Skip to main content
. 2017 Nov 3;7:14482. doi: 10.1038/s41598-017-15235-6

Table 5.

Results on the full miRNA-disease datasets in LODOCV.

Method AUC AUPR
RLSMDA 0.8530 ± 0.133 0.2066 ± 0.240
HGIMDA 0.7616 ± 0.164 0.1025 ± 0.142
NCPMDA 0.6374 ± 0.220 0.0596 ± 0.104
PBMDA 0.6902 ± 0.223 0.2918* ± 0.289
RKNNMDA 0.5680 ± 0.131 0.2085 ± 0.273
DeepMDA 0.8729* ± 0.118 0.2556 ± 0.271
SAE + ADA 0.8552 ± 0.124 0.1914 ± 0.220
RAW + DNN 0.8633 ± 0.121 0.2180 ± 0.248

The AUC and AUPR scores are listed above. Generally, DeepMDA performed better than the other seven models in LODOCV.