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Active contours driven by difference 
of Gaussians
Farhan Akram   1,3, Miguel Angel Garcia2 & Domenec Puig1

In this paper, a novel edge-based active contour method is proposed based on the difference of 
Gaussians (DoG) to segment intensity inhomogeneous images. DoG is known as a feature enhancement 
tool, which can enhance the edges of an image. However, in the proposed energy functional it is used 
as an edge-indicator parameter, which acts like a balloon force during the level-set curve evolution 
process. In the proposed formulation, the internal energy term penalizes the deviation of the level-
set function from a signed distance function and external energy term evolves the contour towards 
the boundaries of the objects. There are three main advantages of the proposed method. First, image 
difference computed using the DoG function provides the global structure of an image, which helps to 
segment the image globally that the traditional edge-based methods are unable to do. Second, it has 
a low time complexity compared to the state-of-the-art active contours developed in the context of 
intensity inhomogeneity. Third, it is not sensitive to the initial position of contour. Experimental results 
using both synthetic and real brain magnetic resonance (MR) images show that the proposed method 
yields better segmentation results compared to the state-of-the-art.

In computer vision and image processing, segmentation is a process of partitioning a digital image into multiple 
non-overlapping regions. The main goal is to simplify or change the image into something more meaningful or 
easier to analyse. Intensity inhomogeneity is one of the well-known problems in image segmentation, which can 
substantially reduce the accuracy of intensity based segmentation methods. It manifests as a smooth intensity 
variation across the image that complicates the segmentation of the objects contained in it.

To date numerous segmentation methods have been proposed for example, thresholding1, clustering meth-
ods2,3, histogram based methods4, edge detection5, region growing methods6,7, variational and partial differential 
equation (PDE) based methods (level-sets and active contours)8–13.

Active contours is one of the well-known aforementioned segmentation methods. It was proposed by Kass 
et al.8 to extract the interesting objects in an image, by evolving a level-set curve towards the object boundary. 
The active contours are represented as parametrized curves in a Lagrangian framework8 and the implicit curves 
in an Eulerian framework12–15. The main idea behind the active contours is to formulate an energy functional by 
using image statistics, curvature and gradient information. The energy functional is then minimized to evolve 
the level-set curve towards the desired object boundary. To date various active contour models and enhanced 
versions are employed in various image processing applications, as well as medical image analysis.

Active contour models are further divided into two main categories edge-based8,10,15,16 and region-based12,17–19 
models. Both types have both strengths and limitations. Edge-based methods, as their name states use image 
edge information as a balloon force to evolve the curve towards the object boundaries. Level set method without 
re-initialization (LSWR) and distance regularized level set (DRLS) methods are devised by Li et al. to segment 
object from the image and remove the re-initialization step during the curve evolution8,10. However, these types 
of methods are unable to segment object with weak and/or blurred boundaries.

In turn, region-based methods by using image statistical information can properly segment images with weak 
and/or blurred boundaries. Traditional region-based methods12,13 are formulated with an assumption that images 
are homogeneous; therefore, they cannot segment intensity inhomogeneous images.

Numerous region-based methods are proposed to segment intensity inhomogeneous images by introducing 
the image local information in their models20–23. A region scalable fitting (RSF) method for image segmentation 
is proposed in the context of intensity inhomogeneity20,21. In this method, a Gaussian kernel is introduced in the 
energy formulation to exploit the image local information. A localized active contour method (LAC) is devised in 
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which global region-based methods are reformulated by replacing the global means with the image local informa-
tion24. These methods can segment intensity inhomogeneous regions, unlike their global counterparts. However, 
these methods are sensitive to the position of the initial contour. Moreover, they also have high computational 
cost due to the complicated local information in their formulation.

A local active contour model for segmenting images with intensity inhomogeneity was proposed by Zhang 
et al. in22. Local image information is used to define a local image fitting (LIF) energy functional, which can be 
interpreted as a constraint on the differences between the fitting image20,21 and the original image. Furthermore, 
a new method is used to regularize the level-set function by using Gaussian kernel filtering after each iteration. 
In addition, re-initialization of the level-set curve is not required. However, this method is sensitive to the initial 
position of contour and the final contour doesn’t strictly follow the object boundary.

