium (a combination of 70% MEF conditioned media [R&D sys-
tems] and 30% RPMI 1640, supplemented with 20% FBS, 2 mM
L-glutamine, 1 mM sodium pyruvate, 100 µM β-mercaptoethanol,
25 ng/mL human recombinant FGF4 [R&D systems], and 1 µg/mL
heparin [Tocris Bioscience]). To prepare for single-cell sorting, cells
were harvested with trypsin, and MEF feeders were depleted by
plating the cells onto a gelatinized plate followed by incubation
for 1 h at 37°C on TSC culturing medium. The supernatant con-
taining TSCs was used for sorting.

Spike-in mixture experiments with Smart-seq2

Single-cell RNA sequencing was performed using an adaptation of
the previously described Smart-seq2 protocol (Picelli et al. 2014).
Single 416B cells or TSCs were sorted into individual wells of a
96-well microtiter plate. Each well contained 2.3 µL of lysis buffer
with RNase inhibitor (Ambion) in a 0.2% (v/v) Triton X-100
solution. Reverse transcription (RT) was performed in a final vol-
ume of 13.2 µL per well, containing 1 µM of oligo-dT (Sigma-
Aldrich), 1.04 mM of each dNTP (Thermo Fisher), 100 units of
SuperScript II retrotranscriptase (Invitrogen/Thermo Fisher), 5
units of RNase inhibitor (Ambion), 5 mM of DTT, 1 M of Betaine
(Sigma-Alrich), 6mMofMgCl2 (Ambion), and 1 µMof TSO primer
(Exiqon). Preamplification was performed in a total volume of 27
µL that contained 13.5 µL of HiFi Hotstart ReadyMix (2×; KAPA
Biosystems) and 0.1 µM of IS PCR primer (Sigma-Aldrich). After
23 cycles of amplification, samples were cleaned with 80% (v/v)
of Ampure beads (Beckman Coulter). Sequencing libraries were
prepared using the Nextera XT DNA sample preparation kit
(Illumina). This was repeated to obtain several batches of sequenc-
ing data, with each batch consisting of one plate of cells of the
same type.

To perform themixture experiments, spike-in RNAwasmixed
into the RT reagent solution and added to eachwell. This was done
such that each well contained 0.1 µL of a 1:3,000,000 dilution of
the ERCC RNA Spike-In Mix (Invitrogen/Thermo Fisher) and
0.12 µL of a 1:3,000,000 dilution of the Spike-in RNA Variant
(SIRV) Control Mix E0 (Lexogen). Two separate solutions of RT re-
agentswere prepared for the different spike-in sets. For one-third of
the wells, addition of the two spike-in sets was performed sepa-
rately with the RT + ERCC solution first and the RT + SIRV solution
second. For another one-third of the wells, the order was reversed,
i.e., with the RT + SIRV solution first and the RT + ERCC solution

second. For the remaining wells, the RT + SIRV and RT + ERCC so-
lutions were premixed in a 1:1 ratio, and the RT + SIRV + ERCC
mixture was added twice to each well. Each addition was per-
formed independently for each well, using a repeater pipette dis-
pensing 2 µL at a time.

Sequencing of the 416B libraries was performed by the
Genomics Core facility at the Cancer Research UK Cambridge
Institute. The first batch of libraries was sequenced on an
Illumina HiSeq 2500machine generating 125-bp single-end reads,
whereas the second batch was sequenced on an Illumina HiSeq
4000 machine generating 50-bp single-end reads. Sequencing of
the TSC libraries was performed at the Wellcome Trust Sanger
Institute after library preparation by the Single Cell Genomics
Core facility. Both batches were sequenced on an Illumina HiSeq
4000 machine generating 75-bp paired-end reads.

