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Abstract Tactual exploration of objects produce specific

patterns in the human brain and hence objects can be rec-

ognized by analyzing brain signals during tactile explo-

ration. The present work aims at analyzing EEG signals

online for recognition of embossed texts by tactual explo-

ration. EEG signals are acquired from the parietal region

over the somatosensory cortex of blindfolded healthy

subjects while they tactually explored embossed texts,

including symbols, numbers, and alphabets. Classifiers

based on the principle of supervised learning are trained on

the extracted EEG feature space, comprising three features,

namely, adaptive autoregressive parameters, Hurst expo-

nents, and power spectral density, to recognize the

respective texts. The pre-trained classifiers are used to

classify the EEG data to identify the texts online and the

recognized text is displayed on the computer screen for

communication. Online classifications of two, four, and six

classes of embossed texts are achieved with overall average

recognition rates of 76.62, 72.31, and 67.62% respectively

and the computational time is less than 2 s in each case.

The maximum information transfer rate and utility of the

system performance over all experiments are 0.7187 and

2.0529 bits/s respectively. This work presents a study that

shows the possibility to classify 3D letters using tactually

evoked EEG. In future, it will help the BCI community to

design stimuli for better tactile augmentation n also opens

new directions of research to facilitate 3D letters for

visually impaired persons. Further, 3D maps can be gen-

erated for aiding tactual BCI in teleoperation.

Keywords Text recognition � Tactile perception �
Electroencephalography � Brain-computer interface �
Rehabilitation

Introduction

The sense of touch, among the different sensory abilities,

occupies a very important area in object recognition.

Though objects can be recognized to a large extent by

vision alone, the sense of touch independently, or in

combination with vision can aid in fool-proof and complete

discrimination of objects.

Different objects produce different patterns of responses

in the human brain when explored by touch. Hence objects

can be recognized by analyzing brain signals through

electroencephalogram (EEG) signals (Dornhege 2007;

Sanei and Chambers 2008) during tactile perception (James

et al. 2007; Martinovic et al. 2012; Pal et al. 2014; Gohel

et al. 2016). Researchers have shown that objects can be
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identified from brain responses to visual and/or tactile

stimuli depending on different parameters like shape, size,

texture etc. (Amedi et al. 2005; Datta et al. 2013; Khas-

nobish et al. 2013; Reed et al. 2004; Grunwald 2008; Gohel

et al. 2016; Hori and Okada 2017; Kono et al. 2013; Wang

et al. 2015; Taghizadeh-Sarabi et al. 2015; Kodama et al.

2016; Ursino et al. 2011). Along with tactile based object

classification, tactile location has also been performed

(Wang et al. 2015). Kodama et al. (2016) classified

responses obtained from full body. Tactile classification is

also done by magnetoencephalogram (MEG) signals (Go-

hel et al. 2016). On the basis of the literature survey, the

present work proposes and validates a hypothesis that

3-dimensional (embossed) texts can be recognized by tac-

tually evoked EEG signal analysis. Printed texts are usually

2-dimensional, whereas in this work texts are embossed on

plain paper surfaces using acrylic paints with a height of

approximately 1 mm, which we will henceforth refer to as

3-D texts. This work can find applications in brain-com-

puter interfaces (BCI) which utilize brain responses for

control and communication in rehabilitation, especially in

patients with neuro-motor diseases (Aloise et al. 2010;

Curran and Stokes 2003; Fabiani et al. 2004; Neuper et al.

2005; McCane et al. 2015).

This is a preliminary study to classify 3-D texts from

tactually evoked EEG signals. Here the evaluation of the

feasibility of embossed text classification from tactually

evoked EEG signals is the main goal. This is followed by

the communication of EEG analysis results on a computer

screen to discriminate between the tactile perceptions of

different classes of embossed alphabets, digits, or symbols

as an alternative to verbal communication of the same, and

hence this study can be extended to develop a rehabilitative

communication platform for the paralyzed in future. In

addition, this study can facilitate the development of a BCI

driven aid for the visually-challenged as well as for the

enhancement of multitasking in case of normal-visioned

individuals. For example, when a pilot/driver is visually

engaged, he can still communicate through EEG signals,

while tactually reading 3-D texts or navigating through

embossed maps. In these cases, a tactile feedback channel

can be provided to improve the perceptual understanding of

the embossed objects while the visual or other channels are

engaged in other activities or are unavailable due to

physical ailments. The existing solution for text recognition

for visually-challenged people is Braille (Jiménez et al.

2009; Beisteiner et al. 2015). The use of Braille has been

prevalent among the visually challenged because of the

easy tactile discrimination of the ‘raised dots’ in varying

numbers and arrangements to represent different charac-

ters. However, using a Braille system requires large

amounts of space and time resources to convert the normal

texts into Braille in addition to the need for extensive user

training. Also, it is not usually convenient to be used by a

person with normal vision, or a normal-visioned person

who has lost the ability of visual perception due to accident

or trauma. The main goal of this paper is to present the

proof of concept for classification of alphabets, numbers

and symbols from tactually evoked EEG signals in real

time. This work will be further extended to provide a

common platform for visually impaired individuals by

birth or by accident as well as healthy individuals to rec-

ognize 3-D texts and communicate without any verbal or

gesture medium, but through an efficient BCI driven

system.