Alternatively, a region-based active contour method is formulated in the context of intensity inhomogeneity 
by utilizing local intensity means23. It uses a signed pressure force (SPF) function based on a local fitted image 
in its energy formulation in order to segment images with intensity inhomogeneity. A Gaussian kernel is used 
to smooth the level-set function after every step. Therefore, this method does not require re-initialization. This 
method has high time complexity compared to the traditional global region-based methods12,13.

A variational level-set approach for bias correction and segmentation (VLSBCS) for images corrupted with 
intensity inhomogeneity was proposed by Li et al. in17,25. The computed bias field is intrinsically ensured to be 
smooth by the data term in the variational formulation, without any additional effect to maintain the smoothness 
of the bias field. A local statistical active contour model (LSACM) for image segmentation in the presence of 
intensity inhomogeneity was proposed by Zhang et al. in26,27. In this work, the inhomogeneous objects are mod-
elled as Gaussian distributions of different means and variances. A statistical energy functional is then defined for 
each local region, which combines the bias field, the level-set function, and the constant approximating the true 
signal of the corresponding object. Both of these methods are able to segment and correct intensity inhomoge-
neous images. However, these are also sensitive to the initial position of contours and have high time complexity.

A hybrid region-based active contours driven by local and global fitted image models (LGFIM) was proposed 
in the context of intensity inhomogeneity28. Local and global intensity information were used to both correct and 
segment the inhomogeneous regions. In this paper, two SPF functions i.e., local and global were also devised to 
stabilize the gradient descent solution. This method is not sensitive to the initial position of the contour; therefore, 
it provides similar segmentation results irrespective to the initial contour position. Moreover, it is also able to 
properly segment intensity inhomogeneous images. However, it has a high time complexity.

Figure 1 shows intensity inhomogeneous image segmentation using active contour method. A traditional 
global region-based active contour method such as, CV12 model is unable to segment intensity inhomogeneous 
object as shown in Fig. 1(a). In turn, Fig. 1(b) shows that the local region-based active contour method is able to 
properly segment intensity inhomogeneous object. However, local active contour methods have high time com-
plexity because of the intensity mean computations in the local neighbourhood during the contour evolution pro-
cess. Edge-based active contour methods can segment intensity inhomogeneous objects; however, these methods 
do not guarantee the level-set curve will stop at the object boundary, if it is blur or when the intensity difference 
between the background and object boundary is not clear.

In this paper, an edge-based active contour method driven by the difference of Gaussians (DoG) function is 
proposed in the context of intensity inhomogeneous image segmentation. The Gaussian image difference com-
puted by the DoG function provides edge information of the global structure of the given image. This edge infor-
mation is used as a balloon force in the proposed energy functional to evolve the level-set curve throughout the 
image structure. An energy penalizing term from15 is used to regularize the curve and to maintain the level-set as 
a signed distance function, which also removes the need for computationally expensive re-initialization of level 
set.

Figure 1.  Intensity inhomogeneous image segmentation using active contours. (a) Image segmentation using 
traditional active contour method. (b) Image segmentation using local active contour method.
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This work has three main contributions. First, it is able to segment the global structure of an image unlike 
traditional edge-based active contours15,16. Second, it is able to properly segment intensity inhomogeneous images 
with a low time complexity compared to local region-based methods21–24. Third, it is not sensitive to the initial 
position of the level-set curve.

The selection of the standard deviation parameter of the DoG smoothing kernels is critical, specially when the 
image is highly affected by noise (the parameter difference should be high). The proposed method is applied to 
both synthetic and real images to show the segmentation accuracy and robustness of the method.

Proposed method.  Active contours are dynamic curves that evolve toward the object boundaries to parti-
tion an image into non over-lapping regions. In traditional active contours, the curve C is represented by the zero 
level-set, such that φ= | =C x y x y( , ) ( , ) 0 of a level-set function φ (x, y). The evolution of the level-set function 
φ can be written in the following general form:

φ φ∂
∂

+ |∇ | =
t

F 0,

which is referred to as the level set equation9. Function F is called the force function. For image segmentation, 
function F depends on the image data and the level set function φ.

