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Abstract

Interleukin-6 (IL-6) induces the expression of fibrinogen, and polymorphic variation within

the fibrinogen genes is believed to alter the magnitude of this expression. The identification

of the functional relevance of individual fibrinogen single nucleotide polymorphisms (SNPs)

has been hindered by the high linkage disequilibrium (LD) reported in the European fibrino-

gen gene locus. This study investigated two novel and 12 known fibrinogen SNPs of poten-

tial functional relevance, in 2010 Tswana individuals known to have low LD. We aimed to

identify functional polymorphisms that contribute to clot-related phenotypes and total and

γ’ fibrinogen concentrations independently and through their interaction with IL-6, by taking

advantage of the high fibrinogen and IL-6 concentrations and the low LD reported in black

South Africans. Fibrinogen was significantly associated with IL-6, thereby mediating as-

sociations of IL-6 with clot formation and structure, although attenuating the association of

IL-6 with clot lysis time. None of the common European fibrinogen haplotypes was present

in this study population. Putative functional fibrinogen SNPs FGB–rs7439150, rs1800789

(–1420G/A) and rs1800787 (–148C/T) were significantly associated with fibrinogen concen-

tration and altered clot properties, with several associations significantly influenced by IL-6

concentrations. The impact of harbouring several minor fibrinogen SNP alleles on the asso-

ciation of IL-6 and fibrinogen concentration was cumulative, with possession of each addi-

tional minor allele showing a stronger relationship of IL-6 with fibrinogen. This was also

reflected in differences in clot properties, suggesting potential clinical relevance. Therefore,

when investigating the effect of fibrinogen genetics on fibrinogen concentrations and CVD

outcome, the possible interactions with modulating factors and the fact that SNP effects

seem to be additive should be taken into account.
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Introduction

Fibrinogen is central to blood coagulation and the inflammatory response. As a haemostatic

protein, fibrinogen is activated by thrombin to form fibrin, the main constituent of a blood

clot [1]. As an acute phase reactant, fibrinogen is up-regulated upon stimulation by inflamma-

tory cytokines, primarily interleukin-6 (IL-6), in response to physiological trauma such as

infection/inflammation [2]. Both fibrinogen and IL-6 are prospectively associated with cardio-

vascular disease (CVD) risk [3–5], although causality is under debate [6–9].

The fibrinogen phenotype is heritable and several single nucleotide polymorphisms (SNPs)

within the fibrinogen α, β and γ chain genes (FGA, FGB, FGG) have been identified as contrib-

utors to this heritability in Europeans [10–13]. Fibrinogen expression is regulated on two lev-

els: under basal conditions and during the acute phase response [14, 15]. This acute phase-

induced increase in fibrinogen is largely mediated by IL-6, through the JAK/STAT pathway. In

addition, sequences responsive to IL-6, and crucial for full IL-6-induced fibrinogen expression,

have been identified upstream of the fibrinogen genes [14, 15].

Genetic variation in the fibrinogen genes is hypothesised to alter the magnitude of fibrino-

gen expression in response to IL-6 [13, 16, 17]. Thus far, the focus of investigations has been

on polymorphisms within the FGB promoter region that have been implicated in both epide-

miological [16] and in vitro [17] studies to interact with IL-6 in influencing fibrinogen concen-

trations. Greater IL-6-induced fibrinogen expression has been reported for the FGB rs18007

90A (–455A) and rs1800791A (–854A) [16–20], while the opposite has been observed for FGB
rs1800789 (–1420A) and rs1800787 (–148T) [16, 17]. Apart from the FGB polymorphisms,

IL-6 interacted with FGA-rs2070011T in vivo to enhance fibrinogen expression, whereas FGA-

rs6050, FGG-rs2066865 and FGG-rs1049636 had no effect [13].

In addition to regulating total fibrinogen concentration, IL-6 is able to up-regulate the pro-

duction of γ’ fibrinogen, a common splice variant, comprising 8 to 15% of total fibrinogen

concentration [21–23]. IL-6 specific responsive elements have been characterised in the FGG
promoter region [24, 25], and in vitro research reported greater increases in γ’ compared to

total fibrinogen in the presence of IL-6, suggesting alterations to the alternative splicing of

the γ fibrinogen gene during inflammation [22]. Elevated fibrinogen γ’ concentration is a risk

factor for arterial thrombosis, although research on the individual and IL-6-interactive effects

of fibrinogen polymorphisms predicting γ’ fibrinogen concentrations is limited [26–29].

Increased IL-6, total and γ’ fibrinogen are also independently associated with altered clot prop-

erties, including faster clot formation, increased fibrin density, thinner fibrin fibres and

decreased clot permeability [30–34]. The functional effects of the interactions between genetic

variants and IL-6 on clot properties have not been described previously.

Tight LD within the fibrinogen SNPs in Europeans has made the identification of func-

tional SNPs difficult. Studies have implicated the FGB -455G/A, -854G/A and -148C/T polymor-

phisms to be functional in Europeans, although findings from epidemiological [16] and

experimental work [17] have been contradictory. The African population is known for its

complex LD pattern and great genetic diversity, more so than any other population [35, 36].

Furthermore, increased fibrinogen and IL-6 concentrations have been observed in black South

Africans when compared to their white counterparts [37, 38]. The South African arm of the

prospective urban and rural epidemiology (PURE) study indicated low LD together with

markers indicative of chronic low-grade inflammation—as reported by increased fibrinogen,

IL-6, homocysteine and C-reactive protein [39, 40]—making this cohort ideal for the investi-

gation of independent and IL-6-regulated gene interactions. Therefore, this study investigates

selected fibrinogen polymorphisms in terms of their independent and IL-6-interactive associa-

tions with total and γ’ fibrinogen concentrations, and the downstream functional effects in
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terms of clot formation, structure and lysis utilizing the unique Tswana population. Our results

contribute to the broader understanding of potential factors that regulate fibrinogen-related,

clinically relevant phenotypes.