In this work, EEG signals have been acquired from the

parietal region over the somatosensory cortex of blind-

folded healthy subjects while they tactually explore the 3-D

texts, including symbols, numbers, and alphabets. The

acquired signals are preprocessed to extract three features

to recognize the respective 3-D texts from EEG. These pre-

trained classifiers are used for online classification of EEG

data to identify the texts which are displayed on the com-

puter screen for communication. Assessment of the sub-

jects’ verbal responses following the presentation of the

tactile stimuli validates their perceptual understanding of

the explored texts.

The rest of the paper is structured as follows. In the

second section, the principles used and the methods

undertaken are explained. The experiments and results

follow in the third section. The fourth section provides a

discussion on the experimental results. In the fifth and final

section, conclusions are drawn and future scopes of work

are stated.

Principles and methods

The present work proposes to communicate the brain

responses during tactile exploration of 3-D texts without

any verbal or body gestures with the aim to develop an

efficient BCI based rehabilitative aid for visually/neuro-

motor impaired patients.

Experimental design

The entire course of work is illustrated by the flowchart in

Fig. 1. There are two modules or phases, offline and online.

In the offline module classifiers are trained to recognize

3-D texts from tactually evoked EEG features. In this

phase, an acquired EEG database is used to train classifiers

to discriminate between different classes of embossed

alphabets, digits or symbols. Testing is done to validate the

efficacy of the classifiers. In the online module, the pre-

trained classifiers are used for online recognition of the

embossed texts from EEG and subsequent communication
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of the results for 100 test samples. Here N denotes a test

stimulus or sample. In this phase, unknown EEG data is

classified to belong to a particular class of embossed text

and the result of classification is displayed on the computer

screen in each case. The experiment operator keeps track of

the actual embossed text that is given to the subject and the

result of EEG classification displayed on the screen and

uses these statistics over time to determine the perfor-

mance. The process is ‘online’ that is there is a stream of

stimulus presentation, EEG analysis and result display

followed by the next stimulus presentation, EEG analysis

and so on. While EEG processing and display of results of

a particular stimulus is being done by the computer, the

subject is given the next stimulus for exploration. In each

of the two phases of experimentation, subjects’ verbal

responses regarding the presented stimuli are noted to

evaluate the correctness of their perceptual understanding

of the stimuli.

EEG acquisition principles

EEG signal acquisition requires the selections of the scalp

locations and signal components according to the

application.

Electrode selection

The primary somatosensory cortex of the parietal lobe is

responsible encoding the sense of touch (James et al. 2007;

Amedi et al. 2005; Grunwald 2008). Hence, in this work

the EEG signals from the parietal region are of interest,

which are acquired from the two scalp electrodes P7 and P8

placed according to the International 10–20 system of

electrode placement (Dornhege 2007).

EEG component selection

Through a series of experiments, it is observed that fol-

lowed by the tactile stimuli presentation there is a desyn-

chronization of the EEG signals which is followed by their

synchronization. Thus event related desynchronization/

synchronization (ERD/S) (Dornhege 2007; Sanei and

Chambers 2008; Zhang et al. 2016a) is considered as the

EEG component in the present work. ERD/S refers to the

relative decrease/increase in the EEG signal power in a

certain frequency range during dynamic cognitive pro-

cesses upon excitation with stimuli.

EEG pre-processing and feature extraction

Pre-processing

EEG signals for somatosensory perception are significantly

predominant in the theta band (Grunwald et al. 2001). On

performing Fourier Transform on the tactually evoked

EEG signals; it is observed that maximum signal power is

contained in the frequency range 4–15 Hz that includes the

theta as well as the alpha bands. An elliptical band pass

filter of order 6 and bandwidth of 4–15 Hz is implemented

for extracting the relevant denoised EEG signals elimi-

nating undesirable high frequency components including

power line noises and motor movement related artifacts.
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Fig. 1 Flowchart depicting the course of work
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For elimination of the interference among the channels

spatial filtering is necessary. It is implemented with com-

mon average referencing (Dornhege 2007). Here, from data

of each channel of EEG, data from all the channels equally

weighted are subtracted to eliminate the commonality of

that channel with the rest and preserve its specific temporal

features. This is described by (1) where the signal at the

primary channel or the channel under consideration and the

other channels are respectively xi(t) and xj(t), for i, j = 1 to

ch, ch denotes the total number of channels taken. It thus

reduces the influence of surrounding electrode chan-

nels/sources from each individual electrodes. In our case,

the total number of channel includes all channels available

in the acquisition apparatus used. Then data from P7 and

P8 only are further processed.

xiðtÞ  xiðtÞ �
1

ch

Xch

j¼1
xjðtÞ ð1Þ

Feature extraction

In this work EEG signals are represented through three

features, adaptive autoregressive parameters (AAR) (Nai-

Jen and Palaniappan 2004; Schlögl et al. 1997; Schlögl

2000; Datta et al. 2015; Bhaduri et al. 2016) and Hurst

exponents (HE) (Kanounikov et al. 1999), both as time-

domain features and power spectral density (PSD) (Cona

et al. 2009) as a frequency domain feature. Though other

standard bio-signal based features like wavelet transform

features, empirical mode decomposition features, Hjorth

parameters, etc. have been previously studied, these par-

ticular three features have been selected because of a better

performance in the present set of experiments. The final

feature vector representing each EEG instance is obtained

by combining these features.

