
2171

Evaluating the toxicity of TiO2-based nanoparticles to Chinese
hamster ovary cells and Escherichia coli: a complementary
experimental and computational approach
Alicja Mikolajczyk1, Natalia Sizochenko1,2, Ewa Mulkiewicz3, Anna Malankowska4,
Michal Nischk4, Przemyslaw Jurczak5, Seishiro Hirano6, Grzegorz Nowaczyk7,
Adriana Zaleska-Medynska4, Jerzy Leszczynski2, Agnieszka Gajewicz*1

and Tomasz Puzyn1

Full Research Paper Open Access

Address:
1Laboratory of Environmental Chemometrics, Faculty of Chemistry,
University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland,
2Interdisciplinary Center for Nanotoxicity, Jackson State University,
39217, Jackson, MS, USA, 3Department of Environmental Analytics,
University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland,
4Department of Environmental Technology, University of Gdansk,
Wita Stwosza 63, 80-308 Gdansk, Poland, 5Department of Biomedical
Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk,
Poland, 6Center for Environmental Risk Research, National Institute
for Environmental Studies, Tsukuba, 16-2 Onogawa, Ibaraki
305-8506, Japan and 7NanoBioMedical Centre, Adam Mickiewicz
University, Umultowska 85, 61-614 Poznan, Poland

Email:
Agnieszka Gajewicz* - a.gajewicz@qsar.eu.org

* Corresponding author

Keywords:
Au/Pd–TiO2 photocatalyst; bimetallic nanoparticles; nanotoxicity;
nano-QSAR; second-generation nanoparticles

Beilstein J. Nanotechnol. 2017, 8, 2171–2180.
doi:10.3762/bjnano.8.216

Received: 10 May 2017
Accepted: 18 September 2017
Published: 17 October 2017

Associate Editor: M. Stenzel

© 2017 Mikolajczyk et al.; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
Titania-supported palladium, gold and bimetallic nanoparticles (second-generation nanoparticles) demonstrate promising photocata-

lytic properties. However, due to unusual reactivity, second-generation nanoparticles can be hazardous for living organisms.

Considering the ever-growing number of new types of nanoparticles that can potentially contaminate the environment, a determina-

tion of their toxicity is extremely important. The main aim of presented study was to investigate the cytotoxic effect of surface

modified TiO2-based nanoparticles, to model their quantitative nanostructure–toxicity relationships and to reveal the toxicity mech-

anism. In this context, toxicity tests for surface-modified TiO2-based nanoparticles were performed in vitro, using Gram-negative

bacteria Escherichia coli and Chinese hamster ovary (CHO-K1) cells. The obtained cytotoxicity data were analyzed by means of

computational methods (quantitative structure–activity relationships, QSAR approach). Based on a combined experimental and

computational approach, predictive models were developed, and relationships between cytotoxicity, size, and specific surface area

(Brunauer–Emmett–Teller surface, BET) of nanoparticles were discussed.
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Introduction
Unmodified titania (TiO2) nanoparticles (so-called first-genera-

tion NPs) represent a material that alters the rate of chemical

reactions, when exposed to light (photocatalyst) [1]. TiO2-based

NPs have already found wide applications as efficient photocat-

alysts for sterilization, sanitation, air and water purification

systems, hydrogen production by water splitting, and dye-sensi-

tized solar cells [1]. Photocatalysis is an effective and environ-

mentally friendly photooxidation process [2]. Development and

application of photocatalysis techniques are reasonably eco-

nomical endeavor. Photocatalysis could be a more reliable

method than traditional methods for the inactivation of bacteria

(i.e., UV disinfection and chlorination).

Unmodified titania NPs are generally considered to be inert and

non-toxic [3]. However, several studies have reported that TiO2

nanomaterials may elicit toxic effects towards bacteria under

UV light [4], which makes it possible to use them as an antibac-

terial material [5,6]. In TiO2-based nanoparticles, electron/hole

(e−/h+) pairs can be generated under UV light. Under such

conditions, free radicals are produced, which is one of the major

pathways of the antibacterial activity of TiO2-based NPs. In the

absence of UV light, photoactive TiO2 nanomaterials demon-

strate little or no bacteria inhibiting activity [5,6]. Reactivity of

TiO2 under visible light (λ > 400 nm) can be achieved in several

ways [7], including: (a) metal doping [8], (b) non-metal doping

[9,10], (c) self-doping (reductive treatments) [11,12], (d) sur-

face modification by noble-metal nanoparticles of silver (Ag),

gold (Au), platinum (Pt), or palladium (Pd) [13,14], (e) the use

of dye-modified TiO2 [15,16], or (f) coupling TiO2 with other

semiconductors [17,18]. In the current work, we will focus on

surface modification methods.