Data analysis for the mixture experiments

Reads were mapped to the mm10 build of the mouse genome, in-
cluding sequences of transcripts in the ERCC (https://tools.
thermofisher.com/content/sfs/manuals/ERCC92.zip) and SIRV
(https://www.lexogen.com/wp-content/uploads/2015/11/SIRV_
Sequences 151124.zip) spike-in sets. (The sequence of the CBFB-
MYH11 oncogene was also included in the reference when
aligning data from 416B cells.) Mapping was performed using the
subread aligner v1.5.1 (Liao et al. 2013) in RNA-seq mode with
unique alignment. The 416B data were aligned in single-end
mode, whereas the TSC data were aligned in paired-end mode.
Reads with mapping qualities greater than or equal to 10 were as-
signed to exonic regions of genes using the featureCounts function
in the Rsubread package v1.24.1 (Liao et al. 2014). Genes were
defined using Ensembl v82 annotation for the GRCm38mouse as-
sembly and annotation for the ERCC and SIRV transcripts. This
yielded a count for each endogenous gene and spike-in transcript
in each well. Mapping and counting statistics for each batch of li-
braries are summarized in Supplemental Table 1.

To evaluate spike-in quality, we verified that the total spike-in
count (ERCC + SIRV) in each well comprised 5%–10% of the total
library size (Supplemental Fig. 3). This corresponds to the amount
of spike-in RNA that we aimed to add to each well and was consis-
tent across wells within each plate. The coverage of each ERCC
transcript was directly proportional to its theoretical concentra-
tion in the spike-in mixture (Supplemental Fig. 11), and the distri-
bution of average read counts across spike-in transcripts or
endogenous genes was consistent across plates (Supplemental
Fig. 12). These diagnostics indicate that the spike-in transcripts
were successfully captured, sequenced, and processed into counts
formostwells.We removed anywells where the log-total count for
either spike-in set or for the endogenous genes was more than
three median absolute deviations below the median value for
each plate. It is likely that capture or sequencing failed for
these wells, so they were not used for variance estimation. In addi-
tion, we examined the effect of index switching (Sinha et al. 2017)
in each data set generated on the HiSeq 4000 and found it to
be negligible (Supplemental Material, Section 3; Supplemental
Fig. 13).

Variance components were estimated from the libraries gen-
erated from a single plate. In each well, the sum of counts across
all transcripts in each spike-in set was computed, and the log2-ratio
between the ERCC and SIRV sums was calculated. To estimate
var(θi), a linear model with a one-way layout was fitted to the
log-ratios for all wells where the two spike-in sets were added sep-
arately. In each plate of the 416B data set, each combination of
treatment (control or oncogene-induced) and spike-in addition or-
der (ERCC or SIRV first) was treated as a group in the one-way
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layout. In each plate of the TSC data, only the spike-in addition
order was used to define the groups. After fitting the model,
the mean of the squared residual effects was used as an estimate
of var(θi). This was repeated for var(u∗i ) using all wells where
premixed spike-ins were added. Here, addition order was irrele-
vant, so the one-way layout contained only the two treatment
groups in the 416B data set. Similarly, only a single group was
defined for the TSC data. Linear modeling ensures that any chang-
es in the mean log-ratio across groups do not inflate the variance
estimate. Note that we fit linear models to each plate separately,
to check whether the estimates are consistent across replicate
plates.

To detect differences in the variance estimates for premixed
and separate addition, an F-test for the equality of variances was
applied. Under the null hypothesis of equal variances computed
from independent data, the ratio of the variances s2

1/s
2
2 should

follow an F-distribution on n1 and n2 degrees of freedom, where
n1 and n2 are the residual degrees of freedom used to estimate s2

1
and s2

2, respectively. This can either be one-sided (i.e., s2
1 ≤ s2

2
under the null), in which case the upper tail probability at the
observed ratio is taken as the P-value; or it can be two-sided, in
which case the P-value is defined as twice the smaller of the
two tail probabilities. Significant differences were defined by re-
jecting the null hypothesis at a type I error rate of 5%. We calcu-
lated s2

vol from estimates of var(θi) and var(u∗i ), using the
expression described above. However, if the difference between
var(θi) and var(u∗i ) was negative, s2

vol was set to zero instead. To
assess the effect of the order of spike-in addition, a linear model
was fitted to the subset of relevant wells on each plate to obtain
an order-specific variance estimate.

