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Antibiotics induce polarization
of pleural macrophages to M2-
like phenotype in patients with
e tuberculous pleuritis
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Pleural macrophages play critical roles in pathogenesis of tuberculous pleuritis, but very little is known
about their response to anti-tuberculosis antibiotics treatment. Here, we examined whether and how
pleural macrophages change in phenotype, transcription and function following antibiotics treatment
in patients with tuberculous pleuritis. Results show pro-inflammatory cytokines were down-regulated
significantly post antibiotic treatment in the pleural effusions and pleural macrophages up-regulated

. markers characteristic of M2 macrophages such as CD163 and CD206. Differential expression analysis of

. transcriptomes from four paired samples before and after treatment identified 230 treatment-specific

. responsive genes in pleural macrophages. Functional analysis identified interferon-related pathway to

. be the most responsive genes and further confirmed macrophage polarization to M2-like phenotype.

: We further demonstrate that expression of a significant fraction of responsive genes was modulated

. directly by antibiotics in pleural macrophages in vitro. Our results conclude that pleural macrophages
polarize from M1-like to M2-like phenotype within a mean of 3.5 days post antibiotics treatment, which

. isdependent on both pleural cytokine environment and direct modulatory effects of antibiotics. The

: treatment-specific genes could be used to study the roles of pleural macrophages in the pathogenesis of

. tuberculous pleuritis and to monitor the response to antibiotics treatment.

Tuberculosis (TB) is caused by infection of Mycobacterium tuberculosis in the lung and is a major public health
: problem in the world because of its prevalence and high mortality'. Around 20% of TB patients develop tuber-

culous pleural effusion (TPE), an accumulation of excess fluid in the pleural cavity, due to tuberculous pleuritis,
. ie., inflammation of the pleura*. Tuberculous pleuritis usually presents as an acute illness with fever, cough and
. pleuritic chest pain, and is diagnosed by elevated levels of adenosine deaminase (ADA) and interferon-gamma
© (IFNA) in the pleural fluid>®. Tuberculous pleuritis is caused by delayed type hypersensitivity responses to myco-
* bacterial antigens in the pleural space with low bacterial burden’. Although ~70% pleural fluid cells are T cells,
- pleural macrophages are also known to contribute to the pathogenesis of tuberculous pleuritis and the outcome
. of different clinic forms of TB®®.
: Macrophages are the first line of defense against invading microbes and mediate innate immune responses
. through pathogen recognition and activation of inflammatory reactions. Depending on the stimulations and
: microenvironment, macrophages polarize to different functional states, including the classically activated
© MI and the alternatively activated M2'°. The M1 phenotype is associated with secretion of large quantities of
. pro-inflammatory cytokines and killing of microbes. The M2 type of macrophages exhibits immunoregulatory,
. phagocytosis, and tissue remodeling and repair functions. In TB patients, alveolar macrophages in the lungs are
. directly infected by M. tuberculosis. Depending on the stage of infection and disease development, macrophages
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Characteristics Statistics
Male/Female 89/46

Ages (years) 35.6 (17~83)
Pleural fluid

WBC (6 x 10°/L) 4.5(0.6~23)
Mononecluear cells (%) 72.3 (39~94)
CD4-+ 58.6 (29.8~82.3)
CD8+ 19.5 (6.9~34.6)
B 5.7 (0.3~26.9)
NK 6.3 (0.4~21.4)
Macrophages 8.5(0.2~53.6)
Multinuclear cells (%) 27.7 (6~61)
ADA (U/L) 84.9 (37~145)
LDH (U/L) 782.2 (199~1462)
Protein (g/L) 52.2 (26~88)
Rivalta test +

Serum

ESR (mm/h) 48.7 (8~76)
CRP (mg/L) 65.7 (19~121.8)
CDU 66.6 (27~123)

Table 1. Clinical characteristics of patients.

can produce either pro-inflammatory and microbicidal responses or immunosuppressive and tissue repairing
responses!!. For example, in newly onset TB patients and during the early phase of M. tuberculosis infection, mac-
rophages exhibit an M1-like phenotype producing pro-inflammatory cytokines and contributing to the develop-
ment of TPE®.

