Table 5.
Method | AUC | AUPR |
---|---|---|
RLSMDA | 0.8530 ± 0.133 | 0.2066 ± 0.240 |
HGIMDA | 0.7616 ± 0.164 | 0.1025 ± 0.142 |
NCPMDA | 0.6374 ± 0.220 | 0.0596 ± 0.104 |
PBMDA | 0.6902 ± 0.223 | 0.2918* ± 0.289 |
RKNNMDA | 0.5680 ± 0.131 | 0.2085 ± 0.273 |
DeepMDA | 0.8729* ± 0.118 | 0.2556 ± 0.271 |
SAE + ADA | 0.8552 ± 0.124 | 0.1914 ± 0.220 |
RAW + DNN | 0.8633 ± 0.121 | 0.2180 ± 0.248 |
The AUC and AUPR scores are listed above. Generally, DeepMDA performed better than the other seven models in LODOCV.