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Abstract

Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of 

autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for 

ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional 

connectivity measures. However, current efforts that have identified ASD with high accuracy were 

limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site 

data have shown much lower accuracy. In this paper, we propose the use of recurrent neural 

networks with long short-term memory (LSTMs) for classification of individuals with ASD and 

typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-

site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM 

models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which 

is 9% higher than previously reported methods that used fMRI data from the whole ABIDE 

cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight 

potential functional networks and regions that are known to be implicated in ASD.

1 Introduction

Investigating the pathophysiology of autism spectrum disorders (ASD) with functional 

magnetic resonance imaging (fMRI) holds promise for identifying objective biomarkers of 

the neurodevelopmental disorder. Discovering biomarkers for ASD would potentially lead to 

better understanding the underlying causes of ASD. This would have far-reaching 

implications, aiding in diagnosis, the design of improved therapies, and monitoring and 

predicting treatment outcomes.

Recent efforts have focused on investigating ASD biomarkers based on measures of 

functional connectivity, computed from resting-state fMRI (rsfMRI). Functional 

connectivity measures are used as predictors for classifying ASD v.s. neurotypical control, 

using popular learning methods such as support vector machines, random forests, or ridge 
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regression [13,3,1]. Pairwise connections deemed important for accurate classification are 

then potential biomarkers for ASD.

While high accuracies have been reported for identifying ASD from rsfMRI, these results 

were found using small, homogeneous datasets gathered from a single [15] or a few [13] 

imaging sites and likely do not generalize well to the larger, heterogeneous ASD population. 

To aid in discovering more generalizeable fndings, the Autism Brain Imaging Data 

Exchange (ABIDE) gathered neuroimaging and phenotypic data from 1112 subjects across 

17 sites for their first publicly shared dataset, ABIDE I [7]. While larger datasets are usually 

helpful in achieving higher classification accuracy, the heterogeneity of ASD has proved to 

be a challenge; recent methods which trained on large portions of this diverse dataset have 

demonstrated much lower classification accuracy [12,9].

We propose a new approach in which we learn the ASD classification directly from the 

rsfMRI time-series, rather than from precomputed measures of functional connectivity. 

Since the fMRI data represents dynamic brain activity, we hypothesize that the time-series 

will carry more useful information than single, static functional connectivity measures. To 

learn directly from the rsfMRI time-series, we base our approach on Long Short-Term 

Memory networks (LSTMs), a type of deep neural network designed to handle very long 

sequence data [10].

In this paper, we investigate the use of LSTMs for identifying individuals with ASD from 

rsfMRI time-series. To the best of our knowledge, this is the first use of LSTMs for 

classifying fMRI data. We train and test the developed LSTM models on the entire ABIDE 

dataset and compare classification accuracy against previous studies that classified the 

ABIDE subjects from rsfMRI. Finally, we interpret the best model, identifying brain regions 

important for distinguishing ASD from typical controls. We hypothesize the learned LSTM 

weights will encode potential networks that have previously been implicated in ASD.

2 Methods

2.1 Network Architecture

LSTMs are a special type of recurrent neural network, composed of repeated cells that 

receive input from the previous cell as well as the data input xt for the current timestep t. 
Each LSTM cell contains a cell state ct and hidden state ht, which are modulated by 4 neural 

network layers that control the flow of information into and out of cell memory. The 

equations governing an LSTM are:

(1)

(2)

Dvornek et al. Page 2

Mach Learn Med Imaging. Author manuscript; available in PMC 2017 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

(4)

(5)

(6)

W matrices contain weights applied to the current input, U matrices represent weights 

applied to the previous hidden state, b vectors are biases for each layer, and σ is the sigmoid 

function. The input gate it (eq. (1)) decides what information from the current estimated cell 

state is updated. The forget gate ft (eq. (2)) controls what information from the previous cell 

state is kept. Next, the estimated current cell state (eq. (3)) and previous cell state are 

combined with restrictions from the input and forget gates, respectively, to update the cell 

state (eq. (4)). Finally, cell state information is filtered with the output gate ot (eq. (5)) to 

update the hidden state (eq. (6)), which is the output of the LSTM cell.

We propose an LSTM architecture which takes the rsfMRI time-series as input x and 

connects the output of each repeating cell to a dense layer with a single node (Fig. 1). This 

gives the signal at every time point a more direct say in how to classify the signal, compared 

to the traditional approach of looking at the final output after the whole sequence is analyzed 

(hT). We believe this will be more robust to the noisy fMRI data. The outputs of the single 

nodes are then averaged across the entire sequence and fed to a sigmoid activation function 

to produce the probability of an ASD label. For regularization, during training, we apply 

dropout to the LSTM weights as described in Gal et al. [8] and add a standard dropout layer 

between the single-node dense layer and pooling layer. In the following, we also investigate 

a two-layer LSTM model, in which the hidden states output from the first layer are used as 

the input sequence into a second LSTM layer, after which the architecture is the same as in 

the single-layer model.