Materials and methods

Study population and ethical considerations

This study is affiliated with the international PURE [41] study and is a cross-sectional investi-

gation of the baseline data collected in South Africa. Details pertaining to participant selection

and recruitment were published previously [39]. In short, the study population consisted of

2010 apparently healthy, self-identified black Tswana-speaking South African adults between

the ages of 35 and 70 years. Participants provided voluntary written informed consent prior to

participating in the study, in addition to specific consent for genetic analysis. Anonymity of

participants remains ensured by providing only coded electronic data containing no informa-

tion that can be used to identify individuals. Ethical approval for the research was obtained

from the Health Research Ethics Committee of the North-West University (04M10 and

NWU-00058-16-S1) and the study was conducted in accordance with the revised version

(2000) of the Helsinki Declaration of 1975.

Blood collection and storage

Fasting blood samples were collected between 7:00 and 11:00 am, and centrifuged within 30

minutes of collection at 2000 x g for 15 minutes. Blood samples for haemostatic variables were

collected in 3.2% sodium citrate tubes, for lipid and IL-6 analyses in tubes without anti-coagu-

lants and for glycated haemoglobin (HbA1c) in sodium fluoride tubes. Following centrifuga-

tion, samples were snap-frozen and stored at –80˚C until analysis.

Biochemical analyses

HbA1c concentrations were quantified using a hexokinase method from Synchron1 systems

(Beckman Coulter Co., Fulleron, CA, USA), and the D-10 haemoglobin testing system (Bio-

Rad, Hercules, California, USA). A Sequential Multiple Analyser Computer, using the Kone-

lab™ auto-analyser (Konelab 20i, Thermo Fischer Scientific, Vantaa, Finland) was used to mea-

sure high-density lipoprotein cholesterol (HDL-c) concentrations. Plasminogen activator

inhibitor type-1 activity (PAI-1act) was quantified by an indirect enzymatic method (Spectro-

lyse PAI-1, Trinity Biotech, Bray, Ireland). Serum IL-6 was measured by means of the Elecsys,

through ultra-sensitive enzyme immunoassays (Elecsys 2010, Roche, Basel, Switzerland).

Total fibrinogen concentrations were quantified using the modified Clauss method on the

Dade Behring BCS coagulation analyser (Multifibrin U-test Dade Behring, Deerfield, IL,

USA). An enzyme-linked immunosorbent assay using a 2.G2.H9 mouse monoclonal coating

antibody against human γ’ fibrinogen (Santa Cruz Biotechnology, Santa Cruz, USA) and a

goat polyclonal horseradish peroxidase-conjugated antibody against human fibrinogen

(Abcam Cambridge, USA) was used to measure γ’ fibrinogen concentrations. Fibrinogen γ’ is

expressed both as absolute concentration and as a percentage of total fibrinogen (%γ’).

Plasma fibrinolytic potential was determined by measuring turbidity with a spectrophotom-

eter (A405) [42]. Tissue plasminogen activator (tPA; Actilyse, Boehringer Ingelheim, Ingel-

heim, Germany) was added to plasma clots induced by tissue factor (TF; Dade Innovin,

Siemens Healthcare Diagnostics Inc., Marburg, Germany) according to the method of Lisman

et al. [43]. The tPA and TF concentrations were modified to obtain a clot lysis time (CLT)

between 60 and 100 minutes in the external control sample (pooled plasma) included in each
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run. Final concentrations in the plasma clots were 125 x diluted TF (approximately 59 pmol/

L), 100 ng/mL tPA, 17 mmol/L CaCl2, and 10 mmol/L phospholipid vesicles (Rossix, Mölndal,

Sweden). Resultant turbidity curves were analysed using Origin1 software version 8.5 (Origin

lab1, 2010). CLT (minutes) was calculated as the difference between the time at the midpoint

of clear and maximum turbidity (clot formation) and the midpoint between maximum and

clear turbidity (clot lysis). In addition, lag time (minutes) was calculated as an indicator of the

time required for the activation of the coagulation cascade by TF and for protofibrils to reach

sufficient length to allow lateral aggregation. The slope of the curve (x10-3 au/s) during clot for-

mation was used as a representation of the rate of lateral aggregation of the fibrin protofibrils.

Lastly, maximum absorbance, the increase in absorbance at the peak of the curve (nm), was

used as an indicator of fibre diameter.

DNA isolation, SNP selection and genotyping

Genomic DNA was extracted from buffy coat using the QIAGEN FlexiGene™ kit. The quality of

the DNA was determined using the NanoDrop™ spectrophotometer (ND-1000, Wilmington, DE,

USA). Fourteen SNPs, spanning the three fibrinogen genes, were selected for genotyping based

on literature identifying them as the top SNPs to demonstrate independent and IL-6-induced

associations with total or γ’ fibrinogen concentrations [9, 11, 13, 44–49]. Furthermore, the pro-

moter region of FGB was sequenced in a subgroup of 28 randomly selected individuals for the

identification of novel SNPs. ABI Prism1, BIGDye1 Terminator version 3.1 Ready Reaction

Cycle Sequencing Kits (Applied Biosystems, CityFoster, CA, USA) were used, and electrophero-

grams were aligned using BioEdit (version 7.1.3.0, Ibis Biosciences, Carlsbad, CA, USA).