Let I : Ω → R2 be a given image, C a curve at which the level-set function φ(x, y) is zero φ= | =C x y x y( , ) ( , ) 0. 
The energy functional E is defined as:

φ φ φ= +E E E( ) ( ) ( ),int ext

In traditional edge-based active contour methods14,29,30, it is necessary to re-initialize (reshape) the level-set as 
a signed distance function during the curve evolution to properly follow and capture the object boundaries. 
Therefore, it is necessary to keep the evolving level-set function as an approximate signed distance function dur-
ing the evolution, especially in a neighbourhood around the zero level-set. It is well-known that a signed distance 
function must satisfy the desirable property that φ∇ = 1. An energy term P(φ) is proposed in15 as a metric to 
characterize a function φ to a signed distance function in Ω ∈ R2, which helps to penalize the deviation of φ from 
a signed distance function during its evolution. The internal energy Eint(φ) is defined as:

∫φ α φ= ∇ −
Ω

E dxdy( ) 1
2

( 1) ,int
2

where α is the scaling parameter of Eint, which penalizes the energy leakage. In (2), Eext is the external energy of a 
function φ, which is defined as follows:

φ μ φ φ= + ΓE L vA( ) ( ) ( ),ext

where μ > 0 and v are constants, and the terms L(φ) and AΓ(φ) are defined as:

∫φ δ φ φ= |∇ |ε
Ω

L dxdy( ) ( ) ( ) , (5)

∫φ Γ φ= −Γ σ σ ε
Ω

A H dxdy( ) ( ) , (6),1 2

where Hε(φ) is the regularized version of the Heaviside function:

φ
π

φ
ε

= +






εH arctan( ) 1

2
1

(7)

Parameter ε controls the smoothness of the Heaviside function. For ε → 0, the Heaviside function is the ideal 
unit step function. In (6), Γσ σ,1 2

 is the difference of Gaussian function, which is used to replace a traditional edge 
indicator function. In (5), δε(φ) is the smooth version of the Dirac function, defined as:

δ φ ε
π φ ε

=
+ε( )

( )2 2

where parameter ε controls the width of the Dirac function. For ε → 0, the Dirac function is the ideal unit 
impulse.

In this paper, a level-set method based on the difference of Gaussians (DoG) is proposed. A DoG function, 
which is equivalent to the Mexican Hat function, is a feature enhancement tool that involves the subtraction of a 
blurred version of an original image from another, less blurred version of the original. As a feature enhancement 
algorithm, the difference of Gaussian functions can be utilized to increase the visibility of edges and other details 
present in a digital image. The difference of Gaussians algorithm removes high frequency detail that often includes 
random noise, thus rendering this approach one of the most suitable for processing images with a high degree of 
noise. A major drawback of the application of the algorithm is an inherent reduction of the overall image contrast 
that results. In this work, it is employed as an edge-detector, which works as a balloon force in the external term 
of the proposed energy formulation during the level-set curve evolution. Let I : Ω → R2 be an input image. The 
DoG function Γσ σ x( ),1 2

 is then defined as:
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where σ1 and σ2 are the standard deviations of the first and second Gaussian kernels, respectively, where σ1 < σ2.
Figure 2 shows a 1D difference of Gaussians (DoG) function. It shows that the DoG function is zero when 

the slopes of both Gaussian functions intersect with each other. It helps to extract edges even when the images 
contain intensity inhomogeneous objects.

Finally, from (2), the proposed energy functional, which uses the difference of Gaussians (DoG) function 
Γσ σ x( ),1 2

 to extract edge information, is defined as:

∫ ∫

∫

φ φ μ φ

α φ

= Γ − + ∇

+ ∇ −

σ σ ε ε
Ω Ω

Ω

E v x H dx H dx

dx

( ) ( ) ( ) ( )

1
2 ( 1) ,

,

2

1 2

In the above equation, the first term detects the edges using the DoG function. The second term regularizes 
the region and the third term penalizes the energy leakage. The first variation of the Gateaux derivative31 of the 
functional E is denoted by 

φ
∂
∂

E , which has the following relationship with the evolution equation:

φ
φ

∂
∂

= −
∂
∂t

E ,

The above equation is the gradient descent flow that minimizes the energy functional E. For a particular func-
tional E(φ) explicitly defined in terms of φ, the Gateaux derivative can be computed and expressed in terms of 
function φ and its derivatives31.

