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Note: MSM lag time cannot be used for variational model selection
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Markov state models (MSMs) are a powerful master equa-
tion framework for the analysis of molecular dynamics (MD)
datasets that involve a complete partition of the conforma-
tional space into disjoint states.1 By representing each frame
of a MD dataset as its state label, the populations of and condi-
tional pairwise transition probabilities between the states can
be counted, leading to thermodynamic and kinetic information
about the system, respectively. This information is represented
by a transition matrix, which contains all the information nec-
essary to propagate the system forward in time. The transition
matrix is the discrete-time approximation to the transfer oper-
ator T (τ), which is characterized by its lag time τ. The transfer
operator propagates the system, represented by a normalized
probability density ut(x), forward by a time step of τ and
admits a decomposition into eigenfunctions and eigenvalues
(see Ref. 1, Ch. 3),

T (τ) ◦ ut(x) = ut+τ(x), (1a)

T (τ) ◦ ψi = λiψi. (1b)

The eigenvalues λi are real and numbered in decreasing
order. The unique highest eigenvalue λ1 = 1 corresponds
to the stationary distribution, and the subsequent eigen-
value/eigenfunction pairs represent dynamical processes in the
time series. Importantly, the timescale of each process can
only be retrieved with knowledge of the lag time at which the
operator was defined using the equation

ti = −
τ

log λi
. (2)

Choosing a lag time at which the system is Markovian
depends on what type of system is being modeled. At a long
enough lag time for the system to be approximated as a Markov
process, intrastate transitions occur much more quickly than
interstate transitions. The appropriate lag time depends on the
system of study: for protein folding, 50 ns might be appropri-
ate; for electron dynamics, a suitable lag time might be on the
order of femtoseconds. If a system is Markovian at a lag time τ
(if the intrastate transitions occur more quickly than τ), then the
system will be Markovian at all lag times greater than τ and the
timescales of the subprocesses will be constant for all Marko-
vian lag times. This idea has motivated the use of implied
timescale plots to choose a lag time.2 Lag times after which
the timescales “level out” are assumed to be Markovian, and
usually the shortest such time is chosen for the most temporal
resolution.

In practice, we usually do not know the true eigenfunc-
tionsψ in (1b) and instead need to guess them. For a MSM, this
means choosing how to divide phase space into disjoint states.

Until recently, choosing how to define the states occupied by
a dynamic system represented a bottleneck in the develop-
ment of MSM methods, and heuristic, hand-selected states
were common. However, the derivation of a variational princi-
ple for conformational dynamics by Noé and Nüske3 in 2013
opened the door for a systematic approach to choosing the
states of a system. Our guess, or ansatz eigenfunctions, ψ̂i

will admit corresponding eigenvalues λ̂i. Using our ansatz,
we can state the variational principle derived by Noé and
Nüske,3

GMRQ ≡
m∑

i=1

λ̂i ≤

m∑
i=1

λi, (3)

where GMRQ stands for the generalized matrix Rayleigh quo-
tient, which is the form of the approximator when the first
m eigenfunctions are estimated simultaneously. By recall-
ing the relation of the eigenvalues and operator lag time τ
to the system timescales in (2), we see that the variational
principle establishes an upper bound on the timescales of
the slowest m processes in the dynamical system. In prac-
tical cases, the variational bound can be exceeded due to
statistically undersampled processes; therefore, the GMRQ
must be evaluated under cross-validation as described in
Ref. 4.

When we variationally choose a set of eigenfunctions,
we can only compare them if we are trying to approximate
the same transfer operator. Therefore, the lag time τ must
not be changed when the ansatz is changed, and it cannot be
variationally optimized using the GMRQ—instead, it must be
determined using such techniques as implied timescale plots.
In contrast, all transformation and dimensionality reduction
choices leading up to the state decomposition are ideal hyper-
parameters to optimize using the GMRQ. This might include
the following:

• RMSD cutoffs for geometric clustering;
• internal coordinate choices such as dihedral angles or

contact pairs, including which angles and pairs to
include, and any transformations thereof;

• internal parameters for time-structure based indepen-
dent component analysis (tICA) such as tICA lag time,
number of components retained, and any transforma-
tions of these components;

• clustering algorithm and number of clusters;

but, as discussed above, cannot include

• the operator lag time or
• the number of timescales scored.
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FIG. 1. The flow chart shows several ways to create a MSM from raw sim-
ulation data. The blue box indicates which of the parameters enumerated
can be optimized using the GMRQ. The MSM lag time and number of
timescales scored must be held constant. This figure is adapted with permis-
sion from Husic et al., J. Chem. Phys. 145, 194103 (2016). Copyright 2016
AIP Publishing LLC.

These choices are illustrated in Fig. 1. For protein folding, we
refer the reader to Ref. 5 for a systematic study of these choices
in the context of the variational approach to conformational
dynamics (VAC).

In practice, we recommend starting with reasonable
parameters for the system of study and choosing a valid lag
time. Then, at the chosen lag time, perform a hyperparameter
search for any of the state decomposition choices listed above.
This two-step process can then be repeated, alternating lag time
validation using fixed hyperparameters with hyperparameter
searches for a fixed lag time.

Perhaps the most natural way to understand the separate
treatment of the lag time is to consider its true role in kinetic
model building. While previous MSM approaches have treated
it effectively like a hyperparameter (e.g., choosing a lag time
based on flattening of implied timescales), in actuality, this
approach is fundamentally philosophically incorrect. The lag
time must be chosen a priori by the researcher, as it directly
reflects the resolution of interest to study. Given a method
which can directly identify the relevant degrees of freedom,
choosing a lag time of picoseconds would bring water dynam-
ics into the state space, vs. nanoseconds for backbone and side
chain dynamics or microseconds for slower collective rear-
rangements. For this reason, it simply does not make sense to
let the model choose the lag time, and instead one must have
the protocol choose the best model given a pre-chosen set lag
time.

MSMs are just one example of the general set of mod-
els to which the VAC applies. The popular tICA framework6,7

can also be variationally optimized. When using tICA as an
intermediate step in MSM construction, the tICA lag time
may be varied and optimized. However, in the case where
the tICA model is the entity being evaluated, the tICA lag
time and number of components scored must be held constant
in order to ensure that the same operator is being approxi-
mated. Additional extensions of the VAC can be found in Ref.
8. We also refer the interested reader to Ref. 9, which presents
continuous-time Markov processes that do not have lag times.
Finally, we would like to note that the VAC is not a panacea:
the slowest dynamical processes are often assumed, but not
guaranteed, to be the processes of interest, and it is impor-
tant to verify this for each analysis. We anticipate that this
note will help guide hyperparameter optimization when using
VAC.
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The open-source software Osprey10 has been designed
for variational hyperparameter optimization and is available
on msmbuilder.org/osprey.
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3F. Noé and F. Nüske, Multiscale Model. Simul. 11, 635 (2013).
4R. T. McGibbon and V. S. Pande, J. Chem. Phys. 142, 124105 (2015).
5B. E. Husic, R. T. McGibbon, M. M. Sultan, and V. S. Pande, J. Chem. Phys.
145, 194103 (2016).
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