Simulation design for resampling spike-in variability

For each data set, we compute Tis for each cell i and spike-in set s.
To simplify the design of the simulations, we only consider the
ERCC spike-in set here, i.e., s = 1. The variance of Tis is

var(Tis) ≈ s2
lib(s) + s2

vol + var( log2 Ris) + var( log2 Li),

where the approximation assumes that Li is independent of the
other random variables that contribute to Tis (for more detail,
see Supplemental Material, Section 1). Let Ris = Ri0Pis, where Ri0 is
a random variable representing the well-specific average capture
efficiency of endogenous transcripts, and Pis is the fold change
in average efficiency of the transcripts in s over their endogenous
counterparts. We assume that Ri0 and Pis are independent for each
well, and that var(log2Pis) can be approximated with var(Fi), i.e.,
the well-to-well variability in relative capture efficiency between
the two spike-in sets is similar to that between spike-ins and en-
dogenous transcripts. This means that

var(Tis) ≈ s2
lib(s) + s2

vol + var(Fi) + var( log2 Ri0) + var( log2 Li),

i.e., the variance of Tis is a sum of the variances of its component
terms. The above approximation allows us to account for
the measured s2

vol, s
2
lib(s), and var(Fi) when simulating new values

for Tis.
Let us denote x2 = s2

vol + var(Fi) + s2
lib(s), representing the to-

tal variance in the log2-total count of one spike-in set s due to var-
iable addition, capture efficiency, and sequencing noise. We use
the estimated var(u∗i ) ≈ 0.015 in Figure 2A as our estimate x̂2 of
the upper bound of x2. This is based on the fact that s2

vol is near-
zero in Figure 2A, whereas var(u∗i ) = s2

lib(1) + s2
lib(2) + var(Fi) and

thus provides an upper bound on var(Fi) + s2
lib s( )for any s. We

also denote ŝ2
s as the estimate of var(Tis) across wells and m̂s as

the estimate of E(Tis). For each well i, we compute a simulated

log2-total T∗
is as

T∗
is = (Tis − m̂s)

��������
1− x̂2

ŝ2
s

√
+ m̂s +Xi,

where Xi � Normal(0, x̂2) and is independently sampled for each
well. This approach ensures that var(T∗

is) = ŝ2
s . In contrast, if Xi

were directly added to Tis, the variance of T∗
is would be inflated

as x2 is already present in var(Tis), i.e., the contribution of spike-
in variance would be doubled.

Counts for the library generated from each well were rescaled
to reflect the new, simulated log-total. A quantile adjustment ap-
proachwas used to preserve the empiricalmean–variance relation-
ship. Briefly, a negative binomial generalized linear model (NB
GLM)was fitted to the counts across all wells for each spike-in tran-
script, using the glmFit function in edgeR (Robinson et al. 2010;
McCarthy et al. 2012) with a design matrix containing all experi-
mental factors in the current data set. The value of Tis/log2(e)
was used as the offset for well i during GLM fitting. The NB disper-
sion was also estimated for each transcript using the estimateDisp
function without empirical Bayes shrinkage. For each transcript t,
we assumed that the count yti for well iwas sampled from aNB dis-
tribution withmean equal to the corresponding fitted value of the
GLM and dispersion equal to the estimated transcript-specific val-
ue. We scaled the NBmean by 2T∗

is−Tis to obtain a modified NB dis-
tribution. Using the q2qnbinom function (Robinson and Smyth
2008), we calculated the lower tail probability of yti in the original
distribution and identified the corresponding quantile with the
same tail probability in the modified distribution. This new quan-
tile was used as the simulated count for transcript t in i.

Evaluating the robustness of DEG detection

We used a number of data sets to test the effect of spike-in variabil-
ity onDEG detection. This included our 416B data, in whichDEGs
were detected between control and oncogene-induced cells; and
public data sets involvingmESCs, inwhichDEGswere detected be-
tween G1 and G2/M phases of the cell cycle (Buettner et al. 2015)
or between different culture conditions (Grün et al. 2014;
Kolodziejczyk et al. 2015). Access to each public data set is de-
scribed in Section 4 of the Supplemental Material. In each study,
DEGs were detected between conditions using edgeR and MAST.
Implementation details of each method are provided in Section
5 of the Supplemental Material. Briefly, normalization was per-
formed by scaling the counts (explicitly or via offsets) such that
the spike-in totals were the same between cells. The set of DEGs
in the original data was then identified at a FDR of 5%. This proce-
dure was repeated for the simulated data, and the number of genes
that were detected in the original results and not in the simulated
results (or vice versa) was recorded as a proportion of the total
number of original DEGs. The proportion of the top 200 genes
with the smallest P-values that were different between the original
and simulated results was also computed. This was repeated for 20
simulation iterations, and the average proportion across iterations
was reported for each method.