By calculus of variations31, the Gateaux derivative (first variation) of the functional E in (10) can be written as:
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where ∇ is the Laplacian operator. Therefore, the function φ that minimizes this functional satisfies the 
Euler-Lagrange equation − =

φ
∂
∂

0E . The steepest descent process for minimization of the functional E yields the 
following gradient flow:
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Figure 2.  1D difference of Gaussians (DoG) function.
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In this paper, the spatial partial derivatives φ∂
∂x

 and φ∂
∂y

 are approximated by the central difference. The approx-
imation of (13) using a central difference scheme can be written as:

φ φ

τ
ξ φ

−
=

+

( )i j
k

i j
k

i j
k,

1
,

,

where ξ φ( )i j
k
,  is the approximation of the right hand side in (13) by the above difference scheme. The difference 

equation in (14) can be expressed as the following iteration:

φ φ τξ φ= ++ ( )i j
k

i j
k

i j
k

,
1

, ,

where τ is the time step used in the above numerical implementations. There is a close relation between the time 
step and the scaling parameter of the energy penalization term i.e., τ × α ≤ 0.2.

In level-set methods, it is essential to initialize the level-set function φ as a signed distance function (SDF) φ0. 
In the proposed formulation, not only is the re-initialization procedure completely eliminated, but the level-set 
function φ no longer needs to be initialized as an SDF. The initial level-set function φ0 is defined as:

φ
ρ

ρ
= =









− ∈ Ω − ∂Ω
∈ ∂Ω
∈ Ω − Ω

x t
x
x
x

( , 0)
,

0,
, (16)

0 0

0

0

In (16), ρ > 0 is a constant (ρ = 1 in this work) and t = 0 define the initial condition of the level-set function 
φ0 = φ(x,t = 0). Ω0 is the inner region of the initial level set φ0, Ω is the image domain and ∂Ω0 the boundary of 
level set φ. Figure 3 shows a 1D profile from the middle column of the difference of Gaussian regularized image 

Figure 3.  DoG of the middle slice of the flower image. (a) Original image, (b) Gaussian regularized image (σ 
= 2), (c) Gaussian regularized image (σ = 3), (d) Difference of Gaussian regularized images (DoG), (e) middle 
profile comparison of (b–d).
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shown in Fig. 3(d). Figure 3(b) and (c) are Gaussian regularized images, which are subtracted to produce the 
DoG based edge profile of the given image, as shown in Fig. 3(d). Figure 3(e) shows a middle profile comparison 
between Fig. 3(b)–(d). It shows that when there is an intersection between the 1D middle profile of Fig. 3(b) and 
(c), then the edge is detected (a transition from high to low or vice versa), which is shown with the red line in 
Fig. 3(e).

Results
In this section, segmentation results using both synthetic and real images are discussed. The proposed method 
is implemented using MATLAB and run on a 3.4 GHz Intel Core-i7 with 16 GB of RAM, testing it on both syn-
thetic images and real brain magnetic resonance (MR) images of 250 × 250 pixels with 256 grey levels (8bpp). The 
parameters used in all experiments in this section are: μ = 0.001 × 2552, v = −40, σ1 = 1, σ2 = 2, α = 1.0, ε = 1 and 
the time step τ = 0.1.

Figure 4 shows segmentation results of different state-of-the-art methods using a flower image with different 
contrast variations until the flower object becomes inhomogeneous with respect to the image background. It 
shows that the DRLS method is able to properly segment images in the first four rows, but it is unable to segment 
the image in the last column. In turn, the CV method is able to properly segment the images in the first two rows 
and fails to properly segment the remaining images. Although the RSF method is able to segment objects in all 
images, the petals of the flowers in the images of the last two rows are not properly segmented. In turn, the quali-
tative comparison shows that the proposed method yields the best segmentation result for all the objects.

Table 1 shows a CPU time comparison among the evaluated methods tested in Fig. 4. For the images in the 
first and second rows, the CV method is the fastest among all segmentation algorithms. In turn, the proposed 
method is the fastest for the images in the last three rows.

Figure 5 shows that the DLSR method could segment the first three images properly. The CV method could 
not properly segment the objects in all of the images. The RSF method could segment the first two images and the 
last properly. However, in the last image, the final contour has missed some details of the small objects enclosed in 
the main object. Moreover, some details of the big object in the right corner are also missed. In turn, the proposed 
method yielded the best segmentation results for all of the images.