An Autoregressive (AR) model is a parametric method

for describing the stochastic behavior of a time series. EEG

signals are time varying or non-stationary in nature, and

hence the auto-regressive (AR) parameters for representing

EEG signals should be estimated in a time-varying manner.

That is done by AAR parameters. Such an AAR model is

described by (2) and (3) where the index k is an integer to

denote discrete, equidistant time points, yk-i with i = 1 to

p are the p previous sample values, p being the order of the

AR model and ai,k the time-varying AAR model parame-

ters and xk being a zero-mean-Gaussian-noise process with

rx,k
2 as the time-varying variance. There are various meth-

ods for estimating the AAR parameters like least-mean-

square (LMS) method, recursive-least-square (RLS)

method, recursive AR (RAR) method, Kalman filtering,

etc. In this work, after several trials to obtain the best

performance, the AAR model is chosen to be of order 6 and

AAR estimation is done using Kalman filtering. The rate of

adaptation of the AAR parameters, determined by the

update coefficient, is heuristically taken as 0.0085.

yk ¼ a�1;kyk�1 þ � � � þ a�p;kyk�p þ xk ð2Þ

xk ¼ Nf0; r2x;kg ð3Þ

EEG responses at different excitations may have random

variations and can be described to be chaotic. Hence, Hurst

exponent (Kanounikov et al. 1999; Acharya et al. 2005;

Gschwind et al. 2016), a non-linear parameter is used as an

EEG feature. It is computed using rescaled range analysis

by statistical methods and estimates the occurrence of long-

range dependence and its degree in a time series by the

evaluating the probability of an event to be followed by a

similar event. It is described by (4), where T denotes the

sample duration and R/S denotes the corresponding

rescaled range value.

H ¼ logðR=SÞ= logðTÞ ð4Þ

A value of H = 0.5 indicates that the time-series is similar

to an independent random process, 0 B H\ 0.5 indicates a

present decreasing trend in the process implies a future

increasing trend and vice versa whereas 0.5\H B 1

indicates that a present increasing/decreasing trend in the

process implies a future increasing/decreasing trend.

Experiments reveal that the EEG signals corresponding

to exploring different embossed letters have different

amounts of power at different frequencies and hence the

power spectral density (PSD) can be used as an EEG fea-

ture. PSD of a wide sense stationary signal x(t) is the

Fourier transform of its autocorrelation function, given by

S(w) in (5), where E denotes the expected value and T

denotes the time interval.

SðwÞ ¼ 1

T

ZT

0

ZT

0

E½x�ðtÞxðt0Þ�eiwðt�t0Þdtdt0 ð5Þ

Thus for a time varying signal such as EEG, the complete

time series should be divided into segments to determine its

PSD. In the present work PSD has been evaluated using

Welch Method (Alkan and Yilmaz 2007), that splits the

signal into overlapping segments, computes the peri-

odograms of the overlapping segments from their Fourier

Transforms, and averages the resulting periodograms to

produce the power spectral density estimate, in the integer

frequency points in the range of 4–15 Hz using a Hamming

window with 50% overlap between the segments.

For the two channels of EEG data AAR, PSD and HE

features yield feature vectors of length 6 9 2 = 12,

12 9 2 = 24, and 1 9 2 = 2 respectively. Therefore, the

final concatenated feature vector has dimensions of 38. The

feature dimension being considerably small, there is no
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necessity of a feature selection stage for feature dimension

reduction. During each set of experiments, each of the three

features is normalized with respect to their respective

maximum values and combined to produce the normalized

feature space for classification. Normalization performs

scaling of the feature values in the range [-1, 1]. This is

done to minimize the differences arising due to different

trials of the same experiment. For the feature space

arranged in a two dimensional matrix form where rows

represent trials and columns represent features, normal-

ization is effected according to (6) where the feature space

is the matrix composed of elements of the form fi,j, the ith

instance of the jth feature, fi,j
norm is the normalized value of

fi,j and ‘max’ computes the maximum value.

f normi;j ¼
f i;j

max
8i
ðf i;jÞ

ð6Þ

Classification

The extracted features are classified using three standard

supervised classifiers, namely, support vector machine

(SVM) (Mitchell 1997; Webb 2003; Zhang et al. 2016),

naive Bayes (NB) (Mitchell 1997; Leung 2007; Bhaduri

et al. 2016; Chan et al. 2015) and k-nearest neighbor (kNN)

(Mitchell 1997; Page et al. 2015) independent of each

other. Classification is performed in a hierarchial one-vs.-

one (OVO) approach and majority voting (Paul et al. 2006)

is used to decide the final outcome. The scheme of clas-

sification is illustrated in Fig. 2.

Suppose there are n numbers of possible classes. In the

first stage a sample is classified by a number of OVO

classifiers, each classifying the sample to belong to class 1

or class 2, class 1 or class 3, …, class (n-1) or class n.