The frontline treatment of M. tuberculosis infection is a combination of four antibiotics: isoniazid, rifampicin,
pyrazinamide and ethambutol (HRZE). Antibiotics treatment significantly eliminates the bacterial load and
inhibits the formation of TPE. Although antibiotics are most widely known for their direct microbicidal activ-
ity!>1%, increasing evidence suggests that many antibiotics also modulate activities of immune cells!*. For example,
rifampicin is known to induce the expression of CD1 in human T cells and monocytes and therefore immune
responses to various infections'>!S. Isoniazid eliminates antigen-specific T cells by inducing apoptosis in TB ani-
mal models!’, and also regulates both adaptive and innate immune responses during its induction of liver injury.
Pyrazinamide modulates the host immune response to infection by reducing pro-inflammatory cytokines IL6
and TNFa production', and activates the mouse macrophage by inducing expression of CD80, CD86 and
MHCII?. Isoniazid and pyrazinamide together robustly activate autophagy through reactive oxygen species in
mycobacterial-infected murine macrophages®!. A pertinent question is whether and how antibiotics treatment in
TB patients modulates macrophage polarization and function.

Recently, O’Garra and colleagues have started to address this question by transcriptional profiling of periph-
eral blood mononuclear cells (PBMCs) from TB patients before and after antibiotics treatment. They report the
identification of a whole-blood host-response-specific 393-transcript signature, which reflects mycobacterial
infection, and a whole-blood treatment-specific 320-transcript signature for monitoring the efficiency of anti-
biotics treatment®>?. Because total PBMCs were used, their studies did not define the contribution of specific
immune cell types. Furthermore, compared to TPE, although peripheral blood is more accessible but it is far-
ther removed from the primary site of mycobacterial infection. Whether and how antibiotics treatment in TB
patients affects specific immune cell types, such as macrophages, in the proximal site of infection has not been
investigated.

In this study we have examined changes in phenotype and function of pleural macrophages in TB patients
before and after antibiotics treatment by assaying their expression of surface markers, transcription profiles
and phagocytosis activities. Our results show that pleural macrophages are polarized from M1-like to M2-like
phenotype as early as 2 days post antibiotics treatment. A signature of 230 genes was identified to reflect the
treatment-specific response in pleural macrophages. Among these genes, some were modulated by direct anti-
biotics treatment of purified pleural macrophages in vitro. Our study defines responses of pleural macrophages
to antibiotics treatment in TB patients and raises the possibility of therapeutic efficacy of antibiotics in treating
tuberculous pleuritis by modulating activities of pleural macrophages.

Results

Pleural macrophages are polarized in response to antibiotics treatment. We enrolled 171
patients with tuberculous pleuritis for studying the effect of antibiotics on macrophage polarization. After exclud-
ing patients with other lung diseases, HIV co-infection, or contraindications to pleural effusion puncture, 135
patients remained (Table 1). Pleural fluids were collected from 36 patients before and 2 to 10 days after HRZE
treatment (paired samples). In the remaining 99 patients, pleural fluids were collected either before or after treat-
ment only (unpaired samples). The frequency and phenotype of various immune cells in the pleural fluids were
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Figure 1. Comparison of surface marker expression by pleural macrophages before and after antibiotics
treatment. (A) Flow cytometry analysis of CD80, CD86, CD163 and CD206 expression by CD14" pleural
macrophages before (BT) and after (AT) antibiotics treatment from a representative patient. Shaded histograms
show cells stained with isotype control antibody. The numbers indicate percentages of cells within the gated
regions. (B-C) Aggregated data from paired samples (B, n=29) and unpaired samples (C, n =128) showing
mean fluorescence intensity (MFI) of CD80, CD86 and CD163 expression and percentages of CD206" cells.