Figure 4.  Segmentation of a flower object using different contrast variations (from homogeneous to 
inhomogeneous). (a) Initial contour, (b) DRLS, (c) CV, (d) RSF, (e) Proposed method.
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Table 2 shows a CPU time comparison among the evaluated methods tested in Fig. 5. It shows that the CV 
method is the fastest among all segmentation algorithms for the images in the first and the last rows. For the 
second and fourth images, the proposed method is the fastest. In turn, for the image in the third row, the DRLS 
method is the fastest.

Figure 6 shows that only the proposed method and LGFIM are able to accurately segment all of the intensity 
inhomogeneous objects. LIF and LSACM are also able to segment all the objects. However, for both methods, 
the level-set curve around the boundaries of the objects is not quite smooth, which results in information loss. In 
turn, the VLSBCS method is able to properly segment the images in the first two rows and fails in the last three 
rows.

Table 3 shows a CPU time comparison between the evaluated local active contour methods shown in Fig. 6. It 
shows for all images the proposed method yields the lowest CPU time; therefore, it is the fastest.

In Fig. 7, two images with and without noise are used to show the segmentation capability of the proposed 
method in the presence of noise. Images shown in the first and third rows are affected by the Poisson noise. 
Whereas, image in the second row is affected by the Gaussian noise with mean = 0.01 and variance = 0.2. The 
propose method is able to properly segment images with Poisson noise by using the default values of σ1 and σ2 
as discussed earlier in this section. However, in case of Gaussian noise different values of σ1 and σ2 are used i.e., 

Figure 5.  Image segmentation with different types of intensity inhomogeneity (from homogeneous to 
inhomogeneous). (a) Initial contour, (b) DRLS, (c) CV, (d) RSF, (e) Proposed method.

Row number

DRLS CV RSF Proposed

Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s)

1 500 5.45 20 0.80 200 6.81 140 1.44

2 500 4.79 20 0.81 250 8.45 140 1.38

3 500 4.83 1500 12.61 300 10.38 140 1.40

4 1300 13.66 1200 10.09 300 9.81 140 1.39

5 900 8.77 2500 20.30 550 17.38 200 1.97

Table 1.  CPU time comparison among the state-of-the-art methods shown in Fig. 4.
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σ1 = 2, σ2 = 10. In order to segment images with intense noise, bigger values of σ1 and σ2 are used. Moreover, 
regularization parameter μ is also increased (μ = 0.01 × 255 × 255). It concludes that the proposed method is 
not affected by the presence of noise. It is able to properly segment the object both with and without background 
noise.

Figure 8 shows different images with weak boundaries, salt and pepper and Gaussian noise. First row shows 
circular object with weak boundaries in both white and black background. It shows that in both cases, the pro-
posed method is able to properly segment objects with weak boundaries. Second row shows image with five 
different objects with and without salt and pepper noise of d = 0.3. Where d is the noise density. Proposed method 
is able to properly segment all five objects with weak boundaries, when there is no noise in the image. In second 
case, when salt and pepper noise of d = 0.3 is applied; the proposed method could only segment four objects 
out of five. The fifth object was dissipated by the noise. In last row, both salt and pepper and Gaussian noise 
are applied to an irregular object with weak boundaries. In the first image, a salt and pepper noise of d = 0.2 is 
applied. In the second image, Gaussian noise of zero mean and variance = 0.3 is applied. The last row shows that 
the proposed method yields acceptable segmentation results for both cases of noise.

Figure 9 shows the impact of the position of the initial contour on the evaluated methods. The segmentation 
results produced by the proposed method are not affected by the initial position of the contour, unlike the other 
evaluated methods, which are sensitive to the initial contour.

Figure 10 shows the brain MR image segmentation problem using the evaluated methods. RSF and the pro-
posed method are able to segment the detailed anatomical structure of the brain region, whereas the remaining 
methods fail to do so. There is region overlap in the segmentation result of RSF method shown in the second row, 
which concludes the proposed method yields the best segmentation.

Row number

DRLS CV RSF Proposed

Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s)

1 400 4.83 20 0.88 100 3.81 240 2.87

2 200 2.28 500 4.77 200 3.59 80 1.08

3 200 2.16 500 4.97 300 6.31 400 3.73

4 1100 13.3 500 4.83 500 10.64 350 3.59

5 1200 22.78 500 5.42 300 6.44 350 5.73

Table 2.  CPU time comparison among the state-of-the-art methods shown in Fig. 5.