Therefore, for classifications against class 1, (n-1) clas-

sifiers would be required, for classifications against class 2,

(n-2) classifiers would be required, and so on. Hence a

total of N1 = n(n-1)/2 OVO classifiers will be required in

the first stage, identified as Ci1 for i = 1 to N1. The out-

comes of the classifiers are combined using majority voting

technique to determine the class of the sample with highest

occurrence. A second stage of OVO classifiers prior to the

majority voting method is necessary in situations when the

first stage yields a non-conclusive results, say in the first

stage the sample is classified to belong to k different classes

with the equal number of votes. In that case the second

level of classifiers will require N2 = k(k-1)/2 OVO clas-

sifiers, Ci2 for i = 1 to N2, arguing in a similar manner.

This process can be continued in case of a persisting

conflict for final outcome in case of equal number of votes,

thereby producing a hierarchical classification pattern.

SVM used in this work has been tuned with a cost value

of 100 and margin of 1, which are determined experi-

mentally. The NB classifier is used with the assumption

that the features have a normal distribution whose mean

and covariance are learned during the process of training.

For kNN, the distance metric and the value of ‘k’ are

experimentally selected to be city block distance and k = 5

on the basis of best performance.

Experiments were conducted in two phases, i.e. for

training the classifiers and online classifications using the

pre-trained classifiers. Experiments were performed to

recognize only numbers, only alphabets, only symbols as

well as combinations of alphabets, numbers, and symbols.

EEG acquisition and processing

Data acquisition

The electrode placement (P7 and P8), according to the

International 10–20 system (Dornhege 2007; Teplan 2002)

is shown in Fig. 3 where the selected electrodes are marked

in green. EEG is acquired using a 14-channel Emotiv

Headset (www.emotiv.com/eeg) at a sampling rate of

128 Hz.

Material preparation and subjects

In order to recognize texts from touch without visual

observation, plain surfaces were embossed with hard

acrylic paint that produces texts with depths of about

1 mm. In the present work four alphabets, numbers, and

symbols have been randomly selected from the standard set

of 26 alphabets, 10 digits and various symbols respectively.

Since this is a preliminary study to classify texts from

tactually evoked EEG signals, texts were randomly selec-

ted to test the proposition that the brain waves can be

decoded to identify embossed texts during tactile explo-

ration. At first only two classes of texts were considered for

classification, followed by four and six text classes, so as to

validate the feasibility of 3-D text recognition from EEG

signals even with increase in complexity in terms of more

number of classes. The study is to be extended in future

with all the alphabets/numbers, based on the present

results. 3-D texts representing four numbers namely, 2, 4,

5, and 8, four uppercase alphabets namely, A, E, K and M,

and four symbols namely, ? (plus), - (minus), 9 (multi-

plication) and 7 (division) were selected randomly from

set of all (0–9) numbers, 26 alphabets, and various math-

ematical symbols (Fig. 4a).

Both online and offline experiments were conducted on

15 subjects, 7 male and 8 female (25 ± 5 years). The

subjects were blindfolded and instructed to explore the

embossed surfaces containing the 3-D texts in accordance
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with an audio cue to time the sequential grasping and

release of each text. All ethical issues relating to human

subject experiments were considered. The subjects volun-

tarily participated in the experiments, after signing consent

forms. The subjects’ identities were not disclosed and they

were provided with refreshments after their participation.

The institutional ethical committee was informed and their

agreement acquired regarding the experimental objective

and procedure. All data acquisition procedures were non-

invasive and all safety norms were abided for the protec-

tion of the subjects. Helsinki Declaration of 1975, as

revised in 2000 (Carlson et al. 2004), was followed for

dealing with experiments on human subjects.

Offline procedure

In each set of experiments, during classifier training, EEG

is acquired on presenting an audio stimulus (Fig. 4b) to the

blindfolded subjects for tactual exploration, starting with a

Fig. 2 Classification Scheme

Fig. 3 Electrode placement

Fig. 4 a Embossed texts for experiments, b tactile stimulus presen-

tation for offline EEG acquisition
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beep sound followed by a 10 s rest period. An audio cue

then directs the subject to start tactual exploration for 5 s,

during which the 3-D text is presented in front of him/her

to explore. During this duration, EEG signals are acquired

for analysis. Hence each trial comprises of 5 9 128 (=640)

samples of data. At the end of this 5 s, another audio cue

instructs the subject to stop the exploration, which is fol-

lowed by assessment of the subject’s verbal response to

evaluate his/her understanding of the stimulus and another

relaxation period of 5 s. If the verbal response is incorrect,

that particular text is presented again. The 3-D text objects

in the stimuli are arranged in a random order. The subjects

have no previous notion of which text is going to be pro-

vided to him/her during the experiments.

The offline classifiers are trained into recognize num-

bers, alphabets, symbols, or combinations of these using

EEG data taken over a period of 5 days per experiment per

subject, to include the possible variations in EEG signals

over different days. For each subject and each experiment,

10 instances of EEG, each of 5 s duration, (taken over

5 days and hence 50 instances) of each class acquired by

repeating the audio stimulus, are used for the offline phase.