P values are shown between BT and AT. (D) Comparison of phagocytosis of five paired pleural macrophage
samples before and after antibiotics treatment.

determined by flow cytometry using commonly used lymphocyte and macrophage markers (Figs S1 and 1A).
Overall, CD3" T cells were most abundant in the pleural fluids with a CD4" to CD8" ratio of ~3 to 1, similar to
a previous report?%. The proportion of macrophages in the pleural fluids varied from patients to patients with an
average of 8.5% (Table 1). The frequencies of CD4" or CD8" T cells, B cells, nature killer cells (NK) and mac-
rophages did not change significantly before and after antibiotics treatment in the paired and unpaired analysis
(Figure S2). However, expression of M2 markers, including CD163 and CD206, was significantly elevated in
pleural macrophages in both paired (Fig. 1B) and unpaired (Fig. 1C) samples following antibiotics treatment,
although expression of M1 markers CD80 and CD86 were also increased slightly. The phagocytic activities of
pleural macrophages to engulf fluorescent beads were decreased following antibiotics treatment with a P-value
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Figure 2. Comparison of cytokine levels in pleural fluids from patients with tuberculous pleuritis before and
after antibiotics treatment. The indicated cytokines were assayed by ELISA in pleural fluids of 28 patients. P
values by paired t-test are indicated.

of <0.056 (Fig. 1D). These data suggest that pleural macrophages are polarized following antibiotics treatment in
patients with tuberculous pleuritis.

Antibiotics inhibit pro-inflammatory cytokine production. We measured the levels of cytokines
IFN~, TNFq, IL4, IL6, IL10, IL13, TGFB3, GM-CSE IFNa and IFNB in the paired pleural fluids by ELISA. The
levels of IFN~, TNFa, IL6 and IL10 were significantly decreased following antibiotics treatment while the rest did
not change significantly (Fig. 2). Intracellular IFN~, TNFa, IL6 and IL10 were assayed in various cell types after in
vitro stimulation with PMA plus ionomycin. Consistently, the percentages of CD4" T cells positive for intracellu-
lar IFN~, TNFao, IL6 and IL10 decreased and the percentages of CD8 T cells positive for intracellular IFN~ and
TNFa also decreased (Figure S3A, S3B). Similarly, the percentages of non-T cells positive for intracellular TNFou
also decreased. RT-qPCR showed that in pleural macrophages the level of IL6 and IFN~ transcripts was signif-
icantly decreased following antibiotics treatment (Figure S3C). In the paired samples, change in cytokine levels
in pleural fluids was negative correlated with change of macrophage markers (Figure S4). For example, IFN~,
TNFa, IL6 and IL10 level was negatively correlated with the expression of CD80 and CD163, whereas TGF3 and
GM-CSF level was negatively correlated with CD206. Taken together, antibiotics treatment reduces cytokine lev-
els in the pleural fluid by modulating functionality of not only T cells but also non-T cells such as macrophages.

Pleural macrophages polarize to an M2-like phenotype following antibiotics treatment. To
better understand the effect of antibiotics on pleural macrophages, we determined the transcription profiles of
pleural macrophages before and after HRZE treatment by RNA-Seq of four pairs of pleural macrophage samples
with yielding high quality of total RNA. Based on the overall transcription profiles, principle component anal-
ysis (PCA) grouped samples before treatment together and samples after treatment together (Fig. 3A), suggest-
ing the sufficient samples to capture the treatment response. Differential expression analysis revealed that 156
genes were up-regulated and 74 genes were down-regulated significantly after antibiotics treatment (Fig. 3B and
Table S1). The differentially expressed genes were enriched with immune regulation and stress response pathways
(Fig. 3C and Table S2), including response to chemical stimulus (37 genes, P=>5.91e-6), immune response (25
genes, P=_8.97e-6), response to stress (42 genes, P=3.86e-5), and immunity and defense (36 genes, P=1.2e-6).
Regardless of the enriched category, up-regulated genes were enriched with vascular development and extracellu-
lar matrix remodeling, while down-regulated genes were enriched with interferon-mediated immunity (Table S2).
Moreover, most M1 marker genes, such as IL6, IL23A, IDO, CCL8 and CXCL10/11, were down-regulated whereas
M2 marker genes, such as IL10, IRF4, CD163, IL4R, MRC1/2 and CCL18, were up-regulated (Fig. 3D). These
results suggest that at the genome level, pleural macrophages are polarized to an M2-like phenotype following
HRZE treatment.