Metal-ion doped TiO2 (so-called second generation nanomateri-

als) may cause adverse effects not only towards bacteria, but

also exhibit detrimental effects to the environment and to

human health. Many studies have been focused on ways to

synthesize doped NPs, leveraging the photocatalytic (UV–vis

active photocatalyt) and bactericidal properties, and mini-

mizing the release of potentially toxic ions. For instance, TiO2

NPs doped with either copper (Cu) or silver (Ag), exhibited en-

hanced antibacterial activity against Staphylococcus aureus,

whereas their toxicity towards mouse cells from L929 cell line

remained low [19]. Ag-TiO2 NPs, which were activated by

UV–vis light, exhibited stronger bactericidal activity (towards

Gram-positive B. subtilis and Gram-negative P. putida) than

NPs activated by UV [4]. At the same time, no significant cyto-

toxicity has been detected for TiO2 doped with nitrogen (N),

gold (Au) or selenium (Sn) [20,21]. Whereas, copper oxide-

doped TiO2 and iron/nitrogen co-doped (Fe/N-co-doped) TiO2

nanocomposite particles were detectably cytotoxic [22]. More

complex nanostructures of TiO2 bilayer nanosheets doped with

bismuth tungstate (Bi2WO6) nanoclusters demonstrated en-

hanced antimicrobial activity towards E. coli: the bacteria popu-

lation continuously decreased with the increasing concentration

of Bi2WO6 [23]. In another contribution, the photo-oxidation

capability of iron-doped TiO2 NPs increased during exposure to

near-visible light. Fe-doped TiO2 NPs inhibited the macro-

phage RAW 264.7 [24].

Hence the same unique properties of surface-modified TiO2-

based nanomaterials that offer a bunch of new opportunities for

the advancement of nanotechnology could result in unknown

risks to human health and the environment. Our attention should

be focused both on the promise of new opportunities and on the

responsibility of industries to guarantee the safety of their prod-

ucts for workers, consumers and the environment. The conven-

tional (i.e., experimental) risk assessment approaches using lab-

oratory animals are often expensive, time-consuming and prob-

lematic from an ethical point of view. Thus novel, fast and

cheaper procedures for risk assessment are necessary, without

the requirement of extensive animal testing. The development

of computational methods complimentary to the experiments,

and capable of supporting the empirical testing is of increasing

interest. This idea has been expressed in the established EU

REACH (Registration, Evaluation, Authorization and Restric-

tion of Chemicals) regulations, which pronounce that informa-

tion about risk assessment of chemicals should be generated

whenever possible by means other than vertebrate animal tests,

through the use of alternative methods, for example quantita-

tive structure–activity relationship models (QSAR) [25,26].

This approach is based on defining mathematical dependencies

between the variance in molecular structures, encoded by

so-called molecular descriptors, and the variance in a given

physicochemical property or biological (e.g., cytotoxicity) prop-

erty in a set of compounds (“endpoints”) [5,25-33]. Preliminary

studies proved that the development of novel computational

methods might significantly reduce the number of required

animal experiments [27,33-45].

The aim of our study was to investigate cytotoxic effects of

TiO2-based second-generation nanoparticles using the combina-

tion of experimental and computational techniques. Here, we

present the quantitative description of adverse effects of modi-

fied titania nanomaterials towards Chinese hamster ovary

(CHO-K1) cells and Gram-negative bacteria Escherichia coli.

Results and Discussion
Toxicity evaluation
Three types of TiO2-based NPs were synthetized: (1)

monometallic (Au, Pd) clusters, (2) core–shell particles and
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(3) alloy bimetallic clusters (Au/Pd). The cytotoxicity and anti-

microbial activity of TiO2 modified with palladium and/or gold

NPs is presented in Table 1. Inhibition of bacterial growth was

not observed up to the highest tested concentration of 500 µg/L.