Experiment I assesses the performance of binary classifi-

cation to separately recognize symbols, alphabets or

numbers. Experiments are also conducted to observe

whether multiple classes of symbols, numbers, and alpha-

bets can also be classified separately as well as in combi-

nations in Exp. II and Exp. III.

Experiment I: Two classes

(1) mathematical symbols ‘?’ and ‘-’

(2) numbers ‘2’ and ‘4’

(3) alphabets ‘A’ and ‘M’

Experiment II: Four classes

(1) mathematical symbols ‘?’, ‘-’, ‘9’ and ‘7’

(2) numbers ‘2’, ‘4’, ‘5’ and ‘8’

(3) alphabets ‘A’, ‘E’, ‘K’ and M’

Experiment III: Six classes

Two symbols, two numbers and two alphabets, ‘?’, ‘-’,

‘5’, ‘8’, ‘A’ and ‘E’

During offline classification, the feature space is fivefold

cross-validated to create test and train instances from the

50 instances of each class i.e. in each case, first data is

divided into 5 disjoint partitions and (5 - 1=) fourfolds are

used for training while the last fold is used for evaluation.

This process is repeated 5 times, each time different par-

titions are generated randomly.

Online classification and communication

Each of the set of experiments I, II and III, performed

offline, are carried out online also, using the pre-trained

classifiers independently. The test samples are provided to

the blindfolded subjects in a random stream without the

subjects knowing about them or their order. Online EEG

acquisition for each test text instance is done for 5 s. In the

next 5 s, the subject’s response is noted (this takes a

maximum of 2 s) and the acquired EEG signal is processed

and classified displaying the result class on the computer

screen, while the subject relaxes. The offline classification

results (Table 1) confirm that computation time for pro-

cessing and classification of EEG of 5 s duration is less

than 5 s in all experiments. Hence the loop comprising of

5 s of EEG acquisition and 5 s of parallel relaxation and

processing is not disturbed. In case a sample is incorrectly

interpreted as evaluated from the subject’s response, the

same sample is produced again. EEG recordings of incor-

rect responses has not been used for classifier training in

this work. The loop is repeated for a total of 100 test

instances in each experiment. The displayed result in each

iteration is matched with the actual class of the text, known

to the experiment operator. From the number of correct

hits, the correct rate (CR) is evaluated corresponding to

each class of text and the average computation time per test

sample (T) is also noted.

Performance evaluation

Classification accuracy/correct rate and computation time

For offline classifications, the EEG classification accuracy

(CA) of each class Ci is computed from the confusion

matrix (Dornhege 2007). The computation time (CT) for

each experiment is the total EEG processing and classifi-

cation time.

During each of the online experiments, at the end of the

presentation of all the 100 test samples, for each class Ci

the number of correctly classified samples (Ci
correct) are

counted and using the total number of samples presented

for each class (Ci
total) the correct rate (CR) of that class for

EEG classification is computed using (7). The average

processing and classification time (T) per test sample per

class is also noted.

CRðCiÞ ¼
Ccorrect

i

Ctotal
i

ð7Þ

Information transfer rate The information transfer rate

(ITR) (Yuan et al. 2013) during online experiments is also

noted. ITR measures the performance of EEG classification

in the online condition and is calculated by (8) where B

represents ITR in bits/sample, N represents the number of
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choices per sample (possible outcome classes) and P rep-

resents the probability of correct classification and lies in

the range from 0 to 1. The evaluation of ITR assumes that

all possible outcomes of classification convey the same

amount of information. In our case, the value of CR over

all classes is a measure of the number of samples correctly

classified out of the total number of samples and is used to

represent P in (8). ITR can also be represented in bits/s

according to (9) where T denotes the processing and clas-

sification time per sample in seconds.

B ¼ log2 N þ P log2 Pþ ð1� PÞ log2
1� P

N � 1
ð8Þ

Bt ¼
B

T
ð9Þ

Utility While ITR is a measure of the classifier perfor-

mance in a BCI system, the overall performance of the

system cannot be estimated by it. The utility metric (Dal

Seno et al. 2010; Thompson et al. 2013) takes into con-

sideration the total system while evaluating the ‘amount of

quantifiable benefits by the user when using a BCI system’.

utility is a more ‘user centric’ metric for BCI performance

evaluation that takes into account not only the classifier

performance but also the control interface. The parameters

to evaluate the utility metric in the present context are the

accuracy of user perception (as evaluated from the sub-

ject’s verbal response) p, the average system time taken per

sample TS that is equal to T (processing and classification

time per sample) ? Tc (communication/result display time

per sample). The total time for evaluating the system’s

overall performance TL per sample considers only TS when

the subject’s perception is correct, however if the subject’s

perception is incorrect, he/she is given the same sample

again and hence TL now includes the time for interpreting

the sample again. Thus TL is given by (10) where TL
(1) is the

time for interpreting the misinterpreted sample again.