Twenty-two of the 74 down-regulated genes were also down-regulated in previous transcriptional analysis
of peripheral blood mononuclear cells (PBMCs) in TB patients post antibiotics treatment?>*}, whereas only 4
of the 156 up-regulated genes were up-regulated in PBMCs. The 22 down-regulated genes were enriched with
interferon-mediated immunity (7 genes, P =1.2e-10) and immunity and defense (10 genes, P = 8.0e-6), including
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Figure 3. Pleural macrophages are polarized to an M2-like phenotype by antibiotics treatment. (A) Principal
component analysis of transcriptional profiles of pleural macrophages from four patients (red, orange, blue and
green) before (circle) and after (triangle) antibiotics treatment. (B) Heatmap showing differentially expressed
genes in four pairs of samples. (C) List of the most significantly enriched pathways of differentially expressed
genes. (D) Heatmap of M1 and M2 gene expression in pleural macrophages before and after antibiotics
treatment. (E) Comparison of differentially expressed genes to gene signatures of hMDMs stimulated by 23
different stimuli (Xue et al. 2014). Shown are number of differentially expressed genes in pleural macrophages
that are either positively (orange bar) or negatively (blue bar) correlated with the corresponding gene expression
in hMDMs following indicated stimulation. (F) List of top 10 transcription factors that were identified to
regulate the differentially expressed genes.
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Figure 4. Comparison of gene expression in pleural macrophages with and without antibiotics treatment in
vitro. Pleural macrophages were isolated from five patients before antibiotics treatment and cultured in vitro for
36 hours with or without antibiotics. Cells were collected for RNA isolation and real-time PCR to quantify the
transcript level of the indicted genes. Transcript level of each gene was normalized to GAPDH (ct). The ratio of
ct with and without antibiotics is shown. Error bar, SEM; *P < 0.05; **P < 0.01.

OAS (2'-5'-oligoadenylate synthetase) and IFIT (Interferon-induced protein with tetratricopeptide repeats) fam-
ily members. We also compared expression profiles in pleural macrophages to the gene expression modules in
human monocyte-derived macrophage (hMDMs) stimulated by various stimuli®®. Most differentially expressed
genes in pleural macrophages before and after antibiotics treatment were negatively correlated with IFN~/TNFa
stimulating modules and positively correlated with P3C or TNF_PGE2_P3C (TPP) simulating modules through
TLR2 (Fig. 3E). Based on master regulation analysis®® of the signature genes and genome-wide regulatory net-
work by Xu et al.?®, 7 of the top 10 identified transcription factors (TFs) were interferon responsive, including
STAT1, FOXO3 and IRF9 (Fig. 3F). These results suggest that while IFN~ and TNFa exert significant effect on
pleural macrophage polarization, antibiotics may exert separate effect.

Antibiotics exert direct effect on pleural macrophages. Gene expression changes in pleural mac-
rophages after antibiotics treatment are enriched in GO term of “response to chemical stimulus” and most of these
up-regulated genes were not captured in the whole-blood treatment-specific signature, raising the possibility that
antibiotics exert direct effect on macrophage polarization. To test this possibility, we purified pleural macrophages
from patients before antibiotics treatment but treated these macrophages with antibiotics in vitro. We selected 8
signature genes (COLEC12, HSPA1B, TREM1, CCL18, OAS3, IFIT3, CXCL16, CXCL10) to monitor the change of
gene expression by real-time PCR. These genes not only belonged to “response to chemical stimulus” but to other
functional categories such as “immune response” and “response to stress”. Expression of five genes was altered
by antibiotics treatment in vitro: The levels of COLEC12, HSPA1B and TREM1 transcripts were up-regulated,
whereas the two IFN~-mediated antiviral genes OAS3 and IFIT3 were down-regulated (Fig. 4), consistent with
the in vivo results. However, CCLI8, a typical M2 marker, was down-regulated in vitro but up-regulated in vivo
following antibiotics treatment, and CXCL16 and CXCLI0, typical M1 markers and known IFN~-responsive
genes, were not significantly changed in vitro. These results show that anti-TB antibiotics directly modulate dif-
ferentiation status of pleural macrophages.