The polymorphisms selected for genotyping were FGB-rs7439150, rs2227385 (novel),

rs1800789 (-1420G/A), rs2227388 (novel), rs1800791 (–854G/A), rs1800790 (–455G/A), rs180

0788 (-249C/T), rs1800787 (–148C/T), rs4220, rs4463047, FGA-rs6050, rs2070011 (2224G/A), and

FGG-rs2066865 and rs1049636 (9340T/C). Three methods were used to genotype these poly-

morphisms, of which two (Thermo Fischer Scientific1 Taqman based assays and the Illu-

mina1 VeraCode GoldenGate assay technology using a BeadXpress1 platform), have been

described previously [39]. In addition, FGB-rs1800789, rs1800790, rs4463047 and rs7439150

were genotyped by competitive allele-specific polymerase chain reactions (KASP) with sup-

plies obtained from LGC Limited. Custom-designed assays and synthetic controls were manu-

factured by KBioscience and are presented in S1 Table (LGC, Middlesex, TW11 0LY, UK).

A two-step 61–to–55˚C touchdown polymerase chain reaction (PCR) protocol was per-

formed in a Hydrocycler 4TM water bath thermal cycler (LGC, Middlesex, TW11 0LY, UK).

The fluorescent signal of the PCR products was measured by a FLUOstar Omega SNP plate

reader (BMG LABTECH Ltd) and the data were analysed by means of KlusterCaller™ V.

3.4.1.36 software (LGC, Middlesex, TW11 0LY, UK).

Statistical analyses

The statistical analyses were performed in three phases. Firstly, the SNPs were investigated in

terms of their location, LD and haplotypes using the Ensembl database release 84 [50] and

Haploview version 4.2 [51]. In addition, their independent associations with phenotype out-

comes (total and γ’ fibrinogen concentration, lag time, slope, maximum absorbance and CLT)

were determined by independent t-tests and analysis of co-variance (ANCOVA) adjusting for

age, gender, body mass index (BMI), human immunodeficiency virus (HIV) status, HbA1c

and HDL-c. When CLT was used as an outcome variable, it was also adjusted for PAI-1act.

The second phase involved investigating the association of the fibrinogen phenotypes with

IL-6 independent from the polymorphisms. Differences in phenotypes were tested with
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analysis of variance (ANOVA) and ANCOVA using IL-6 stratified by quartiles as the categori-

cal variable. Tukey’s honest significant difference post-hoc tests were performed to determine

significant inter-group differences.

Lastly, interaction effects between IL-6 and the fibrinogen polymorphisms on the fibrino-

gen phenotypes were determined by creating interaction terms and entering them into an

ANCOVA with full factorial analysis. Adjustments were made for the same covariates listed

above. Multiple testing was accounted for by performing Benjamini and Hochberg adjust-

ments. Q-Q plots were used to evaluate the normality of the standardised residuals. Interaction

data are reported as the slope of the linear regression line between IL-6 and the fibrinogen phe-

notypes split according to genotype.

In order to determine the possibility of a cumulative effect of the SNPs on the IL6-fibrinogen

relationship, polymorphisms indicating significant interactions were grouped by means of the

generation of a simple genetic ‘risk score’. Each genotype forming part of the model (significant

interaction upon adjustment for multiple testing), was given a score per individual genotype. A

score of zero was given for major allele homozygotes; one was given to the heterozygotes and

two to minor allele homozygotes. Where the minor allele frequency (MAF) was low and only

two groups were compared (see below), a score of one was given to all minor allele carriers.

Based on the minor allele frequency (determined by 1 out of 28 individuals showing varia-

tion at any given SNP in the FGB promoter region, upon sequencing) the power calculation

indicated that in order to obtain 80% power to detect a medium effect size (Cohen’s d-value of

0.3), the genotype groups should contain a minimum of 71 individuals [52]. Analyses for SNPs

having fewer than 71 individuals in the minor allele homozygote group were, therefore, per-

formed using two groups only, combining heterozygotes and minor allele homozygotes.

Any analyses (t-tests, ANOVA, full factorial analysis ANCOVA) yielding significant results

in terms of total or γ’ fibrinogen were followed by adjustments for these proteins during statis-

tical testing using clot properties as outcome variables. These adjustments were made to iden-

tify SNP/IL-6-clot property outcomes that were not mediated by total and/or γ’ fibrinogen

concentration. The statistical package for the social sciences (SPSS1) version 23 (IBM1 Corp,

2015) and Statistica1 version 13 (Statsoft Inc., Tulsa, OK, USA) were used for the above

described analyses.

Results

Description of individual polymorphisms

Ten of the 14 investigated polymorphisms are situated in and around the β chain gene, of

which eight are within the promoter area, one in exon 8 (Arg478Lys, previously reported as

Arg448Lys) and one in the 3’ untranslated region (UTR). Two α chain variants, one in exon 2

(Thr331Ala, previously reported as Thr312Ala) and one in the promoter area, and two γ chain

variants, both in the 3’ UTR, are also included. The relative positions of these SNPs, spanning

a 50 Kb region on chromosome 4, are illustrated in Fig 1. All the variants were in Hardy-Wein-

berg equilibrium.

LD and haplotype construction

Fig 2 depicts the LD pattern (illustrated by D’ values upon an r2 colour scheme) observed for

the 14 SNPs. Lower recombination rates are indicated by increased numerical values (D’) and

darker coloured blocks (r2). Blocks containing no numerical value indicate a D’ of 1.0. Two

haplotype blocks FGB-rs7439150�rs2227385�rs1800789 and FGG rs2066865�rs1049636 were

constructed via the method suggested by Gabriel et al. [53]. No complete LD (D’ and r2 = 1.0)

was observed, as the LD pattern was disturbed owing to differing MAFs that led to relatively
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low r2 values. Acknowledging the limited LD, all further analyses were performed using indi-

vidual polymorphisms only.