TL ¼ p� TS þ ð1� pÞ � TS þ T
ð1Þ
L

� �
ð10Þ

Assuming no time dependency of the user’s response and a

memory less BCI system where each sample is classified

Table 1 Results of offline experiments

Ma Experiment I

(1) Symbols (2) Numbers (3) Alphabets

‘?’ ‘-’ ‘2’ ‘4’ ‘A’ ‘M’

CAb 0.8245 (0.0435) 0.8435 (0.0476) 0.8329 (0.0245) 0.8145 (0.0306) 0.8180 (0.0540) 0.7805 (0.0462)

CTc (s) 0.4119 (0.0030) 0.4714 (0.0025) 0.4396 (0.0015)

Pd 0.9880 (0.0110) 0.9920 (0.0110) 0.9860 (0.0167) 99.40 (0.0110) 0.9880 (0.0415) 0.9860 (0.0261)

M Experiment II

(1) Symbols (2) Numbers (3) Alphabets

‘?’ ‘-’ ‘9’ ‘7’ ‘2’ ‘4’ ‘5’ ‘8’ ‘A’ ‘E’ ‘K’ ‘M’

CA 0.8220

(0.0560)

0.8017

(0.0328)

0.7570

(0.0776)

0.7633

(0.0544)

0.7867

(0.06065)

0.7650

(0.0902)

0.8073

(0.0450)

0.7870

(0.0438)

0.7625

(0.0635)

0.8050

(0.0854)

0.7558

(0.0460)

0.7750

(0.0674)

CT (s) 0.8758 (0.0012) 0.8379 (0.0056) 0.7384 (0.0034)

p 0.9860

(0.0300)

0.9820

(0.0261)

0.9820

(0.0120)

0.9680

(0.0250)

0.9750

(0.0112)

0.9750

(0.0140)

0.9880

(0.0261)

0.9910

(0.0110)

0.9820

(0.0240)

0.9920

(0.0110)

0.9650

(0.0120)

0.9810

(0.0415)

M Experiment III

Symbols ? numbers ? alphabets

‘?’ ‘-’ ‘5’ ‘8’ ‘A’ ‘E’

CA 0.7870 (0.0350) 0.8018 (0.0566) 0.7672 (0.0880) 0.7780 (0.0672) 0.7520 (0.0476) 0.7572 (0.0635)

CT (s) 0.9485 (0.0052)

p 0.9880 (0.0415) 0.9780 (0.0200) 0.9760 (0.0261) 0.9760 (0.0300) 0.9780 (0.011) 0.9740 (0.0261)

aMetric
bClassification accuracy
cComputation time in seconds
dRatio of correct to total number of verbal responses
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independent of the others, TL
(1) = TL and (10) can be re-

written and the resulting series converges to give TL = T/p

as shown in (11).

TL ¼ p� TS þ ð1� pÞ � ðTS þ TLÞ
) TL ¼ TS þ ð1� pÞTL

¼ TS þ ð1� pÞTS þ ð1� pÞ2TL
¼ TS þ ð1� pÞTS þ ð1� pÞ2TS þ ð1� pÞ3TL
¼ TS þ ð1� pÞTS þ ð1� pÞ2TS þ ð1� pÞ3TS þ � � �

¼ TS 1þ ð1� pÞ þ ð1� pÞ2 þ ð1� pÞ3 þ � � �
h i

� TS

p
ð11Þ

According to the definition utility is computed as the

average benefit bL per sample divided by the time required

to achieve it at the system output TL. Assuming equal

probability among all N classes the conveyed information

is bL = log2N and utility U is given by (12).

U ¼ bL

TL
¼ p� log2 N

TS
ð12Þ

All computations are done using MATLAB R2012b on a

Windows 7, 64-bit OS with an Intel Core i3 2.20 GHz

processor.

Results and discussion

From the offline classification results it is found that the

performance over the different classifiers is variable and it

is not possible to obtain a best classifier on an average over

all these particular experiments. This result follows the

well known concept of ‘No Free Lunch’ (Ho 1999) in

machine learning. All experiments are performed subject-

wise i.e. classifiers are trained and tested offline separately

for each subject’s data and then the particular pre-trained

classifier for a subject is used during his/her online testing

phase. The results of offline classification in terms of the

metrics (M) of CA and CT, along with the ratio of the

correct/total number of verbal responses (p), average and

standard deviation (in parenthesis) over 15 subjects, are

tabulated in Table 1. These results are shown for the best

case classification (from the different classifiers used), on

the datasets acquired over 5 days on each subject (50

instances of each class each) and creating training and

testing instances through fivefold cross-validation.

The best results of online EEG classification over all the

pre-trained classifiers are tabulated in Table 2 with the

average values of the metrics (M) and their standard

deviations (in parenthesis) over all 15 subjects. In each

experiment, sets of 2, 4, or 6 texts are supplied to the

subject in random order, with a total of 100 samples text,

equally divided over the different classes for the respective

experiments. The correct rate (CR) is computed as the

number of samples of a particular class classified correctly.

Table 3 denotes the variation in mean ITR over all

classes (in bits/sample as well as bits/s) along with the

values of the correctness of the verbal response (p) of the

participants and corresponding computed utility (U) aver-

age and standard deviation (in parenthesis) over all

subjects.

A bar graph illustrating the variation in average ITR

over all classes mean over all subjects is illustrated in

Fig. 5.

For further analysis of the observed features, one way

ANOVA test (Taghizadeh-Sarabi et al. 2015) has been

implemented on the obtained feature set. Table 4 shows the

corresponding p value for all the three experiments.