Discussion

TPE is one of the most common forms of extrapulmonary tuberculosis. Pleural macrophages exhibit an M1-like
phenotype producing pro-inflammatory cytokines and contribute to the initiation and development of TPE®2725,
No study has investigated the treatment-specific response of pleural macrophages in patients with tubercu-
lous pleuritis. Here we examine the phenotypic and functional changes of pleural macrophages post antibiot-
ics treatment by assaying their expression of surface markers, phagocytic function, secretion of cytokines and
genome-wide transcriptional profiles. Our results from different analyses show that pleural macrophages are
rapidly polarized from M1-like to M2-like phenotype after antibiotics treatment in vivo.

Differentiating monocytes or macrophages express higher level of CD14 and HLA-DR than circulating or
resident monocytes. The higher expression level of CD14 and HLA-DR in pleural macrophages comparing to
monocytes (Supplementary Figure S5A,D), suggests pleural macrophages are not monocytes. However, pleu-
ral macrophages before treatment have lower FSC/SSC comparing to pleural macrophages post treatment
(Supplementary Figure S5D), suggesting pleural macrophages before treatment tend to be in intermediate status
during monocytes to macrophage differentiation. Since the total number or proportion of pleural macrophages
did not change before and post antibiotic treatment (Supplementary Figure 1G), additionally the expression

SCIENTIFICREPORTS | 7: 14982 | DOI:10.1038/s41598-017-14808-9 6



www.nature.com/scientificreports/

levels of CD14+ were slightly elevated post treatment (Supplementary Figure S5B,C) and CD206"°" pleural mac-
rophages had lower FSC/SSC comparing to CD206" pleural macrophages (Supplementary Figure S5E), these
results suggest that CD206 expression changes are most likely due to the differentiation of pleural macrophages
induced by antibiotics treatment but not the reduction of monocytes with low expression of CD206.

Our transcription analysis of pleural macrophages before and after antibiotics treatment identified a
treatment-specific signature of 230 genes, which significantly enriched a down-regulated functional pathway
of “interferon-mediated immunity”, such as the interferon-related antiviral gene families®, IFIT (IFIT1, IFIT2,
IFIT3, IFIT5 and IFITM1) and OAS (OAS1, OAS2 and OAS3). In previous studies, gene expression analysis of the
whole blood of TB patients also showed interferon signaling and innate immune response genes were gradually
down-regulated post antibiotics treatment?*?*, consistent with the decreased level of IFN~ in the patient serum™.
These results indicate interferon-mediated genes are significantly responsive to antibiotics treatment not only in
the peripheral blood but also in the TPE. Moreover, differential expressed genes are negatively correlated with
IFN~ and/or TNFa stimulating modules and regulated by interferon responsive TFs, indicating the decrease of
IFN~ and TNFa in the TPE exerts significant effect on pleural macrophage polarization post antibiotics treat-
ment. However, a significant fraction of treatment-specific genes was modulated by direct antibiotics treatment
of purified pleural macrophages in vitro, demonstrating antibiotics may exert independent effects on the pleural
macrophage polarization.

Studies have suggested that single anti-TB antibiotics exerts direct immunomodulatory effect on immune
cells’®1. Among the treatment-specific 230 signature genes, most of them were not present in the whole-blood
treatment-specific signature?>?* nor IFN~ and/or TNFa stimulating modules, suggesting anti-TB antibiot-
ics might directly regulate gene expression in pleural macrophages. As shown by in vitro antibiotics treatment
of purified pleural macrophages, the expression of five out of eight selected genes was significantly changed.
COLECI2, HSPAIB and TREM1I were up-regulated as in in vivo. COLECI2 is a C-lectin scavenger receptor asso-
ciated with host defense by binding to and removal of microorganisms®"*2. HSPA1B encodes a 70kDa heat shock
protein and has been reported to activate macrophages and enhance phagocytosis****. TREM plays a crucial role
in fine-tuning of inflammatory response by enhancing or inhibiting TLR signals through NFxB and PU.1*>-%.
TREM1-related signaling was identified as the most important activated pathway during active TB disease in
blood transcriptome analysis from multiple data sets®. Two antiviral genes IFIT3 and OAS3, IL10-inducing and
IFN~-suppressing gene CCL18* were down-regulated, while strong IFN~-inducing genes CXCL10 and CXCL16%
were not changed. IFIT3 and OAS3 can be induced by interferon signal or Pattern Recognition Receptors (PRRs)
activation®. Interestingly, comparing to expression profiles of human monocyte-derived macrophages (hMDMs)
to various stimuli, the most positively correlated stimulus is the TLR2 ligand P3C (Pam3Cys) and combination
of LPS and Immune Complex (LPS_IC). Anti-TB antibiotics treatment induced the TLR2 and TLR4 expression
in lymphocytes and CD14™ monocytes in pulmonary tuberculous patients*. These results suggest that anti-TB
antibiotics might directly modulate the TLR signaling to regulate the gene expression in pleural macrophages.
The master regulation analysis also identified several non-interferon or TNF responsive TFs that regulate the
differentially expressed genes, such as MAFA, MTFI and MEF2D. These non-interferon or TNF responsive TFs
could play a key role in modulating pleural macrophages response to anti-TB antibiotics. Thus, the efficacy of
antibiotics in treating tuberculous pleuritis may depend not only on direct killing of mycobacteria but also on
modulating the function of pleural macrophages. Consistent with this notion, differentiation of pleural mac-
rophages to M2-like phenotype may promote tissue repair.