2.2 Dataset and Preprocessing

The ABIDE I dataset includes rsfMRI for 539 individuals with ASD and 573 typical 

controls from 17 international sites. To further enhance the data-sharing effort, the 

Preprocessed Connectomes Project released preprocessed ABIDE data using a number of 

popular pipelines and several calculated derivatives [5]. We chose the data processed through 

the Connectome Computation System, without global signal regression but with band-pass 

filtering. See the ABIDE Preprocessed website [14] for more preprocessing details.
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The preprocessed ABIDE data includes extracted mean time-series from regions of interest 

defined by several atlases. Here, we utilized the mean time-series from the Craddock 200 

atlas [6], which was provided for 1100 subjects. Each time course was normalized to 

represent percent change from the average signal for that region of interest. Further, since 

different sites used different acquisition protocols, we resampled each time-series using an 

interval of 2 s to bring the data to the same time scale. The preprocessed mean time courses 

from the 200 atlas regions were used as input x into the LSTM.

2.3 Data Augmentation

While the ABIDE dataset has a large number of subjects for a neuroimaging database, 

training neural networks often requires many more samples to prevent overfitting. 

Furthermore, the ABIDE time courses have different lengths depending on the site. Thus, we 

propose cropping the input time courses to a fixed sequence length for all subjects and 

augmenting the number of inputs for each subject to make the most use of the full time-

series. Based on the length of the shortest time-series, we chose a sequence length of T = 90, 

which represents 3 minutes of imaging. For each subject, we crop 10 sequences of length T 
from the time-series, randomly varying the starting time of each cropped sequence. This 

augmented our dataset by a factor of 10 to a total of 11,000 input sequences.

3 Experiments

3.1 Experimental Methods

The LSTM training and testing were performed using Keras [4]. Models were trained using 

the binary cross-entropy loss function and the Adadelta optimizer with the default parameter 

values. The dropout rate during training was fixed to 0.5. Models were initialized using 

default Keras settings.

We explored the impact of parameters and variations of the proposed architecture as well as 

training conditions. We tested not augmenting data, varying the number of hidden nodes (8, 

16, 32, or 64) in the LSTM, and removing dropout. We also tested variations on the base 

network: connecting only the final LSTM cell’s output (hT) to a single dense node, and 

stacking LSTM layers.

To validate the performance of the LSTMs, we used stratified 10-fold cross-validation, such 

that the proportion of subjects from each site was approximately the same in all folds. For 

each fold, data was split into 85% for training, 5% for validation, and 10% for testing. When 

using the augmented dataset, all sequences belonging to the same subject appeared in either 

training, validation, or testing. Training was stopped when the validation loss had not 

decreased in 20 epochs or when 300 epochs had been executed. The trained model was then 

tested on the left-out test data. Accuracy was assessed based on classification of each input 

sequence (“sequence accuracy”) as well as classification of each subject using the average 

score of all input sequences from a subject (“subject accuracy”). Significance tests were 

performed using two-tailed, paired t-tests with α = 0.05. We compared our approach to 

previous studies that trained on ABIDE rsfMRI. To better compare against these other 

studies which used different subsets from the ABIDE cohort, we computed the difference 
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between the model’s accuracy and the accuracy of assigning classifications by chance within 

the tested dataset.

Finally, we considered interpretation of the LSTM model which resulted in the highest 

classification accuracy. Entries in the LSTM weight matrix Wl(n, r) with large magnitude, 

regardless of sign, should denote that atlas region r has a strong influence on LSTM node n 
for layer l. We investigated regions that were considered important for each layer and for 

each node. First, for each layer l, we averaged the absolute values of the weights across all 

nodes. We then created a binary mask of important regions, defined as those regions with 

weight magnitudes greater than 2 standard deviations above the mean for the layer. The 

mask of important regions was then input into Neurosynth, a meta-analysis tool that 

compares a brain map to a database of approximately 10,000 fMRI studies and assigns 

correlations between the map and almost 3000 descriptors [16]. Similarly, for each node n, 

we defined important regions as those with weights greater than 2 standard deviations away 

from the mean in the node for each layer, aggregated the important regions across all layers 

into a single binary mask per node, and input the mask into Neurosynth for interpretation.