In the agar diffusion method, a slight inhibition of bacterial

growth was noted for nanomaterials: 0.25Au, 1.25Au,

0.1Pd_0.5Au, 0.1Pd_1.25Au, 0.5Pd_0.5Au. At the same time,

mammalian cells were more sensitive to Au/Pd-TiO2 NPs

(Table 1).

Table 1: Cytotoxicity and antimicrobial activity (MIC and microorgan-
ism growth inhibition zone) of TiO2 modified with Pd and/or Au nano-
particles.

sample label cytotoxicity
EC50 (µg/mL)

antimicrobial activity
MIC
(µg/mL)

zone of inhibition
diameter (mm)a

pure TiO2 >300 >500 6
0.1Au 187.50 ± 0.43 >500 6
0.25Au 118.39 ± 2.19 >500 9
1.25Au 156.80 ± 0.42 >500 9
0.1Pd 164.18 ± 1.75 >500 6
0.25Pd 186.35 ± 1.73 >500 6
0.5Pd 204.02 ± 1.96 >500 6
0.5Pd_1.25Au 275.63 ± 3.13 >500 6
0.1Pd_0.1Au 165.96 ± 0.76 >500 6
0.1Pd_0.25Au 158.00 ± 0.92 >500 6
0.1Pd_0.5Au 195.73 ± 1.82 >500 7
0.1Pd_1.25Au 155.35 ± 2.38 >500 7
0.5Pd_0.1Au 141.91 ±1.73 >500 6
0.5Pd_0.25Au 175.12 ± 1.91 >500 6
0.5Pd_0.5Au 162.68 ± 2.29 >500 7
0.25Pd_0.25Au 134.28 ± 1.35 >500 6
0.25Pd_0.5Au 241.73 ± 3.07 >500 6
0.25Pd_1.25Au 220.80 ± 0.51 >500 6

aA value of 6 equals the diameter of the paper disc, i.e., no inhibition
occurred.

The correlation between the amount of metal precursor and the

structure of nanoparticles is presented in Figure 1. For lower

concentrations of Au precursor (Pd > Au), core–shell types of

nanoparticles (Aucore/Pdshell) were formed more likely, where-

as the increasing concentration of Au (Au > Pd) resulted in the

formation of alloy structures. More details about the characteri-

zation of Au/Pd-TiO2 structures are reported in our previous

study [5]. The relationship between the amount of noble metals

(Au, Pd) in the sample and the cytotoxicity to CHO-K1 cells

expressed as EC50 values ranging from 118.39 ± 2.19 to

275.63 ± 3.13 µg/mL are presented in Figure 2.

The cytotoxic effect of monometallic Au-TiO2, Pd-TiO2 and

bimetallic Au/Pd-TiO2 was stronger than one that was ob-

served for pure TiO2 (Figure 2). Overall, the experimental

Figure 1: The effect of the amount and type of metal precursor on the
structure of the nanoparticles.

Figure 2: Cytotoxicity of TiO2 modified with Pd and/or Au nanoparti-
cles (NA: not available, these combinations were not investigated).

results showed that TiO2-based nanoparticles exhibit low and

moderate cytotoxicity. Several possible mechanisms of cyto-

toxic action can be taken into account to explain observed

results. First, it is well known that ionic Au and Pd are one of

the most toxic forms among the noble metals. The main factor

responsible for their toxicity is related to the release of ions

from the TiO2 surface, the generation of reactive oxygen

species (ROS) and the subsequently induced oxidative stress

[4,46]. For example, according to Li et al. [4] and Qiu et al.

[47], the cytotoxicity of Au NPs occurs via the generation of

ROS and the peroxidation of lipids. Katsumiti et al. [48] found

that citrate-stabilized Au NPs exhibited a relatively low cyto-

toxicity, being less toxic than ionic Au, but more toxic than

bulk Au. Similar results have been obtained by Contreras et al.

[49]. Authors indicated that Ag+ is the most toxic among

various metal cations (i.e., Ag+, Cu+, Cu2+, Co2+, Ni2+, Fe3+)



Beilstein J. Nanotechnol. 2017, 8, 2171–2180.

