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Abstract

We report the non-decarbonylative Mizoroki–Heck reactions of amide derivatives. The 

transformation relies on the use of nickel catalysis and proceeds using sterically hindered tri- and 

tetrasubstituted olefins to give products containing quaternary centers. The resulting polycyclic or 

spirocyclic products can be obtained in good yields. Moreover, a diastereoselective variant of this 

methodology demonstrates its value for accessing adducts bearing vicinal, highly substituted sp3 

stereocenters. Our results demonstrate that amide derivatives can be used as building blocks for the 

assembly of complex scaffolds.

Graphical Abstract

We report the first non-decarbonylative Mizoroki–Heck reactions of Boc-activated amide 

derivatives. Our results demonstrate that amide derivatives can be used as building blocks for the 

assembly of complex scaffolds.
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The introduction of quaternary carbon centers remains a popular topic in modern chemical 

synthesis.[1] Such motifs are often difficult to access due to the steric challenge associated 

with constructing a fully substituted carbon center. One attractive means to install quaternary 
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centers is via the intramolecular Mizoroki–Heck reaction.[2] Most notably, the Pd-catalyzed 

Mizoroki–Heck cyclization of aryl halides and triflates has been the subject of intense 

investigation for decades and has been utilized to assemble many sterically demanding 

scaffolds. On the other hand, the corresponding Mizoroki–Heck cyclization of acyl 
electrophiles to furnish ketone products bearing quaternary carbons has not been reported.

Considering the aforementioned deficiency concerning the Mizoroki–Heck cyclization of 

acyl electrophiles, we pursued the transformation shown in Figure 1. In the presence of an 

appropriate nickel catalyst, imide 1, derived from the corresponding secondary amide upon 

Boc-activation, would be converted to cyclized products 2, bearing the desired quaternary 

centers. Mechanistically, the conversion would proceed by a sequence akin to classical 

Mizoroki–Heck chemistry involving oxidative addition (1→3), olefin coordination and 

insertion (3→4), followed by β-hydride elimination[3] (4→2). It should be noted that amide 

derivatives have recently been employed in Pd- and Ni-catalyzed couplings for carbon–

heteroatom[4] and carbon–carbon[5,6,7] bond formation, although never for the synthesis of 

quaternary centers.[8] Moreover, precedent for the desired olefin insertion is available from 

Stambuli’s Pd-catalyzed Mizoroki–Heck cyclization of benzoic anhydrides, albeit without 

quaternary stereocenter formation,[9,10] and Pd-catalyzed carbonylative Mizoroki–Heck 

reactions of aryl halides and triflates.[11] Herein, we describe the development and scope of 

the Ni-catalyzed Mizoroki–Heck cyclization of amide derivatives.[12] The transformation 

provides a new means to build complex scaffolds using non-precious metal catalysis.[13]

After some initial experimentation, we arrived at 5 as a suitable test substrate (Table 1).[14] 

This substrate contains the N-Bn,Boc imide-type motif,[15] which we have previously found 

to be reactive using Ni/SIPr (7) combinations,[4,5] in addition to a sterically encumbered 

tetrasubstituted olefin. The Mizoroki–Heck cyclization of 5 was attempted under a variety of 

reaction conditions,[16] with a selection of key results using Ni(cod)2, NHC ligands, and 

toluene as solvent at 100 °C depicted. Unfortunately, attempts to conduct the desired 

cyclization using SIPr•HCl (7) in the presence of NaOtBu were unsuccessful (entry 1). 

However, by switching to NHC precursor 8 the Mizoroki–Heck product 6 was obtained, 

albeit in modest yield (entry 2). Further improvements were seen when benzimidazolium 

salt 9 was employed,[17] which gave rise to the desired product 6 in 76% yield (entry 3). We 

also probed the Ni to ligand ratio and found that employing a 1:1 ratio of Ni(cod)2 to 9 
(rather than a 1:2 ratio), led to diminished yields (entry 4). Efforts to optimize the Ni loading 

were also undertaken. Although using 10 mol% Ni(cod)2 gave the desired product (entry 5), 

the use of 15 mol% Ni(cod)2 gave excellent yields (entry 6) and was found more generally 

effective across a range of substrates studied subsequently. During the course of our studies, 

we also evaluated a series of additives used previously in Ni-catalyzed couplings.[18] These 

efforts demonstrated that the reaction temperature could be lowered to 60 °C, provided that 

t-amyl alcohol was employed as the additive, to deliver product 6 in 95% yield (entry 7).[19] 

It should be noted that: (a) Ni-catalyzed Mizoroki–Heck reactions to form quaternary 

centers are rare,[20] (b) there are no prior examples of Ni-catalyzed Mizoroki–Heck reactions 

involving tetrasubstituted olefins in the literature,[21] and (c) decarbonylation products were 

not observed during reaction development.
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Having identified conditions to achieve the nickel-catalyzed cyclization, we evaluated the 

scope with respect to the tethered alkene (Table 2).[22,23] It was found that a trisubstituted 

olefin[24] analog of our parent substrate could be employed to furnish terminal olefin product 

10 in 71% yield (entry 1). We also examined substrates in which the trisubstituted olefin was 

embedded in a ring. Using both 5- and 6-membered ring substrates, the desired Mizoroki–

Heck cyclization proceeded smoothly to give the corresponding spirocyclic products, 11 and 

12, respectively, as mixtures of olefin isomers (entries 2 and 3).[25] Returning to the more 

challenging tetrasubstituted olefins, a series of substrates bearing exocyclic olefins were 

prepared and evaluated. Whereas utilization of a substrate containing a 5-membered ring led 

to product 13 in 51% yield (entry 4), the use of 6- and 7-membered ring-containing 

substrates furnished products 14 and 15, respectively, in good yields (entries 5 and 6). 