3.2 Classification Accuracy

Results from previous studies and from our LSTM models are compared in Table 1. The 

highest accuracy was reported by Plitt et al. [13]; however, only a small, very homogeneous 

subset (16%) of the ABIDE dataset was used. Chen et al. [3] showed a large improvement 

compared to chance, but also used a very pruned subset of the data with a single training/

validation split. The two studies with the largest datasets [12,9] demonstrated lower accuracy 

compared to our LSTM model trained on only a single input sequence from each subject. 

All other LSTM models, which used the augmented dataset, performed even better. Subject 

accuracy was higher than sequence accuracy for all models. Among the single layer models, 

the highest subject accuracy was achieved for the LSTM with 32 hidden nodes (68.5%). 

Compared to the most competitive result using the majority of the ABIDE cohort [1], the 

difference between our accuracy and chance is over 3% higher, while our dataset contained 

more challenging, heterogeneous data with 25% more subjects. Furthermore, compared to 

the study with the closest number of subjects to ours [9], our model improved accuracy 

compared to chance by 9%. Thus, our method would likely generalize best to new data.

All tested variations of the proposed network resulted in degraded accuracy. Removing 

dropout regularization reduced accuracy by almost 7%. Using only the final hidden state of 

the LSTM sequence decreased accuracy by 4%. Finally, creating a deeper model with two 

stacked LSTM layers was not helpful.

3.3 Model Interpretation

We investigated the learned weights of the best model, LSTM32. Table 2 shows, for each 

layer, the top associated Neurosynth anatomical and functional descriptors. The input and 

forget gates, which modulate the cell state information, are heavily influenced by regions 

associated with language and communication; impairment of these functions are primary 

symptoms of ASD. Functional terms associated with influential regions for the current 

estimated cell state are important for supporting social interactions, which are difficult for 
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individuals with autism. The output gate is most influenced by regions associated with self-

referential processing, which has been shown to be impaired in autistic individuals [11].

Finally, we explored potential brain networks encoded by each LSTM cell node. The 

important regions for the four nodes with greatest influence (i.e., with the largest weight 

magnitudes from the dense layer of the neural network) are shown in Fig. 2. These region 

groupings highlight neurocognitive functions affected by ASD; e.g., social reward is 

diminished, face processing and communication skills are impaired, and theory of mind, a 

leading hypothesis for social impairment in autism, is lacking in autistic individuals [2].

4 Conclusions

We have presented a method for identifying individuals with ASD from rsfMRI using 

LSTMs. Our model demonstrated the highest classification accuracy compared to other 

methods which utilized the majority of the ABIDE cohort. We contend it is important to 

succeed on large heterogeneous datasets, since ASD covers a wide spectrum, and image 

quality can be difficult to control for individuals with autism and young children. Data 

augmentation and choice of network structure were crucial in training an accurate model. 

More in depth tuning of hyperparameters, training on other parcellations, including 

demographic information, and combining models would likely lead to higher classification 

accuracy.

The learned LSTM input weights had meaningful interpretation; anatomical regions with 

high influence on the network have previously been shown to be abnormal in ASD. Further, 

meta-analysis highlighted neurocognitive processes that are affected in individuals with 

ASD. Inspection of network activations and hidden state weights could lead to greater 

insights into the mechanism of ASD.
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Fig. 1. 
Diagram of the LSTM network for classifying ASD from rsfMRI. The recurrent neural 

network is visualized “unrolled” for clarity. Each green square is a neural network layer that 

takes xt and ht−1 as inputs.
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Fig. 2. 
Influential brain regions for the 4 most important LSTM nodes. Top associated Neurosynth 

functional features include: (a) Pain, reward, anticipation, incentive. (b) Faces, objects, word 

form, emotional, visual. (c) Default mode, reward, listening, mental states, theory of mind. 

(d) Listening, sounds, theory of mind, social, speech perception.
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Table 2

Top Neurosynth anatomical and functional terms associated with the mask created from the brain regions with 

the greatest weight magnitudes for each layer.

Layer Anatomical Terms Functional Terms

Input Superior Temporal Sulcus, Middle Temporal Gyrus, Planum 
Temporale

Sentence, Comprehension, Linguistic, Audiovisual, 
Language

Forget Inferior Frontal Gyrus, Temporal Pole, Planum Temporale Sentence, Verb, Nouns, Semantically, Sentence 
Comprehension

Cell Midbrain, Thalamus, Superior Temporal Sulcus Reward, Speaker, Voice, Audiovisual, Speech

Output Hypothalamus, Inferior Parietal Lobe, Medial Prefrontal Cortex Self, Sexual, Referential, Memory Retrieval, Regulation
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