Figure 6.  Image segmentation with different types of intensity inhomogeneity (from homogeneous to 
inhomogeneous). (a) Initial contour, (b) LIF, (c) VLSBCS, (d) LSACM, (e) LGFIM (f) Proposed method.
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Quantitative analysis.  In this section, the proposed method is quantitatively compared with the alternative 
state-of-the-art methods. In this paper, several metrics are used to evaluate the binary segmentation of a structure 
in an image. Let G be the ground truth of the region of interest and S the segmented region in the given image 
I:Ω → R2. The true positive (TP) set is defined as ∩=TP G S, which is the set of the segmented region common 
in both G and S. The true negative (TN) set is defined as ∩=TN G S , which is the set of image background 
common in both G and S. Similarly, the false positive (FP) set is defined as ∩=FP G S, which is the false object 
segmented as region of interest not belonging to set G. In turn, the false negative (FN) is defined as ∩=FN G S , 
which is the region of interest missed by the proposed method during the segmentation process.

From the above subsets, different similarity metrics are computed. In particular, the Jaccard index (JI)32, the 
Dice coefficient (DSC)33 and the Matthews correlation coefficient (MCC)34 are frequently used in set comparison 
that is, to compute the segmentation accuracy when the ground truth of the region of interest is available. In this 
paper, the three set similarity metrics (JI, DSC and MCC) are computed for the quantitative analysis. They are 
defined as:

=
+ +

=
+ + +

JI TP
TP FP FN

DSC TP
TP FN TP FP

,
( )

,1
2

=
× − ×

+ + + +
MCC TP TN FP FN

TP FP TP FN TN FP TN FN
( ) ( )

( )( )( )( ) (17)

Figure 7.  Segmentation results of real and noisy images using the proposed method. (a) and (c) Initial contour, 
(b) and (d) Final contour.

Row 
number

LIF VLSBCS LSACM LGFIM Proposed

Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s) Iterations CPU time (s)

1 400 5.45 20 1.71 40 24.69 20 1.58 140 1.44

2 450 5.97 30 2.21 40 25.55 30 2.19 140 1.38

3 600 7.56 30 2.27 50 32.05 70 4.12 140 1.40

4 2000 57.38 100 5.87 60 38.69 90 5.09 140 1.39

5 2000 55.91 100 6.31 80 50.72 100 5.78 200 1.97

Table 3.  .CPU time comparison with the local active contour methods shown in Fig. 6.
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For the maximum segmentation accuracy, the values of JI, DSC and MCC should be close to 1 (ideally 1). The 
Hausdorff distance (HD)35 is another similarity metric, which is used to compute the accuracy between two 

Figure 8.  Segmentation results of images with weak boundaries, with salt and pepper and Gaussian Noise. (a) 
and (c) Initial contour, (b) and (d) Final contour.

Figure 9.  Effects of initial contour on final segmentation. (a) Initial contour, (b) DRLS, (c) CV, (d) RSF, (e) 
Proposed method.
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sets. It provides a symmetric distance measure of the maximal discrepancy between two labelled contours and is 
defined as:

=















∈ ∈ ∈ ∈( )HD G S d g s d g s( , ) max max min ( , ) , max min ( , )

g G s S s S g G

where G and S are the ground truth and computed contours, respectively, and d(g,s) denotes the Euclidean dis-
tance. For the maximum segmentation accuracy, the HD value should be close to 0 (ideally 0).

Figure 11 shows the segmentation accuracy comparison using the Matthews correlation coefficient (MCC) 
from Figs 4 and 5 in a box plot. The proposed method yields the best segmentation results for both Figs 4 and 5. 
However, in Fig. 4, RSF yields a similar result compared to the proposed method.

Figure 10.  Brain MR image segmentation comparison with the state-of-the-art. (a) Initial contour, (b) DRLS, 
(c) CV, (d) RSF, (e) Proposed method.

Figure 11.  Accuracy plot for Figs 4 and 5 using the Matthews correlation coefficient. (a) Box plot of Fig. 4. (b) 
Box plot of Fig. 5.
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Figure 12 shows the segmentation accuracy comparison using the Hausdorff distance (HD) from Figs 4 and 5 
in a box plot. It shows that the proposed method yields the smallest HD value for both Figs 4 and 5. Therefore, it 
yields the best segmentation results.