Associations of individual polymorphisms with fibrinogen-related

phenotypes

Population characteristics and associations of ten of the 14 SNPs with fibrinogen-related phe-

notypes have been reported previously [39] and are shown in the online supporting

Fig 1. Fourteen polymorphisms spanning the fibrinogen gene cluster. Image generated through the Ensembl database

[50].

https://doi.org/10.1371/journal.pone.0187712.g001

Fig 2. Pairwise LD structure of 14 fibrinogen SNPs, illustrated by D’ values on an r2 colour scheme.

Empty boxes indicate D’ values of 1.0. Increased numerical values indicate stronger evidence of LD. Image

generated through Haploview software [51].

https://doi.org/10.1371/journal.pone.0187712.g002
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information only (S2, S3 and S4 Tables). Briefly, FGB –854A and FGG-rs1049636C were posi-

tively associated with total fibrinogen (p = 0.04 and 0.0009), and FGA-rs2070011A with higher

γ’ fibrinogen concentrations (p = 0.008). In terms of clot properties, FGB –148T was associated

with a larger fibre diameter (p = 0.001), whereas FGA-rs2070011A and FGG-rs1049636C, lost

significance in terms of their effect on maximum absorbance (fibre diameter) upon adjustment

for γ’ and total fibrinogen, respectively (p = 0.06 and 0.33).

Associations of each of the four newly investigated promoter region SNPs with the outcome

phenotypes are shown in Table 1. FGB –1420A was significantly associated with total fibrinogen

concentrations (p = 0.02) and the same trend was observed for FGB-rs7439150A and FGB –455A

(p� 0.05). Larger fibre diameter and longer CLT were observed in the presence of the FGB –

1420A allele (p = 0.04 and 0.02). In addition, FGB –455A and FGB-rs7439150A were positively

associated with γ’ fibrinogen concentrations (p = 0.02 and 0.005), and FGB-rs7439150A with fibre

diameter (p = 0.02). Associations with clot properties were largely mediated by the primary fibrin-

ogen associations, as most of the significance was lost upon adjustment for total and/or γ’ fibrino-

gen, apart from the association between FGB –1420A and CLT, which remained (p = 0.03).

The association of IL-6 with fibrinogen-related phenotypes

The basic descriptive characteristics of the study population have been reported in a previous

publication [39]. Descriptive statistics for fibrinogen and clot properties, including their

Table 1. Association of selected upstream FGB polymorphisms with fibrinogen-related phenotypes.

Genotype FGB-rs7439150δ FGB-rs1800789δ FGB-rs1800790 FGB-rs4463047

SNP pseudonym FGB-1420 G>A FGB-455 G>A

Minor allele frequency (%) A = 6.95 A = 6.78 A = 3.32 T = 11.4

Genotype group size (n) major allele hz

minor allele carrier

GG1 (1548)

GA/AA2 (215)

GG1 (1513)

GA/AA2 (292)

GG1 (1652)

GA/AA2 (108)

CC1 (1424)

CT/TT2 (357)

Total fibrinogen

(g/L)

major allele hz 3.66 ± 2.13 3.64 ± 2.12 * 3.66 ± 2.12 3.71 ± 2.18

minor allele carrier 3.97 ± 2.29 3.96 ± 2.29 * 4.05 ± 2.34 3.52 ± 1.99

Fibrinogen γ’

(mg/mL)

major allele hz 0.37 ± 0.25* 0.38 ± 0.25 0.38 ± 0.26 * 0.38 ± 0.27

minor allele carrier 0.41 ± 0.32* 0.42 ± 0.33 0.46 ± 0.37 * 0.37 ± 0.22

Fibrinogen γ’

(%)

major allele hz 12.1 ± 8.07 12.3 ± 8.27 12.1 ± 8.01 12.1 ± 8.27

minor allele carrier 11.6 ± 8.82 11.6 ± 7.80 13.2 ± 10.1 12.2 ± 7.90

Lag time

(min)

major allele hz 6.47 ± 1.97 6.47 ± 1.96 6.48 ± 1.99 6.47 ± 1.97

minor allele carrier 6.59 ± 1.96 6.55 ± 1.99 6.49 ± 1.98 6.52 ± 1.98

Slope

(x10−3 au/s)

major allele hz 9.58 ± 4.42 9.54 ± 4.35 9.65 ± 4.36 9.67 ± 4.41

minor allele carrier 10.0 ± 3.99 10.3 ± 4.09 9.75 ± 3.95 9.60 ± 4.32

Maximum absorbance

(nm)

major allele hz 0.43 ± 1.59 * 0.43 ± 0.16 * 0.43 ± 0.16 0.43 ± 0.16

minor allele carrier 0.46 ± 0.17 * 0.46 ± 0.17 * 0.46 ± 0.19 0.44 ± 0.16

Clot lysis time

(min)

major allele hz 56.9 ± 11.2 56.8 ± 11.2 *# 57.0 ± 11.3 57.3 ± 11.3

minor allele carrier 58.0 ± 12.0 58.3 ± 12.1 *# 58.7 ± 11.1 56.3 ± 11.3

A = adenine; C = cytosine; FGB = fibrinogen beta chain gene; G = guanine; rs = reference sequence; T = thymine; Lag time = time required for the activation

of the coagulation cascade by TF and for protofibrils to reach sufficient length to allow lateral aggregation; Slope = rate of lateral aggregation of fibrin

protofibrils; Maximum absorbance = indicator of fibre diameter.