2174

Table 2: Summary data of developed descriptors.

sample type of NPa BET surface area (m2/g) sizemin of NPs (nm) sizemax of NPs (nm)

Pure TiO2 — 154 ± 5 0 0
0.1Au p 168 ± 5 8 31
0.25Au p 139 ± 5 12 63
1.25Au p 140 ± 5 12 129
0.1Pd p 154 ± 5 4 4.5
0.25Pd p 182 ± 5 4 11
0.5Pd p 139 ± 5 3 12
0.5Pd_1.25Au a 139 ± 5 8 45
0.1Pd_0.1Au cs 156 ± 5 6 25
0.1Pd_0.25Au a 157 ± 5 63 140
0.1Pd_0.5Au a 148 ± 5 54 200
0.1Pd_1.25Au a 179 ± 5 5 17
0.5Pd_0.1Au cs 136 ± 5 15 35
0.5Pd_0.25Au cs 164 ± 5 19 40
0.5Pd_0.5Au cs 153 ± 5 8 80
0.25Pd_0.25Au cs 159 ± 5 17 170
0.25Pd_0.5Au a 158 ± 5 7 70
0.25Pd_1.25Au cs 145 ± 5 16 68

ap: pure NPs; a: alloy NPs; cs: core–shell.

and that the cytotoxicity of metals to human gingival fibroblast

(HGF) decreases in the following order: (most toxic) AgCl >

CuCl2 > CuCl, CoCl2 > NiCl2 > FeCl2, FeCl3 (least toxic). In

addition, they have demonstrated that Ag+ ions can induce

internucleosomal DNA fragmentation that can lead to non-

apoptotic cell death [6]. Li et al. [4] demonstrated that bacterial

activity of hybrid Ag-TiO2 materials based on Degussa P25

TiO2 NPs is related to the enhanced ROS generation and release

of Ag+ ions.

Quantitative structure–activity relationship
modeling of cytotoxicity
The data summarized in the Table 1, suggest that the antimicro-

bial activity of the studied nanomaterials varies only insignifi-

cantly. Thus, we have chosen the cytotoxicity (EC50) to Chinese

hamster ovary (CHO-K1) cells as a target activity for further

study. Empirical variables (i.e., average size, BET surface) that

quantitatively describe the features of nanoparticles structure

were considered as descriptors (Table 2). It is interesting to

point out, that there was no significant linear correlation be-

tween the considered cytotoxicity and the descriptors (the

Pearson correlation coefficient was lower than 0.5). To address

this problem and to uncover the nonlinear relationship under-

lying measured data the Gaussian process approach was there-

fore used.

The power of the Gaussian process approach, which uses lazy

learning, is that it has an inherent ability to select the mean-

ingful descriptors relevant to the endpoint of interest. In other

words, the Gaussian process approach does not require a subjec-

tive selection of the model parameters (i.e., the most influential

descriptors). Owing to this, variation of sizes and BET surface

of nanoparticles were found to influence the EC50 value, and

consequently were used to derive the nano-QSAR model. These

findings clearly demonstrate that the cytotoxicity depends on

particle size and surface area, which is in line with the recent

experimental results. For instance, Coradeghini et al. [50] inves-

tigated the particle size dependent cytotoxicity of Au NPs

(0.8–15 nm) to four different cell lines demonstrating that

smaller NPs (1.4 nm) were more cytotoxic than bigger NPs.

Previous studies also reported that a larger surface area (as a

potential source of a larger number of ions or other reactive

species) can contribute significantly to the higher reactivity

[51,52].

The nano-QSAR model developed here is characterized by

R2 = 0.94, and RMSE = 9.52 values for the training set;

R2
bagging = 0.94 and RMSE = 37.5 for the bagging set;

Q2
EXT = 0.98 and RMSEP = 9.40 for the test set. Detailed

information on the experimental and predicted EC50

as well as residuals calculated between the actual and

fitted values with the nano-QSAR model are summarized in

Table 3.