Figure 12.  Accuracy plot for Figs 4 and 5 using the Haursdorff distance. (a) Box plot of Fig. 4. (b) Box plot of 
Fig. 5.

Figure 13.  WM and GM regions computed with the proposed method and their respective ground truths. (a) 
Initial contour, (b) Final contour, (c) Brain mask, (d) Masked contour, (e) Computed WM, (f) Computed GM, 
(g) WM ground truth, and (h) GM ground truth.

Figure

Jaccard index (JI) Dice coefficient (DSC)

DRLS CV RSF Proposed DRLS CV RSF Proposed

4 0.965 ± 0.007 0.918 ± 0.023 0.97 ± 0.001 0.974 ± 0.002 0.982 ± 0.004 0.957 ± 0.012 0.985 ± 0 0.987 ± 0.001

5 0.775 ± 0.169 0.612 ± 0.145 0.655 ± 0.172 0.943 ± 0.016 0.814 ± 0.157 0.715 ± 0.125 0.731 ± 0.147 0.971 ± 0.009

Table 4.  Segmentation accuracy analysis comparison using Jaccard index and Dice coefficient similarity 
metrics.
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Table 4 shows the segmentation accuracy comparison of the proposed method with the state-of-the-art using 
the JI and DSC similarity metrics. Both the mean and standard deviation (mean error) of the evaluated metrics 
are considered in the result compilation. For Fig. 4, both the proposed method and RSF yield similar values for 
both JI and DSC. In turn, the proposed method yields best segmentation result for the Fig. 5.

This section also shows segmentation results using 2D brain MR images from a public database of 20 brain 
anatomical models36,37. All images have 250 × 250 pixels and 8 bits per pixel. As a practical application, brain MR 
images are segmented into white matter (WM) and gray matter (GM) regions, which can be helpful to psycholo-
gists to pinpoint psychological diseases and to surgeons during brain surgery.

In order to partition a brain MR image into WM and GM regions, the segmentation result is split into two 
regions based on two phases: φ > 0 and φ < 0. The WM and GM regions represent the brain region, which is 
the region of interest, while the regions outside the brain (e.g., skull, fat and vacuum) can be taken as irrelevant 
regions. Therefore, we manually extracted the brain area to segment the WM and GM regions, removing the other 
irrelevant regions out of second row, the third and fourth images show the ground truths of the WM and GM 
regions, respectively.

Figure 13 shows the accuracy analysis of the region of interest in the brain MR images. A total of 100 2D slices 
from 20 brain anatomical models37 were used. Five 2D slices from every patient were considered. The WM and 
GM regions for all methods were computed as depicted in Fig. 13. The segmentation accuracy corresponding to 

Figure 14.  Segmentation accuracy (in terms of Jaccard index × 100) analysis of (a) WM, and (b) GM regions 
using two-phase active contours.
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the WM and GM regions presented in Fig. 14 was obtained using percentage accuracy in terms of Jaccard index 
from (17).

Figure 14 and Table 5 show that the proposed method yields the best segmentation accuracy in most cases for 
both the WM and GM regions.

Conclusions and future work.  In this paper, a novel edge-based active contour method is proposed that 
uses a difference of Gaussians (DoG) function as an edge-indicator in its formulation. DoG function uses differ-
ences of two smooth images to extract edge information in an image, which acts as a balloon force in the energy 
functional to evolve the level set curve. In the proposed formulation, the internal energy term penalizes the devi-
ation of the level set function from a signed distance function (SDF) and external energy term evolves the contour 
towards the boundaries of the objects.

The inclusion of DoG function in the energy formulation work as a global edge extractor and is able to seg-
ment all the regions in an image. Moreover, it is also able to properly segment images with intensity inhomogene-
ity. The results show that proposed method yields best segmentation results using both synthetic and real images 
as compared to the discussed state-of-the-art methods.

The proposed method segments all regions in an image globally; therefore, it cannot be used in the selective 
segmentation of a particular region in an image. In future, we would like to formulate a method to segment a 
selective region in an image, which can be a good help to segment particular regions in medical applications. The 
proposed method can properly segment intensity inhomogeneous images; however, it is unable to correct the bias 
of the inhomogeneous regions. In future, we would also like to formulate an edge-based active contours which 
can also correct the inhomogeneity of the regions.
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