Current management of TB treatment lacks robust tools to monitor the treatment efficiency in the early stage
during the long-term antibiotics treatment, especially for the treatment of multidrug-resistant TB patients**. We
show that the pro-inflammatory mediators IFN~, TNFo and IL6 in TPE were decreased significantly post anti-
biotics treatment as short as 2~3 days. The reduction of these pro-inflammatory cytokines was also observed in
the serum, but not until 2~4 months post treatment®. Because TPE is more proximal to the site of mycobacterial
infection, the more rapid change of pleural cytokines as well as pleural macrophage phenotype could be valuable
prognostic biomarkers to monitor the efficiency of antibiotics treatment in TB patients with tuberculous pleuritis.

Methods

Patients and study design. A total 171 adult patients with tuberculous pleuritis were enrolled in this study.
Participants were recruited from the Infectious Disease Hospital of Changchun, China. Thirty-six patients with
serious comorbidities, encapsulated pleural effusion, other lung diseases, HIV co-infection, or contraindications
to pleural effusion puncture were excluded from this study. All patients received a full 2 months of combination
antibiotics treatment (HRZE) with standard doses of isoniazid (H, 300 mg/d), rifampicin (R, 450 mg/d), pyrazina-
mide (Z, 1500 mg/d) and ethambutol (E, 750 mg/d) followed by 4-month HR treatment without steroid therapy.
Patients underwent thoracentesis (diagnostic and therapeutic) before chemotherapy and/or after 2~10 days of
chemotherapy before pleural effusion disappeared. The study protocol was approved by the Ethics Committee
of the Infectious Disease Hospital of Changchun and The First Hospital of Jilin University. All experiments were
performed in accordance with the relevant guidelines and regulations. In addition, written informed consent was
obtained from each subject.

Sample acquisition. TPE was obtained by thoracocentesis under conscious sedation and local anaesthesia
using a 14 G Klatskin needle. 50~150 ml of urokinase-anticoagulated TPE was immediately deposited in 50 ml
tube and centrifuged at 1500 rpm at 4 °C for 10 minutes. The cell-free PE was collected and stored at —80°C before
use. Pleural effusion mononuclear cells (PEMCs) were separated immediately on Lymphoprep (Fresenius Kabi
Norge AS, Norway) density gradients from cell pellet.

SCIENTIFICREPORTS |7: 14982 | DOI:10.1038/s41598-017-14808-9 7



www.nature.com/scientificreports/

Cell surface and intracellular cytokine staining.  After pre-incubation with human Fc-receptor binding
inhibitor (eBioscience, USA) for 15 minutes on ice, fresh PEMCs were stained with fluorochrome-conjugated
antibodies of CD14, CD80, CD86, CD163, CD206, CD3, CD4, CD8, CD20 and CD56 (BD Biosciences, USA)
at 4°C in the dark for 20 minutes. Cells were washed, centrifuged and resuspended in cold FACS Buffer (PBS
containing 0.1% BSA and 0.01% sodium azide) plus PI before flow cytometry analysis. For intracellular cytokine
staining, PEMCs were first plated and stimulated with 50 ng/ml PMA and 1 pM Ionomycin (Sigma-Aldrich) sup-
plement with GolgiStop™ (BD Biosciences) for 4hours or 18 hours. Cells were stained with Live/Dead® Fixable
Dead Cell green fluorescent reactive dye (Invitrogen, USA), then fixed and stained with IFN~, TNFq, IL6, IL10,
IL4 and IL2 using Cytofix/Cytoperm Kit (BD Biosciences). Flow cytometry was performed using a LSR Fortessa
cytometer (BD Biosciences) and data were analyzed using Flowjo7.6.1 software.