Data presented as mean ± SD.

*p < 0.05
# p < 0.05 upon adjustment for total and γ’ fibrinogen
δ Strong evidence of LD (r2 = 0.89; D’ = 0.95).

Age, gender, BMI, HIV-status, HbA1c and HDL-c were covariates. Associations with CLT were adjusted for PA-I1act additionally.

https://doi.org/10.1371/journal.pone.0187712.t001
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association with IL-6 (presented as quartiles), are shown in Table 2. The mean IL-6 concentra-

tion was 6.50 ± 21.0 pg/mL. Total and γ’ fibrinogen concentrations were positively, although

not linearly, associated with IL-6 with significantly higher concentrations in the fourth IL-6

quartile compared to the first three quartiles. The % γ’ fibrinogen did not reach significance,

implying that the fibrinogen γ’ association is probably a reflection of the association of IL-6

with total fibrinogen. Positive associations were also observed for lag time, slope and maxi-

mum absorbance, although subsequent adjustment for total and γ’ fibrinogen led to loss of sig-

nificance. CLT decreased as IL-6 increased, with total fibrinogen concentration attenuating

this effect. Adjustments for total and γ’ fibrinogen, and thereafter PAI-1act (as a main modula-

tor of CLT) significantly increased this negative association (Fig 3).

Genotype-IL-6 interactions in terms of phenotype predictions

Interaction analyses were performed for each polymorphism with IL-6 in relation to each of

the fibrinogen measures and clot properties. The association between IL-6 and fibrinogen phe-

notype, stratified according to genotype for each of the significant polymorphisms is reported

in Tables 3 and 4. IL-6 concentration was associated with a steeper increase in fibrinogen con-

centration in minor allele carriers of seven SNPs and a shallower increase in total fibrinogen in

FGA-rs6050G. For FGG-rs2066865, a shallower increase was observed in the presence of one

minor allele, with a steeper increase in the presence of two minor alleles, more so than for the

common allele homozygotes. Upon adjusting for multiple testing, IL-6 did not significantly

interact with any of the investigated SNPs to influence fibrinogen γ’. IL-6 interacted with six

SNP’s in determining fibre diameter (maximum absorbance), in which the presence of the

minor allele resulted in a stronger positive association between IL-6 and maximum absorbance

than the respective major alleles. Adjustment for fibrinogen concentration largely nullified

Table 2. Outcome phenotypes descriptive statistics and association with IL-6- quartiles.

Variable Whole group

(n)

Interleukin-6 quartiles (pg/mL) p-value unadjusted (adjusted)

Quartile 1

> 0.76

Quartile 2

1.50–2.84

Quartile 3

2.85–5.75

Quartile 4

5.76–424

Total fibrinogen

(g/L)

3.69 ± 2.18

(1593)

3.02 ± 1.62 ab 3.32 ± 1.86 cd 3.95 ± 2.17 ace 4.53 ± 2.66 bde <0.001

Fibrinogen γ’

(mg/L)

0.38 ± 0.27

(1591)

0.32 ± 0.22 ab 0.36 ± 0.25 c 0.39 ± 0.21 ad 0.46 ± 0.37 bcd <0.001

Fibrinogen γ’

(%)

12.1 ± 8.25

(1527)

12.5 ± 8.56 12.4 ± 7.58 11.8 ± 7.77 11.8 ± 8.94 0.552

Lag time

(min)

6.46 ± 1.97

(1480)

6.24 ± 1.99 a 6.46 ± 2.03 6.64 ± 1.93 a 6.38 ± 1.94 0.033

(0.126)

Slope

(x10−3 au/s)

9.70 ± 4.42

(1492)

9.19 ± 3.80 a 9.60 ± 4.37 9.86 ± 4.30 10.5 ± 5.15 a <0.001

(0.897)

Maximum absorbance

(nm)

0.43 ± 0.16

(1445)

0.41 ± 0.14 ab 0.43 ± 0.15 0.45 ± 0.15 a 0.45 ± 0.18 b <0.001

(0.183)

CLT

(min)

57.3 ± 11.2

(1591)

58.3 ± 10.8 1 56.9 ± 10.9 56.8 ± 11.5 56.2 ± 11.9 1 0.066

(0.002)

Data presented as mean ± SD

Adjusted p-value = adjusted for total and γ’ fibrinogen; CLT = clot lysis time; Lag time = time required for the activation of the coagulation cascade by TF and

for protofibrils to reach sufficient length to allow lateral aggregation; Slope = rate of lateral aggregation of fibrin protofibrils; Maximum absorbance = indicator

of fibre diameter.
abcde Means with the same symbol differ significantly for individual outcome variables
1 Means with the same numerical value differ significantly for individual outcome variables upon adjustment.

https://doi.org/10.1371/journal.pone.0187712.t002
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these associations, with only two associations remaining significant (FGB-rs7439150 and –

148C/T). FGB–1420G/A, which is in high LD with FGB-rs7439150 and –148C/T, however, lost its

significance after adjustment for fibrinogen owing to its independent association with fibrino-

gen concentration. No significant interactions were observed for lag time, slope or CLT.

Removal of individuals with IL-6 concentrations higher than 100 pg/ml (n = 8) resulted in a

loss of significance for many of the interactions presented in Tables 3 and 4. The only remain-

ing IL-6 interaction was with FGG-rs1049636 in terms of fibrinogen concentration [p< 0.001,

slope 0.056 (0.041–0.071) for the major allele carriers and slope 0.110 (0.082–0.138) for the

minor allele carriers].