It can be observed from Table 4 that the PSD features

has the least p value compared to AAR and HE for all the

three experiments. These low p values justify the choice of

these three features which yielded such high classification

accuracy in this work.

As observed from Table 1, the best performance in

classification of 2 classes of texts is achieved for 2 symbols

being classified with the maximum average accuracy of

83.40%. The performances of classification of 2 classes of

alphabets or numbers are equally good, the CAs being

greater than 78% in all cases. The performance of text

recognition deteriorates slightly with an increase in the

number of classes, though the minimum individual accu-

racy does not decrease below 75% in any of the cases. Four

numbers are classified with average classification accuracy

of 78.65% while four symbols and alphabets achieve

maximum of 78.60 and 77.45% average accuracies

respectively. Six texts, a combination of 2 symbols, 2

numbers, and 2 alphabets are classified with average

accuracy of 77.38%. Throughout the experiments, the

maximum CT is below 1 s. From the results of offline EEG

classification, it can be concluded that tactually evoked

EEG can indeed be classified to recognize embossed

symbols, numbers, or alphabets with above 75% accuracy.

The values of p indicate that the perceptual understanding

of the tactile stimuli over all subjects is significantly high.

During the offline phase, training and testing of the clas-

sifiers occur with separate set of instances and hence these

results show the CA during testing in offline classification,

validating the use of this work in online environment with

pre-trained classifiers.

From Table 2 it is observed that during online classifi-

cation, the average CR is the highest while recognizing two

classes of texts only, the correct rates being greater than

70% in all cases and reaching a maximum average of 78%

for recognizing two symbols. For four classes of texts, the
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highest CR of 73.15% is obtained for four numbers. The

average recognition rate for six classes of texts is achieved

at 67.62% with a considerable increase in time T, which is

evident considering the hierarchical nature and OVO

classification process. In the online experiments, the min-

imum individual CR is not below 60% and maximum T is

less than 2 s, thereby validating the proposed hypothesis.

All sub-experiments under experiment I deal with 2

classes, that for II deal with 4 classes and experiment III

deals with 6 classes. Hence from Fig. 5 the variation in ITR

with number of classes is also evaluated and the results are

found to sustain larger number of classes. A higher ITR

value for more classes indicates no significant depreciation

of CR with an increase in the number of classes.

From Table 3 it is observed that the maximum value of

U reaches 2.0529 bits/s. The mean ITR (bits/s) and U (bits/

s) over all sub-experiments and subjects is found out to be

0.4636 and 1.5640 bits/s respectively.

In both phases of the experiment, prior to the start of the

actual experimentations, the subjects are given a blank

Table 2 Results of online experiments

Ma Experiment I

(1) Symbols (2) Numbers (3) Alphabets

‘?’ ‘-’ ‘2’ ‘4’ ‘A’ ‘M’

CRb 0.7750 (0.0672) 0.7850 (0.0650) 0.7760 (0.0854) 0.7550 (0.0432) 0.7652 (0.0560) 0.7410 (0.0230)

Tc (s) 0.5576 (0.0040) 0.5872 (0.0032) 0.5659 (0.0072) 0.5988 (0.0025) 0.5160 (0.0065) 0.5875 (0.0450)

M Experiment II

(1) Symbols (2) Numbers (3) Alphabets

‘?’ ‘-’ ‘9’ ‘7’ ‘2’ ‘4’ ‘5’ ‘8’ ‘A’ ‘E’ ‘K’ ‘M’

CR 0.7060

(0.0305)

0.7232

(0.0610)

0.7465

(0.0750)

0.7035

(0.0345)

0.7022

(0.0260)

0.7570

(0.0450)

0.7610

(0.0632)

0.7060

(0.0532)

0.7435

(0.0260)

0.6850

(0.0450)

0.7225

(0.0250)

0.7212

(0.0620)

T (s) 0.9788

(0.0030)

0.9664

(0.0050)

0.9545

(0.0028)

0.9971

(0.0052)

1.5245

(0.0036)

1.5574

(0.0078)

1.5781

(0.0056)

1.5654

(0.0036)

1.5832

(0.0020)

1.5543

(0.0042)

1.5871

(0.0026)

1.5882

(0.0038)

M Experiment III

Symbols ? numbers ? alphabets

‘?’ ‘-’ ‘5’ ‘8’ ‘A’ ‘E’

CR 0.6875 (0.0532) 0.7040 (0.0564) 0.6575 (0.0750) 0.6225 (0.0800) 0.6812 (0.0612) 0.7045 (0.0854)

T (s) 1.9781 (0.0087) 1.8991 (0.0102) 1.9112 (0.0075) 1.9891 (0.0060) 1.9882 (0.0082) 1.8978 (0.0072)

aMetric
bCorrect rate
cComputation Time per sample in seconds

Table 3 Online performance

metrics
Experiment ITRa (bits/sample) ITR (bits/s) Pb Uc (bits/s)

I (1) 0.2398 (0.0055) 0.4190 (0.0078) 1 (0.0000) 1.7469 (0.0455)