A plot of experimentally determined vs predicted values for the

general model is presented in Figure 3. This plot revealed a
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Table 3: Observed and predicted values for cytotoxicity of TiO2-based NPs.

sample status observed cytotoxicity
EC50 (µg/mL)

predicted cytotoxicity
EC50 (µg/mL)

errors associated with
predictions (µg/mL)

1.25Au training (bagging) 156.80 162.38 (165.33) 5.58
0.25Pd training 186.35 187.03 0.68
0.1Pd_0.1Au training (bagging) 165.96 169.12 (159.26) 3.16
0.25Pd_1.25Au training 162.68 169.91 7.23
0.5Pd_1.25Au training (bagging) 275.63 264.60 (197.37) 11.03
0.1Pd_1.25Au training 155.35 143.02 12.33
0.25Au training 118.39 126.65 8.26
0.1Pd_0.5Au training (bagging) 195.73 199.78 (171.02) 4.05
0.25Pd_0.25Au training (bagging) 141.91 142.69 (156.06) 0.78
0.1Pd training 164.18 163.35 0.83
0.5Pd_0.25Au training 241.73 224.70 17.03
0.5Pd_0.1Au training 134.28 150.21 15.93
0.25Pd_0.5Au test 175.12 170.42 4.7
0.1Au test 187.50 180.69 6.81
0.5Pd_0.5Au test 220.80 210.40 10.4
0.1Pd_0.25Au test 158.00 150.18 7.82
0.5Pd test 204.02 193.24 10.78

good agreement between the observed and predicted values of

cytotoxicity for the 17 TiO2-based NPs from both the test set

and training set. Presented results (Figure 3) verified the predic-

tive ability of the evolved model.

Figure 3: Plot of experimentally determined (observed) vs predicted
values of cytotoxicity based on developed nano-QSAR model.

The developed nano-QSAR model was examined through a

Y-scrambling test. We found that R2 for randomization ranged

from 0.21 to 0.55, while R2
bagging ranged from 0.05 to 0.42

(Figure 4). The RMSE values for both randomized training and

bagging sets were higher than 50.

Bearing in mind the nature of modeling nonlinear relationships,

one should remember that the contribution of each descriptor to

Figure 4: Y-randomization test.

the studied biological activity cannot be individually inter-

preted, unlike in linear modeling. On the other hand, as we set a

polynomial kernel for nano-QSAR modeling, it became

possible to investigate set of polynomials separately. For this

purpose, separate equations were obtained directly from the ex-

perimental data. As summarized in Table 4 and Figure 5, linear

modeling failed for all types of NPs, while third-order polyno-

mials were overfitted (R2 > 0.9 for five data points) for alloys

and core–shell NPs.

With regard to the results obtained, we assumed that the best

equations included in the final nano-QSAR model should be the

third-order correlation for cytotoxicity and average size of

nanoparticles loaded with pure Pd or Au (R2 = 0.90); and
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Table 4: Correlations value for each type of equation.

type of
NPs

Equation equation type
linear second-order

polynomial
third-order
polynomial

pure 1 0.34 0.46 0.90
alloy 2 0.41 0.76 1.00
core-shell 3 0.09 0.63 1.00

Figure 5: The graphical representation of goodness-of-fit and types of
dependencies for the developed models.

second-order for alloys and core–shell systems, with R2 0.76

and 0.62, respectively (Equations 1–3):

(1)

(2)

(3)

We would like to point out that the developed equations are

simplified from the extracted initial Gaussian predictor. It

should be highlighted, that in the case of core–shell systems,

polynomial relationships were observed between cytotoxicity

and average size of nanoparticles, whereas in the case of alloys,

a polynomial relationship was observed between cytotoxicity

and BET surface.

Using Equations 1–3 we calculated RMSE values for each type

of TiO2-based nanoparticles, which were: 8.9 for pure NPs,

26.0 for core–shell NPs and 17.3 for alloy NPs, respectively. As

one can notice, small set of separate polynomials provided cyto-

toxicity values with higher errors than the initially developed

nano-QSAR model.

As mentioned before, one of the potential disadvantages of the

Gaussian process approach may be the difficulty associated

with the impossibility of direct interpretation of the selected

descriptors in terms of the endpoint of interest. However, one

can directly apply Equations 1–3 for predictive purposes, bear-

ing in mind, that each equation is applicable only for a certain

topology (pure, alloy, core–shell) or chemistry (Au, Pd, Au/Pd)

of TiO2-based nanoparticles.