In addition to the individual interaction analyses, the seven variants resulting in a steeper

fibrinogen increase in the presence of IL-6 (Table 3) were grouped in a genetic ‘risk score’ to

determine whether there were additive effects when these genotypes occurred together in an

individual. Each individual’s score was composed of the sum of the seven polymorphisms allo-

cated a value of either zero (major allele homozygote) or one (minor allele carrier). Final scores

ranked from zero to six, therefore, scores represented the presence of zero to six minor allele

groups. The risk score showed a significant interaction with IL-6 (p< 0.001) in the prediction

of fibrinogen concentrations. Fig 4 schematically represents the slope the association between

IL-6 and fibrinogen for each score. The addition of a minor allele group to the risk score

increased the slope of the IL-6-fibrinogen association. The fifth and sixth risk score were

removed from Fig 4 as the sizes of these groups were too small to provide adequate power

(n = 24 and 5, respectively). The interaction, however, remained significant upon removal of

these groups (p< 0.001). The regression coefficient for the line indicating the IL-6–fibrinogen

association for risk score one differed significantly from risk score zero (p = 0.04), with two,

three and four differing from one (p = 0.01, 0.048, 0.005, respectively) but not from each other,

indicating a possible threshold to the additive effect when more than three risk alleles occurred

together.

Discussion

High LD in the fibrinogen gene cluster in Europeans continues to hinder the identification

of functional polymorphisms contributing to fibrinogen concentration and functionality

Fig 3. CLT across IL-6 quartiles before (A) and after (B) adjustment for total fibrinogen, γ’ fibrinogen and PAI-1act. Vertical bars denote

95% confidence interval. p-values: 0.066 (A); <0.00001 (B). Images are equally scaled.

https://doi.org/10.1371/journal.pone.0187712.g003
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(specifically fibrin clot properties). This becomes even more complex when taking the role of

transcriptional enhancers, such as IL-6, into consideration. Although little is known about the

fibrinogen genes in Africans, preliminary evidence suggests distinct genetic differences from

that of Europeans, including higher recombination rates and polymorphic variance. In

Table 4. Genotype-IL-6 interactions modulating clot properties.

Phenotype Gene IL-6 interaction

with SNP

Interaction p-value Major allele

homozygotes

Heterozygotes or

minor allele carriers

(where only two

groups)

Minor allele

homozygotes

(where three

groups)

Unadjusted Adjusted

n Slope* (95% CI) n Slope* (95% CI) n Slope* (95% CI)

Maximum

absorbance

(nm)

FGB rs7439150 δ <0.001 0.01 GG 1274 1x10-4 (-3x10-4–

0.001)

179 0.003 (0.002–0.003)

FGB rs1800789 δ <0.001 0.82 GG 1245 2x10-4 (-3x10-4–

0.001)

241 0.002 (0.002–0.003)

FGB rs1800788 0.001 0.04 CC 1407 0.001 (2x10-4–

0.001)

153 0.004 (0.002–0.007)

FGB rs1800787 δ <0.001 0.01 CC 1157 1x10-4 (-3x10-4–

0.001)

157 0.003 (0.002–0.003)

FGA rs6050 0.001 0.04 AA 663 -1x10-5 (-0.001–

0.001)

531 0.002 (0.001–0.002) 133 1x10-5(-0.001–

0.001)

FGG rs1049636 0.003 0.23 TT 970 0.001 (3x10-4–

0.001)

369 0.003 (0.001–0.005)

A = adenine; C = cytosine; CI = confidence interval; G = guanine; IL-6 = interleukin-6; rs = reference sequence; T = thymine; rs1800789 = -1420G/A;

rs1800788 = -249C/T; rs1800787 = -148C/T; rs1049636 = 9340T/C

Adjusted = adjusted for total fibrinogen (g/L); Slope = rate of lateral aggregation of fibrin protofibrils; Maximum absorbance = indicator of fibre diameter.
δVariants in high linkage disequilibrium (r2 > 0.82; D’ > 0.92)

*In the regression line y = mx + c, “slope” refers to m.

https://doi.org/10.1371/journal.pone.0187712.t004

Table 3. Genotype-IL-6 interactions modulating total fibrinogen concentrations.

Phenotype Gene IL-6 interaction

with SNP

Interaction

p-value

Major allele

homozygotes

Heterozygotes or minor

allele carriers

(where only two groups)

Minor allele

homozygotes

(where three

groups)

n Slope* (95% CI) n Slope* (95% CI) n Slope* (95% CI)

Total

fibrinogen

(g/L)

FGB rs7439150δ 0.001 GG 1293 0.015 (0.009–0.020) 174 0.072 (0.040–0.104)

FGB rs1800789δ <0.001 GG 1263 0.012 (0.006–0.018) 240 0.071 (0.050–0.093)

FGB rs1800788 <0.001 CC 1419 0.017 (0.012–0.023) 154 0.083 (0.045–0.121)

FGB rs1800787δ 0.001 CC 1164 0.016 (0.010–0.022) 152 0.077 (0.043–0.111)

FGB rs4220 0.003 GG 1121 0.016 (0.010–0.022) 224 0.061 (0.035–0.087)

FGA rs6050 <0.001 AA 676 0.039 (0.028–0.049) 526 0.016 (0.006–0.027) 132 1 x 10−4(-0.010–

0.010)

FGA rs2070011 0.010 GG 925 0.015 (0.009–0.021) 416 0.042 (0.024–0.060)

FGG rs2066865 <0.001 CC 746 0.040 (0.029–0.050) 482 0.005 (-0.003–0.012) 108 0.111 (0.067–0.156)

FGG rs1049636 <0.001 TT 975 0.014 (0.008–0.020) 371 0.110 (0.082–0.138)