ELISA. TPE supernatant were harvested and assayed for IFNa, IFN(, IFN~, TNFq, IL-18, IL-4, IL-6, IL-10,
TGF3, and GM-CSF production by ELISA according to the manufacturers’ protocol from eBioscience, R&D,
Abcam, Elabscience and Dakewe Biotech Co.

Pleural macrophage purification, RNA isolation, RNA-sequencing and data analysis. Pleural
macrophages were purified from freshly isolated PEMCs using human CD14 MicroBeads (Miltenyi Biotec, USA).
Briefly, cells were passed through a magnetic column as CD14-depleted cells. Labeled cells were collected as puri-
fied macrophages. Macrophages were further purified by seeding in 60-mm dish in complete RPMI 1640 medium
(Gibco, USA) containing 10% FBS (B, Israel), 100 U/ml of penicillin and streptomycin. Cells were incubated at
37°C for 20 minutes and washed off the unattached cells. The purity of macrophages were assessed by Giemsa
staining to ensure >90% purity. 0.5~1 x 10° macrophages were collected into 1 ml of TRIzol (Ambion, USA) for
RNA extraction.

The quality and quantity of total RNA were assessed with a RNA-6000 Nano LabChip on a 2100 Bioanalyzer
(Agilent Inc., USA). cDNA libraries were prepared with SMARTer Universal Low Input RNA Kit (Clontech,
USA). The libraries were sequenced by HiSeq. 2000 100 PE (Illumina, USA). Paired sequences were aligned to
the human genome (version hg19) using Tophat2*'. Raw counts of each gene for each sample were calculated
by HTseq*2. Differentially expressed genes between paired samples before and after treatment were performed
using edgeR at P-value < 0.05 with a cutoff of 2-fold change®’. Differentially expressed genes were annotated
using online functional enrichment analysis tool DAVID*!. RNA-seq data are available in GEO database under
accession code GSE85037.

To compare to the spectrum of human macrophage activation®, signature genes of each stimulus were
matched to our 230 treatment-specific signature genes based on their expression change trends. Master reg-
ulation analysis was performed as previously described?. The spectrum data®® was used to construct an
information-based regulatory network and applied to search for the key transcription factors that regulate the
230 treatment-specific signature genes.

In vitro anti-TB drug treatment. A combined dose of HRZE for in vitro treatment was used to mimic the
in vivo treatment based on the maximum human blood plasma concentrations (Cmax) of approximately 12.4 ug/
ml H, 4.0pg/ml R, 58 ug/ml Z and 4.3 pg/ml E during chemotherapy respectively*. Pleural macrophages were
purified from PEMCs as described above and incubated with or without HRZE in a 6-well plate at a concentration
of 1 x 106 cells/well for 36 hours.