Lastly, two heterocyclic substrates were examined. We were delighted to find that our 

methodology proved tolerant of a tetrahydropyran and a protected piperidine, thus giving 

rise to tricycles 16 and 17, respectively, in excellent yields (entries 7 and 8).

As shown in Figure 2, the methodology is also tolerant of substituents on the arene. For 

example, use of substrates containing the fluoride or trifluoromethyl group, both of which 

are critical in medicinal chemistry,[26] gave rise to products 18 and 19, respectively. The 

methoxy group was also well tolerated, as shown by the formation of 20 and 21. As 

demonstrated by the synthesis of 22 and 23, substrates bearing a methyl group could also be 

utilized. In the latter case, it is notable that the presence of a methyl group ortho to the 

tethered alkene did not hinder reactivity.

As a further test, we questioned if this methodology could be performed in a 

diastereoselective sense (Figure 3). Trisubstituted olefin 24,[27] which bears an allylic methyl 

group, was treated under our optimal reaction conditions. This reaction delivered ketone 25 
in 80% yield, as a 92:8 ratio of diastereomers. Of note, 25 contains vicinal sp3 stereocenters, 

both of which are highly substituted. Prior transition metal-catalyzed methods for the 

synthesis of 2-vinylindanones[22] have not been demonstrated for the construction of such 

complexity. The diastereoselectivity seen in the conversion of 24 to 25 can be rationalized by 

considering the two competing olefin insertion transition states, TS1 and TS2. In both cases, 

the olefin insertion event is thought to occur via a standard 4-centered transition state, 

which, in turn, prompts allylic strain arguments.[28] In TS1, A(1,3) strain between the two 

highlighted hydrogens is minimal and the methyl group rests in a pseudo-equatorial 

disposition. As such, TS1 is favorable and leads to the major diastereomer of 25 shown, with 

the methyl groups residing in a cis fashion. On the other hand, the minor diastereomer of 25 
(not depicted) is thought to arise from TS2, which displays a less favorable A(1,3) 

interaction between the highlighted hydrogen and methyl substituents.

We have developed the Mizoroki–Heck cyclization of amide derivatives to access ketones 

containing quaternary centers. The transformation is tolerant of variation on both the alkene 

and aryl moieties, and most notably, proceeds using sterically hindered tetrasubstituted 

olefins. As a result, polycyclic, spirocyclic, and heteroatom-containing products can be 

synthesized using this methodology. Moreover, we have demonstrated that a 

diastereoselective Mizoroki–Heck cyclization proceeds for the controlled formation of an 

adduct bearing vicinal, highly substituted sp3 stereocenters. In addition to providing a rare 
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Ni-catalyzed Mizoroki–Heck cyclization methodology for accessing quaternary centers and 

the first Mizoroki–Heck cyclizations of amide derivatives, our results demonstrate that 

amides, despite once being viewed as unreactive, can be used as building blocks for the 

preparation of complex scaffolds.
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Figure 1. 
Designed nickel-catalyzed Mizoroki–Heck reaction of amide derivatives to forge quaternary 

centers; Boc=tert-butyloxycarbonyl, Bn=benzyl.
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Figure 2. 
Substituents on the arene motif. Yields shown reflect the average of two isolation 

experiments. [a] Yield determined by 1H NMR analysis using hexamethylbenzene as an 

external standard. [b] Reaction performed at 100 °C in the absence of t-amyl alcohol; 

Bn=benzyl, Boc=tert-butyloxycarbonyl, cod=bis(1,5-cyclooctadiene)nickel(0).
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Figure 3. 
Diastereoselective Mizoroki–Heck cyclization for the introduction of vicinal sp3 

stereocenters. Yield and diastereomeric ratio shown reflect the average of two isolation 

experiments; Bn=benzyl, Boc=tert-butyloxycarbonyl, cod=bis(1,5-cyclooctadiene)nickel(0).
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Table 2

Mizoroki–Heck cyclization of a variety of tri- and tetrasubstituted olefin substrates.

Entry Alkene Product Yield [a]

1

10

71%[b]

2

11

92%[b]

3

12

75%[b]

4

13

51%

5

14

96%

6

15

80%
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Entry Alkene Product Yield [a]

7

16

91%

8

17

93%

[a]
Yields shown reflect the average of two isolation experiments.

[b]
Reaction performed at 100 °C in the absence of t-amyl alcohol; Bn=benzyl, Boc=tert-butyloxycarbonyl, cod=bis(1,5-cyclooctadiene)nickel(0).
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