A = adenine; C = cytosine; CI = confidence interval; G = guanine; IL-6 = interleukin-6; rs = reference sequence; T = thymine; rs1800789 = -1420G/A;

rs1800788 = -249C/T; rs1800787 = -148C/T

rs1800790 = -455G/A; rs2070011 = 2224G/A, rs1049636 = 9340T/C

δVariants in high linkage disequilibrium (r2 > 0.82; D’ > 0.92)

*In the regression line y = mx + c, “slope” refers to m.

https://doi.org/10.1371/journal.pone.0187712.t003
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addition, this population is known for altered fibrinogen and IL-6 phenotypes. This study,

therefore, aimed to identify possible functional fibrinogen SNPs and novel IL-6-interactions

related to total and γ’ fibrinogen, as well as indicators of clot formation, structure and lysis by

using the unique African genetic and phenotypic profile. Our data revealed that none of the

common European fibrinogen haplotypes is present in this African population. We demon-

strate, in a population with chronic low-grade inflammation, that IL-6 interacted with several

of the fibrinogen SNPs to influence fibrinogen concentration and even resulted in altered

fibrin clot properties. A novel finding was that IL-6 not only interacted with individual SNPs,

but that an additive effect was also observed when harbouring more than one risk allele

concurrently.

The MAF of 12 of the 14 investigated SNPs was significantly lower in this Tswana popula-

tion than that reported globally [50]. No variation has been reported for the FGB-rs2227385

and FGB-rs2227388 SNPs outside Africa [50]. As predicted, a high recombination rate was

observed in this study population, resulting in no complete LD among any of the SNPs. How-

ever, strong LD between FGB -1420G/A and -148C/T was observed, similar to the finding of

Dehghan et al. [54], although the LD observed for FGB-rs7439150 with these SNPs is novel.

This lack of full LD differs from numerous reports of almost complete LD between the –

1420G/A, –933C/T, –455G/A and –148C/T SNPs in Europeans [11, 16, 17, 49, 55–57]. None of the

frequently occurring haplotypes, consisting of –1420G/A, –933C/T, –854G/A, –455G/A, –249C/T

and –148C/T, [11, 16, 17], was present in this study population, highlighting the genetic diver-

sity in Africans. In addition, FGB-933C/T revealed no genetic variation in this population.

Fig 4. Association of total fibrinogen concentrations with circulating interleukin-6 by risk score groups.

https://doi.org/10.1371/journal.pone.0187712.g004
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In the present study, FGB –854A, –1420A and FGG-rs1049636C were associated with higher

total fibrinogen concentrations. Higher γ’ fibrinogen concentrations (but not % γ’) were

observed in the presence of FGB –455A, rs7439150A and FGA-rs2070011A. Furthermore, a pos-

itive association between FGB –148T and fibre diameter, and FGB –1420A and CLT was

observed. IL-6 correlated positively with total and γ’ fibrinogen, thereby accelerating clot for-

mation and increasing fibre diameter. CLT was, however, negatively associated with IL-6, and

both total and γ’ fibrinogen concentration attenuated this association. Five FGB, one FGA and

one FGG SNP significantly interacted with circulating IL-6 to steepen the IL-6 fibrinogen asso-

ciation. These interactions proved to be additive, with the presence of more than one minor

allele across the gene cluster resulting in greater increases in IL-6-induced fibrinogen expres-

sion, although a threshold was reached when more than three minor allele variants occurred

together in an individual. Lastly, these interactive associations reflected functional effects in

terms of the rate of lateral aggregation and fibre diameter, thus indicating a possible mecha-

nism by which the fibrinogen SNPs, during the acute phase, could enhance thrombotic risk.

Individual SNP associations for ten of the polymorphisms investigated have been reported

previously [39]. The associations of the four additionally genotyped SNPs, although not all

reaching significance, are in agreement with the existing literature. Increased fibrinogen con-

centrations in the presence of FGB-rs7439150A, –1420A and –455A have been reported in case-

control and genome-wide association analyses [9, 54, 56, 58–65]. FGB-rs4463047T was nega-

tively associated with total fibrinogen concentrations in three association studies [9, 61, 66],

whereas we did not observe any association at this locus. The novel association of –1420A with

faster CLT, independent of fibrinogen concentration, deserves further investigation.

Most of the research into both the heritability of and variant associations with fibrinogen

has been conducted in European populations. Although limited information is available for

African-Americans [9, 66, 67], being an ad-mixed population, their genetic background also

differs from individuals from continental Africans. The lack of LD and common haplotypes,

alongside the inability to reproduce results of independent SNP associations in this current

investigation, questions whether heritability estimates obtained in Europeans or African

Americans can be extrapolated to Africans. Future studies should replicate the existing herita-

bility studies in African ethnic sub-groups to address this. The 14 SNPs investigated here con-

tributed a mere 0.5% to the variance in total fibrinogen.

Total fibrinogen and IL-6 concentrations were generally higher than those reported in

Europeans [13, 59]. IL-6 correlated positively with fibrinogen concentration, thereby accelerat-

ing clot formation and increasing fibre diameter, consequently contributing to clot pathology

associated with CVD [68]. In the present study, higher IL-6 was associated with a faster CLT,

independent of fibrinogen concentration and clot structure. This is probably the result of

increases in other biomarkers influencing CLT, such as plasminogen leading to faster clot

lysis. Previous reports have positively associated IL-6 with increased plasminogen transcrip-

tion [69, 70].