Taken together, these results suggest, that multimode action of

nanoparticles at different Au and Pd concentrations are driven

by nonlinear size-effects and surface-effect patterns. Experi-

mental findings were supported by the developed nano-QSAR

model. Ultimately, the developed model is a proof that the

slightest variation of the initial experimental conditions can

cause non-linear changes of nanotoxicity, so appropriate experi-

mental conditions should be defined as good as possible before

the experiment.

Conclusion
Without a doubt, the development of computational methods

that may significantly minimize the need for animal testing, and

reduce the cost and time of empirical tests is essential for

(eco)toxicological hazard assessment, regulatory frameworks

and materials science. The intention of the present work was to

demonstrate the usefulness of a quantitative structure–activity

relationships approach for investigating the cytotoxic effect of

surface-modified TiO2-based nanoparticles. In the present

study, we have focused on the identification of the main physi-

cochemical parameters that may govern toxic effects of the

TiO2-based mono- and bimetallic nanoparticles to mammalian

Chinese hamster ovary (CHO-K1) cells and to bacteria E. coli.

The findings from this research study have clearly demon-

strated that the cytotoxic effect of monometallic Au-TiO2,

Pd-TiO2 and bimetallic Au/Pd-TiO2 was greater than the one

observed for pure TiO2. At the same time, when MIC was de-

termined, inhibition of bacterial growth was not observed for

the investigated nanomaterials, up to the highest tested concen-

tration. When comparing the metal content, the nanoparticles

with higher concentration of palladium appear to be more cyto-

toxic. It is worth noting that a general understanding of the

factors that play a prevailing role in the toxicity of second-gen-

eration nanoparticles is crucial to establish the mechanism of

their toxicity. The overall results of this study reveal that the

size and specific surface (as a potential source of a larger num-

ber of metal ions) are important factors for toxicity evaluation

of modified TiO2-based nanoparticles. In a further perspective,

more detailed investigations, including the use of a variety of

transition metal-doped TiO2 precursors, variations of the initial

experimental conditions, and/or various endpoints of environ-

mental and human health relevance will be necessary.
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Experimental
Materials
Titanium(IV) isopropoxide (TIP, 97%), palladium(II) chloride

(5 wt % in 10 wt % HCl) and HAuCl4 (Au ≈ 52%) were pur-

chased from Sigma-Aldrich. Cyclohexane, isopropyl alcohol,

hydrazine, acetone, AOT (dioctylsulfosuccinate sodium salt)

obtained from POCH S.A. (Poland) were used without further

purification. F12 medium, streptomycin and penicillin, gluta-

mine, and heat-inactivated fetal bovine serum (FBS Hi) were

purchased from Gibco® Life Technologies. Microbiological

media (tryptic soy broth (TSB) and tryptic soy agar (TSA))

were purchased from Becton Dickinson and Company. WST-8

reagent [2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-

disulfophenyl)-2H tetrazolium, monosodium salt] was obtained

from Wako (Osaka, Japan).

Synthesis of Au/Pd-TiO2 nanoparticles
Titania (TiO2) modified with nanoparticles was obtained by

hydrolysis of TIP in a water/AOT/cyclohexane microemulsion

containing Au and Pd precursors in water cores. Mixing was

carried out for 1 h under nitrogen; Au and Pd were then reduced

by dropwise addition of a microemulsion containing the

reducing agent (hydrazine). Titanium isopropoxide was added

into the microemulsion system containing Au and Pd nanoparti-

cles. The microemulsions were mixed and purged with nitrogen

for 24 h and the obtained precipitate was washed, dried and

calcined for 3 h at different temperatures, as described previ-

ously [53].

Toxicity to Chinese hamster ovary (CHO-K1)
cells
Nanoparticles were ground for 5 min using a mortar and pestle,

suspended to a concentration of 1 mg/mL in complete cell cul-

ture medium with 0.1% pluronic F68 (cytotoxicity assay) or

TSB (MIC determination) and sonicated in a water bath for

30 min at 37 °C. Cytotoxicity was determined using the Chinese

hamster ovary cell line (CHO-K1) (ATCC® CCL-61™). The

sensitivity of three different cell lines: CHO-K1 and two human

lung (cancer and normal) cell lines (A549, BEAS-2B) to the

tested nanomaterials was studied in a preliminary experiment.