Evaluating the robustness of HVG detection

We used several data sets to test the effect of spike-in variability on
HVG detection. This included our 416B and TSC data sets, as well
as public data sets involving mESCs (Kolodziejczyk et al. 2015) or
liver cells (Scialdone et al. 2015). In each data set, spike-in normal-
ization was performed, and HVGs were detected using two ap-
proaches based on spike-in counts. The first approach is based
on themethod of Brennecke et al. (2013), in which the squared co-
efficient of variation for each gene is tested for a significant
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increase above technical noise. The second approach is based on
the variance of the log-normalized expression values (Lun et al.
2016b), which provides some more robustness against outlier ex-
pression patterns. Each method was applied on the original and
simulated data, and a set of significant HVGs was detected at a
FDR of 5%. The proportion of HVGs that were detected in the orig-
inal results and not in the simulated results (or vice versa) was com-
puted. Similarly, we computed the proportion of the top 200 genes
with the lowest P-values that differed between the original and
simulated results. This was repeated for 20 simulation iterations
and the average proportion across iterations was reported for
each method. See Section 4 of the Supplemental Material for de-
tails on public data access and Section 5 for the implementation
details of each HVG detection method.

Evaluating dimensionality reduction and clustering

We obtained count data from a study of pancreatic islet cells
(Supplemental Material, Section 4; Segerstolpe et al. 2016). Spike-
in normalization was performed and a set of HVGs was defined us-
ing the variance-of-log-expression method. PCA plots of the first
three components were constructed from thematrix of log-expres-
sion values for the HVGs. This process—including HVG detection
—was repeated with the simulated data after introducing spike-in
variability. To compare each simulated PCA plot to the original
plot, the coordinates of each cell in the former were mapped
onto the latter by rescaling and rotation. Robustness was assessed
based on the spread of remapped coordinates across all simulation
iterations for each cell. See Section 5 in the Supplemental Material
for details.

To test the robustness of clustering, the matrix of Euclidean
distances between cells was computed from the HVG log-expres-
sion values. Hierarchical clustering was performed using the
Ward criterion, and the resulting dendrogram was cut into 2, 5,
or 10 clusters. (This was done using the hclust and cutree com-
mands, respectively, from the stats package.) This process was re-
peated with the simulated data, and the Jaccard index between
every pair of simulated and original clusters was computed. For
each original cluster, the maximum Jaccard index across all simu-
lated clusters was recorded at each simulation iteration. This value
represents the extent to which the membership of the original
cluster was preserved in the most similar simulated cluster. We
also compared the original clusters to those generated from com-
plete-linkage clustering of the original HVG log-expression values.

Software availability

The R code, which was used for the statistical analysis and simula-
tions, is available in the Supplemental Code or at https://github.
com/MarioniLab/SpikeIns2016.

Data access

Data from this study have been submitted to the ArrayExpress
database (https://www.ebi.ac.uk/arrayexpress/) under accession
number E-MTAB-5522.

Acknowledgments

We thank Jennifer Nichols and Liliana Antunes for supplying the
TSCs.We also thank VictoriaMoignard andWajid Jawaid for help-
ful discussions about the experimental design. This work was sup-
ported by Cancer Research UK (core funding to J.C.M., award no.
A17197), the University of Cambridge and Hutchison Whampoa
Limited. J.C.M. was also supported by core funding from EMBL.

L.H.V. was supported by an EMBL Interdisciplinary Postdoctoral
fellowship, supported by H2020 Marie Skłodowska Curie
Actions. Work in the Göttgens group was supported by Cancer
Research UK, Bloodwise, the National Institute of Diabetes and
Digestive and Kidney Diseases, the Leukemia and Lymphoma
Society, and core infrastructure grants from the Wellcome Trust
and the Medical Research Council to the Cambridge Stem Cell
Institute.

Author contributions: A.T.L.L. proposed the mixture experi-
ments and performed the statistical analysis and simulations.
F.J.C.N. adapted the Smart-seq2 protocol for the spike-in mixtures
and generated the 416B data. L.H.V. generated the TSC data. B.G.
and J.C.M. provided direction and guidance on the project. All
authors wrote and approved the manuscript.