Fibrinogen γ’ was also positively associated with IL-6, although the non-significant associa-

tion of IL-6 with the % γ’ fibrinogen revealed the observation to be largely a reflection of the

relationship with total fibrinogen. This finding suggests that in this study population, charac-

terised by chronic low-grade inflammation, the influence of IL-6 on total and γ’ fibrinogen is

probably due to up-regulation of the entire fibrinogen gene cluster, while alterations in the

FGG alternative splicing mechanism may be more relevant in pronounced inflammatory con-

ditions such as have been reported for CVD [26, 27].

IL-6-induced fibrinogen gene expression can be altered by polymorphic variation [16, 17].

Therefore, it is important to take genotype-IL-6 interactions into consideration when deter-

mining the influence of genetic variance on the fibrinogen phenotype, particularly in
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populations with prevalent inflammatory conditions. Nine SNPs interacted significantly with

IL-6 in predicting fibrinogen concentrations. These interactions furthermore led to altered

fibrin clot properties, in particular increased fibre diameter, which has been associated with

CVD [71]. The number of significant genotype-IL-6 interactions was reduced when individu-

als with high IL-6 concentrations (>100 pg/mL) were removed from analyses, suggesting that

these interactions are physiologically more relevant in the presence of high IL-6 plasma con-

centrations. The interaction with FGG-rs1049636 remained, however, indicating its potential

relevance to fibrinogen regulation during chronic low-grade inflammatory conditions.

In addition, these interactions had an additive effect that could only be detected because of

the lack of LD in the fibrinogen gene cluster in this African study population. The additive

effect reached a threshold when more than three risk alleles occurred together. This observa-

tion should be investigated in a larger study population to allow analysis of the number of risk

alleles, rather than just the presence thereof, thereby exploring dominant/co-dominant/reces-

sive effects. Nonetheless, the observed additive effects reflect true physiological mechanisms, as

the particular combinations are harboured concurrently in each individual. This data are in

agreement with the findings of Ken-Dror et al. [63] who suggested that the fibrinogen pheno-

type is not regulated by one functional SNP only, but by a combination of minor alleles span-

ning the whole cluster. The lack of a causal contribution of fibrinogen to CVD as suggested by

Mendelian randomisation studies may, therefore, need to be revisited, because these studies

investigated single variants only and focussed on fibrinogen concentration alone while omit-

ting qualitative effects such as altered clot properties [72]. Although our sample size was rela-

tively small for genetic association studies, it did allow for the detection of significant results.

Future studies should include a large study population from genetically diverse ethnic groups

for replication and validation of current results.

In this Tswana population, of the 14 SNPs investigated, FGB-rs7439150, –1420G/A and –

148C/T had the most pronounced effects on the fibrinogen phenotype in terms of both concen-

tration and altered clot properties, with several of these associations altered by IL-6 concentra-

tions. Two of these SNPs, FGB-rs7439150 and –1420G/A were also the top SNPs associated

with fibrinogen concentrations in the largest fibrinogen GWAS to date (β = 0.031, p = 9.5E-181;

β = 0.031, p = 6.9E-180, respectively) [61]. FGB –148C/T was not investigated most likely due to

complete linkage with FGB –1420G/A in this European study population [61].

FGB-rs7439150 is located in a regulatory feature (ENSR00000175110) spanning 623 base

pairs (4:154560017–154560640), and is predicted to have methylation potential, so could influ-

ence transcription [73]. In addition, possible functionality of –148C/T has been described by

Verschuur et al. [17] owing to its ability to alter fibrinogen’s response to IL-6 by interfering

with the hepatocyte nuclear factor 3 and CCAAT enhancer binding protein binding sites.

Although the association of the FGB promoter –1420G/A polymorphism with fibrinogen con-

centration has been reported previously [9, 54, 61], it is not associated with any known regula-

tory features [73] and further investigation into its functionality is required. In this study

population, these three SNPs were also in high, albeit not complete LD (D’ > 0.92, r2 > 0.82),

therefore, the possibility of lack of independence cannot be excluded. They did, however, have

unrelated independent genotype-phenotype associations; FGB-rs7439150 with fibrinogen γ,

FGB –1420G/A with total fibrinogen, and FGB –148C/T with maximum absorbance, respec-

tively. Distinct differences in their IL-6-interactive associations (Tables 3 and 4) were also

observed, strengthening their hypothesised independent functional contribution to the fibrin-

ogen-related phenotypes. The possibility that other SNPs in strong LD with those we geno-

typed, were responsible for the associations observed, can of course not be ruled out. In

addition there are many more (novel and known) SNPs in the fibrinogen gene cluster, which

were not investigated, that may also influence the fibrinogen phenotype [9, 61, 67].
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Conclusion

The genotypic exploration of the fibrinogen phenotype in the Tswana population showed the

unique genetic composition of black South Africans even though this study did not attempt to

characterise all the variation in the fibrinogen genes of this African population. It focused

instead on SNPs previously indicated in the literature to have functional effects which could,

to date, not be confirmed as a result of their high LD. It is clear that data obtained from Euro-

pean research cannot be extrapolated directly to Africans and that the risk profile in terms of

the relative contribution of genetics and environmental factors might differ. Our results dem-

onstrate that fibrinogen SNPs can modulate the influence of IL-6 on fibrinogen concentration

individually and in an additive manner, with the presence of more minor alleles across these

genes leading to greater increases in IL-6-induced fibrinogen expression in an apparently

healthy African study population, albeit one with apparent chronic, low-grade inflammation.

Therefore, in future, when investigating the effect of fibrinogen genetics on fibrinogen concen-

trations and CVD outcome, the possible interactions with modulating factors and the fact that

SNP effects seem to be additive should be taken into account.
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et al, (2015).

(DOCX)

S3 Table. Associations of individual SNPs with fibrinogen γ0, % γ0 and total fibrinogen as

published by Kotzé et al, (2015).
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