CHO-K1 proved to be the most sensitive, allowed for the deter-

mination of EC50 values for all tested nanomaterials and there-

fore was selected for the main experiment. A colorimetric assay

with WST-8 reagent was used for the cell viability tests: CHO-

K1 cells were pre-cultured in F12 culture medium supple-

mented with 2 mM L-glutamine, 1% penicillin/streptomycin

solution, and 10% heat-inactivated fetal bovine serum (FBS) at

an initial density of 1 × 105 cells/mL in 24-well plates. Cells

were exposed to nine different concentrations of nanoparticles

(from 1.56 to 300 µg/mL) for 24 h. Because Au nanoparticles

absorb light in the visible region, the plates were centrifuged to

avoid interference with the assay. At the next step, 100 µL of

medium from each cell culture was transferred to a 96-well

plate and the absorbance at 450 nm was measured. Cell viability

was calculated as means of three independent experiments and

expressed as the percentage of the viability of exposed cells vs

controls. Concentration–response curves were fitted using the

nonlinear least-squares method. Calculations were carried out

with the R environment (http://www.r-project.org).

Antibacterial activity
The antibacterial activity of studied nanomaterials was evalu-

ated using Gram-negative bacteria Escherichia coli (NBRC

3972, NITE Biological Resource Center). Two methods were

employed: MIC (minimal inhibitory concentration) determina-

tion and agar diffusion test.

Minimal inhibitory concentration (MIC)
MIC was determined by the serial twofold dilution microtiter

plate method in TSB. Wells containing serially diluted com-

pounds and compound-free controls were inoculated with an

overnight culture of bacteria to a final concentration of

5 × 105 cfu/mL. The plates were then incubated for 24 h at

37 °C. The microbial growth was quantified in each well by

measuring the optical density at λ = 580 nm. MIC was defined

as the concentration of the compound, which resulted in at least

an 80% decrease in turbidity relative to that of the compound-

free growth control well.

Agar diffusion test
Approximately 20 mL of sterile molten TSA was poured into

sterile Petri plates. The solid medium was inoculated with

200 µL of an overnight culture (density of 106 cfu/mL) of

bacteria. Nanomaterials were suspended in TSB to a concentra-

tion of 4 mg/mL. Then, 20 µL of this suspension was dispensed

onto a disc placed on the agar medium surface (diameter of

each disc: ca. 6mm, three discs on each plate). The plates were

incubated for 24 h at 37 °C. Diameters of growth inhibition

zones were measured.

Quantitative structure–activity relationships
modeling
The QSAR approach is based on the assumption that the vari-

ance in molecular structures, encoded by numerical parameters

(so-called “descriptors”), correlates (using statistical ap-

proaches) with the variance in biological activity. We used as

descriptors the measured experimental parameters (Table 2).

For the purposes of statistical modeling, Gaussian process

predictor was applied [54]. Gaussian process predictor is a

probabilistic approach to learning in kernel machines. A

Gaussian process is a generalization of the Gaussian probabili-

ty distribution [54]. The initial dataset was split between

http://www.r-project.org
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training and test sets on the basis of randomly method (OECD,

2014). The training set covers ca. 80% of the initial dataset; the

test set covers the remaining ca. 20%. Descriptors from training

set were standardized and then the Gaussian process using

normalized polynomial kernel was applied. The statistical

quality of the QSAR model and its predictive ability were

assessed using determination coefficient (R2) for training set,

bagging validation coefficient (R2
bagging) for bagging set,

external validation coefficient (Q2
EXT), and root-mean-square

errors of calibration for the training set (RMSEC), and root-

mean-square errors of validation (RMSEP) for the test set (see

Equation 4-7) [55-58].

(4)

(5)

(6)

(7)

where yi
obs is the experimental (observed) value of the property

for the i-th compound from the training set; yi
pred is the pre-

dicted value for the i-th compound from the training set;  is

the mean experimental value of the property in the training set;

yj
obs is the experimental (observed) value of the property for the

j-th compound from the validation set; yj
pred is the predicted

value for j-th compound from the validation set;  is the

mean experimental value of the property in the validation set; n

is the number of compounds in the training set; k is the number

of compounds in the validation set; and R2
bagging is the average

value of R2 of each model.

Finally, the developed Nano-QSAR model was checked for

chance correlation and its robustness was examined through a

Y-scrambling test (so-called dependent-variable scrambling

test) [58].
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