References

Anders S, Huber W. 2010. Differential expression analysis for sequence
count data. Genome Biol 11: R106.

Bacher R, Kendziorski C. 2016. Design and computational analysis of single-
cell RNA-sequencing experiments. Genome Biol 17: 63.

Brennecke P, Anders S, Kim JK, Kolodziejczyk AA, Zhang X, Proserpio V,
Baying B, Benes V, Teichmann SA, Marioni JC, et al. 2013. Accounting
for technical noise in single-cell RNA-seq experiments. Nat Methods
10: 1093–1095.

Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ,
Teichmann SA, Marioni JC, Stegle O. 2015. Computational analysis of
cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals
hidden subpopulations of cells. Nat Biotechnol 33: 155–160.

Dexter TM, Allen TD, Scott D, Teich NM. 1979. Isolation and characterisa-
tion of a bipotential haematopoietic cell line. Nature 277: 471–474.

Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK,
Miller HW, McElrath MJ, Prlic M, et al. 2015. MAST: a flexible statistical
framework for assessing transcriptional changes and characterizing het-
erogeneity in single-cell RNA sequencing data. Genome Biol 16: 278.

Grün D, van Oudenaarden A. 2015. Design and analysis of single-cell se-
quencing experiments. Cell 163: 799–810.

Grün D, Kester L, van Oudenaarden A. 2014. Validation of noise models for
single-cell transcriptomics. Nat Methods 11: 637–640.

Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y,
Anavy L, Gennert D, Li S, Livak KJ, Rozenblatt-Rosen O, et al. 2016.
CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome
Biol 17: 77.

Hicks SC, Teng M, Irizarry RA. 2015. On the widespread and critical impact
of systematic bias and batch effects in single-cell RNA-Seq data. bioRxiv
doi: 10.1101/025528.

Islam S, Kjällquist U,Moliner A, Zajac P, Fan JB, Lönnerberg P, Linnarsson S.
2011. Characterization of the single-cell transcriptional landscape by
highly multiplex RNA-seq. Genome Res 21: 1160–1167.

Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P,
Linnarsson S. 2014. Quantitative single-cell RNA-seq with unique mo-
lecular identifiers. Nat Methods 11: 163–166.

Katayama S, Töhönen V, Linnarsson S, Kere J. 2013. SAMstrt: statistical test
for differential expression in single-cell transcriptomewith spike-in nor-
malization. Bioinformatics 29: 2943–2945.

Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L,
Weitz DA, Kirschner MW. 2015. Droplet barcoding for single-cell tran-
scriptomics applied to embryonic stem cells. Cell 161: 1187–1201.

Kolodziejczyk AA, Kim JK, Tsang JC, Ilicic T, Henriksson J, Natarajan KN,
Tuck AC, Gao X, BühlerM, Liu P, et al. 2015. Single cell RNA-sequencing
of pluripotent states unlocks modular transcriptional variation. Cell
Stem Cell 17: 471–485.

Liao Y, Smyth GK, Shi W. 2013. The Subread aligner: fast, accurate and scal-
able read mapping by seed-and-vote. Nucleic Acids Res 41: e108.

Liao Y, Smyth GK, ShiW. 2014. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features.
Bioinformatics 30: 923–930.

Lun AT, Bach K, Marioni JC. 2016a. Pooling across cells to normalize single-
cell RNA sequencing data with many zero counts. Genome Biol 17: 75.

Lun AT, McCarthy DJ, Marioni JC. 2016b. A step-by-step workflow for low-
level analysis of single-cell RNA-seq data with Bioconductor. F1000Res
5: 2122.

Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I,
Bialas AR, Kamitaki N, Martersteck EM, et al. 2015. Highly parallel ge-
nome-wide expression profiling of individual cells using nanoliter drop-
lets. Cell 161: 1202–1214.

Spike-in normalization for scRNA-seq

Genome Research 1805
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222877.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222877.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222877.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.222877.117/-/DC1
https://github.com/MarioniLab/SpikeIns2016
https://github.com/MarioniLab/SpikeIns2016
https://github.com/MarioniLab/SpikeIns2016
https://github.com/MarioniLab/SpikeIns2016
https://github.com/MarioniLab/SpikeIns2016
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/


McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of
multifactor RNA-Seq experiments with respect to biological variation.
Nucleic Acids Res 40: 4288–4297.