I (2) 0.2142 (0.0082) 0.3679 (0.0091) 1 (0.0000) 1.7170 (0.0302)

I (3) 0.1937 (0.0063) 0.3510 (0.0032) 1 (0.0000) 1.8123 (0.0142)

II (2) 0.7002 (0.0044) 0.7187 (0.0106) 1 (0.0000) 2.0529 (0.0635)

II (2) 0.7353 (0.0068) 0.4724 (0.0112) 0.9333 (0.0258) 1.1993 (0.0338)

II (3) 0.6950 (0.0037) 0.4404 (0.0075) 1 (0.0000) 1.2672 (0.0422)

III 0.9247 (0.0042) 0.4757 (0.0302) 0.8667 (0.0352) 1.1525 (0.0458)

Mean 0.5290 0.4636 0.9714 1.5640

aInformation transfer rate
b Ratio of correct to total number of verbal responses
cUtility
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page with nothing embossed to explore, and EEG signals

are acquired and analyzed. Next the subjects are provided

with the embossed texts and asked to explore tactually, and

during that period also EEG signals are acquired and

analyzed. It is found that EEG signals for only motor

movements are in the bandwidth of 8–32 Hz. However,

when tactually evoked, then ERD/ERS patterns and dura-

tion is different as well as the bandwidth is 4–15 Hz. Thus,

the motor related artifacts are found to be high frequency

components, which are eliminated to a large extent by

Band Pass Filtering in the pre-processing stage. However,

the human brain is multisensory, and the tactile system is

intricately linked to the motor and even auditory system

making exceptionally purely tactile brain responses unli-

kely to obtain (Ro et al. 2012).

Similar works has been done in past literatures for tac-

tile classification using EEG signals. In Hori and Okada

(2017), tactile sensation of different patterns has been

classified yielding 85 and 60% classification accuracy for 2

and 4 class classification problems. Tactile stimulus

provided by four pressure directions using a joystick was

used in (Kono et al. 2013) to classify EEG signals online

with 82.1% accuracy. Location of tactile stimulus can also

be classified from EEG signals with a high offline classi-

fication accuracy of 96.76% (Wang et al. 2015). In this

work, a different approach of EEG based tactile classifi-

cation has been presented. Instead of simple pattern stim-

ulus, different alphabets, numbers and shapes has been

classified both offline and online. As shown in Tables 1

and 2, highest average classification accuracy of 81.90%

for Exp-I, 78.24% for Exp-II and 77.39% for Exp-III is

obtained for offline classification. These results are com-

parable with the other EEG based tactile classification

works. Even for online classification, the accuracy is above

60%. Thus, even with 2, 4 and 6 class classification, a high

classification accuracy is obtained for both offline and

online classification.

Conclusion and future directions

The present work efficiently recognizes 3-D texts during

tactile exploration by EEG signal analysis. The results of

the experiments have been validated over 15 healthy

blindfolded subjects. Extracted EEG features are classified

independently by three different classifiers in hierarchical

one-vs.-one approach and online analysis has been per-

formed with the pre-trained classifiers showing promising

results in each case. Experiments have been performed to

recognize up to six classes of texts, separately for each of

symbols, numbers, and alphabets as well as in combina-

tions. However, as the number of classes of texts increase

the recognition rate falls slightly and the computation times

considerably increase, but remains below 2 s. The results

thus depict that 3-D texts can be efficiently classified from

tactually evoked EEG signals. The classification accuracy

decreases on increasing the number of classes to recognize,

which is obvious because the mental overload increases

with increase in number of classes. Even then the classi-

fication accuracy is never less than 60% in online analysis

with a maximum ITR and utility of 0.7187 and 2.0529 bits/

s respectively. Thus, the presented technique can be further

improvised in future to increase all the numbers, alphabets

and more symbols with will lead to the development of

BCI based communication system from tactile channel

stimulations.

In this work, we have tried to study the feasibility of

online tactually evoked EEG classification to recognize up

to six classes of 3D texts in a laboratory environment. This

work will be extended for recognition of all ten digits as

well as the twenty-six alphabets from tactually evoked

EEG analysis. Future scopes of work comprise of using

better recognition algorithms to incorporate online

Fig. 5 Average ITR values over all subjects for the different

experiments

Table 4 One way ANOVA test

Features Experiment P value

AAR I \0.02

II \0.25

III \0.04

PSD I \0.01

II \0.01

III \0.02

HE I \0.03

II \0.03

III \0.05
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exploration of words and groups of words based on the

proposed methods. Several other classification algorithms

will be explored. Recent studies on several cognitive

studies uses neural network models (Oyedotun and

Khashman 2017; Yamada and Kashimori 2013; Mizraji

and Lin 2017) which shows better performance. Therefore,

neural networks will be implemented in our future work.

Also, we intend to study the performance of EEG classi-

fication in a multitasking environment while the subjects

are asked to perform other cognitive tasks while tactually

exploring 3D texts. This study is intended to provide a BCI

based alternative to existing techniques such as Braille that

will provide control and communication powers to the

paralyzed and the visually impaired patients by virtue of

only tactile exploration. Another interesting avenue is the

study of EEG patterns of Braille reading in visually chal-

lenged and normal visioned individuals.
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