Nestorowa S, Hamey FK, Pijuan Sala B, Diamanti E, ShepherdM, Laurenti E,
Wilson NK, Kent DG, Göttgens B. 2016. A single-cell resolution map of
mouse hematopoietic stem and progenitor cell differentiation. Blood
128: 20–31.

Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R.
2014. Full-length RNA-seq from single cells using Smart-seq2. Nat
Protoc 9: 171–181.

Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, Li N,
Szpankowski L, Fowler B, Chen P, et al. 2014. Low-coverage single-cell
mRNA sequencing reveals cellular heterogeneity and activated signaling
pathways in developing cerebral cortex. Nat Biotechnol 32: 1053–1058.

Risso D, Ngai J, Speed TP, Dudoit S. 2014. Normalization of RNA-seq data
using factor analysis of control genes or samples. Nat Biotechnol 32:
896–902.

Robinson MD, Oshlack A. 2010. A scaling normalization method for differ-
ential expression analysis of RNA-seq data. Genome Biol 11: R25.

RobinsonMD, Smyth GK. 2008. Small-sample estimation of negative bino-
mial dispersion, with applications to SAGE data. Biostatistics 9: 321–332.

RobinsonMD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor pack-
age for differential expression analysis of digital gene expression data.
Bioinformatics 26: 139–140.

Scialdone A,NatarajanKN, Saraiva LR, Proserpio V, Teichmann SA, Stegle O,
Marioni JC, Buettner F. 2015. Computational assignment of cell-cycle
stage from single-cell transcriptome data. Methods 85: 54–61.

Scialdone A, Tanaka Y, Jawaid W, Moignard V, Wilson NK, Macaulay IC,
Marioni JC, Göttgens B. 2016. Resolving early mesoderm diversification
through single-cell expression profiling. Nature 535: 289–293.

Segerstolpe Å, Palasantza A, Eliasson P, Andersson EM, Andréasson AC, Sun
X, Picelli S, Sabirsh A, Clausen M, Bjursell MK, et al. 2016. Single-cell

transcriptome profiling of human pancreatic islets in health and type
2 diabetes. Cell Metab 24: 593–607.

Shapiro E, Biezuner T, Linnarsson S. 2013. Single-cell sequencing-based
technologies will revolutionize whole-organism science. Nat Rev Genet
14: 618–630.

Sinha R, Stanley G, Gulati GS, Ezran C, Travaglini KJ, Wei E, Chan CKF,
Nabhan AN, Su T, Morganti RM, et al. 2017. Index switching causes
“spreading-of-signal” among multiplexed samples in Illumina HiSeq
4000 DNA sequencing. bioRxiv doi: 10.1101/125724.

Stegle O, Teichmann SA, Marioni JC. 2015. Computational and analytical
challenges in single-cell transcriptomics. Nat Rev Genet 16: 133–145.

Svensson V, Natarajan KN, Ly LH, Miragaia RJ, Labalette C, Macaulay IC,
Cvejic A, Teichmann SA. 2017. Power analysis of single-cell RNA-se-
quencing experiments. Nat. Methods 14: 381–387.

Tung PY, Blischak JD, Hsiao CJ, Knowles DA, Burnett JE, Pritchard JK, Gilad
Y. 2017. Batch effects and the effective design of single-cell gene expres-
sion studies. Sci Rep 7: 39921.

van der Maaten L, Hinton G. 2008. Visualizing data using t-SNE. J Mach
Learn Res 9: 2579–2605.

Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ,
Sánchez Castillo M, Oedekoven CA, Diamanti E, Schulte R, et al. 2015.
Combined single-cell functional and gene expression analysis resolves
heterogeneity within stem cell populations. Cell Stem Cell 16: 712–724.

Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G,
Juréus A, Marques S, Munguba H, He L, Betsholtz C, et al. 2015. Brain
structure. Cell types in the mouse cortex and hippocampus revealed
by single-cell RNA-seq. Science 347: 1138–1142.

Received March 15, 2017; accepted in revised form September 6, 2017.

Lun et al.

1806 Genome Research
www.genome.org