Real time RT-PCR. Pleural macrophages from in vitro treatment were collected to isolate total RNA
using TRIzol. cDNA was reverse-transcribed using Maxima FirstStrand cDNA Synthesis Kit (Thermo,
USA) according to the manufacturer’s instructions. RT-qPCR was performed in ABI Plus one (Applied
Biosystems, USA) using FastStart Universal SYBR Green Master (Roche, Germany). Either the 18S ribo-
somal RNA (forward: GCGGCTTTGGTGACTCTA, reverse: CTGCCTTCCTTGGATGTG) or GAPDH
(forward: CGGATTTGGTCGTATTGGG, reverse: CGGATTTGGTCGTATTGGG) was used as an inter-
nal control for normalization. The gene-specific primer sets were purchased from Qiagen as following:
COLEC12 (Cat. QT00080192), HSPA1B (Cat. QT01668212), CCLI8 (Cat. QT00024066), CXCL10 (Cat.
QT01003065), IFIT3 (Cat. QT00100030) and OAS3 (Cat. QT01005277) or synthesized as CXCLI16 (forward
and reverse primers: AAACCACCATTCACACTGCG and AGCCACAGTTTACCCTCACAA), TREMI
(AAGCTCCACCCAAGTCAACTG, and CATCCTCTCAGCACACAGACT), IL13 (CAGAAGTAC
CTGAGCTCGCC, and AGATTCGTAGCTGGATGCCG), IL6 (GAACTCCTTCTCCACAAGCG and GAAGAG
GTGAGTGGCTGTCTG), IL10 (GGGAGAACCTGAAGACCCTCA and TGCTCTTGTTTTCACAGGGAAG),
IFN~ (CATCCAAGTGATGGCTGAACTG and TCGAAACAGCATCTGACTCCTTT), TNFa (ATCCTGG
GGGACCCAATGTA, and AAAAGAAGGCACAGAGGCCA), TGF3 (CTGTATTTAAGGACACCCGTGC, and
ATGACACAGAGATCCGCAGTC), GM-CSF (CAGCCCTGGGAGCATGTG and CATCTCAGCAGCAGTG
TCTCTAC).

Statistical method. in the method as following “Data for flow cytometry and qPCR were presented as
mean & SEM. Statistical analysis was performed with Prism5 (GraphPad Software, San Diego, CA). Statistical
significance between before and after treatment groups was defined as P < 0.05, and obtained with a paired or
unpaired two-tailed t-test for paired and unpaired samples, respectively. Differences are noted as *P < 0.05,
**P<0.01.

References
1. WHO. Global tuberculosis reports; (2015).
2. Light, R. W. Update on tuberculous pleural effusion. Respirology 15, 451-458 (2010).

SCIENTIFICREPORTS |7: 14982 | DOI:10.1038/s41598-017-14808-9 8



www.nature.com/scientificreports/

10.
11.
12.
13.
14.
. Giuliani, A. et al. Effect of rifampin on CD1b expression and double-negative T cell responses against mycobacteria-derived
16.
17.
18.
19.
20.
21.
22,
23.
24.
25.
26.
27.
28.
29.
30.
3L
32.
33.
34,
35.
36.
37.
38.

39.
40.

41.
. Anders, S, Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31,

43.
44,

45.

. Wolfgang, E. Tuberculous Pleural Effusion. In: Mahboub, B. (ed). Tuberculosis - Current Issues in Diagnosis and Management. InTech:

InTech (2013).

. Vorster, M. J., Allwood, B. W,, Diacon, A. H. & Koegelenberg, C. F. Tuberculous pleural effusions: advances and controversies.

Journal of thoracic disease 7, 981-991 (2015).

. Greco, S., Girardi, E., Masciangelo, R., Capoccetta, G. B. & Saltini, C. Adenosine deaminase and interferon gamma measurements

for the diagnosis of tuberculous pleurisy: a meta-analysis. Int ] Tuberc Lung Dis 7, 777-786 (2003).

. Porcel, J. M. Tuberculous pleural effusion. Lung 187, 263-270 (2009).
. Stead, W. W,, Eichenholz, A. & Stauss, H. K. Operative and pathologic findings in twenty-four patients with syndrome of idiopathic

pleurisy with effusion, presumably tuberculous. Am Rev Tuberc 71, 473-502 (1955).

. Tang, Y., Hua, S. C,, Qin, G. X,, Xu, L. . & Jiang, Y. E. Different subsets of macrophages in patients with new onset tuberculous pleural

effusion. PloS one 9, 88343 (2014).

. Thuong, N. T. et al. Identification of tuberculosis susceptibility genes with human macrophage gene expression profiles. PLoS Pathog

4, 1000229 (2008).

Martinez, F. O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev
Immunol 27, 451-483 (2009).

Etna, M. P, Giacomini, E., Severa, M. & Coccia, E. M. Pro- and anti-inflammatory cytokines in tuberculosis: a two-edged sword in
TB pathogenesis. Semin Immunol 26, 543-551 (2014).

Dhillon, J. & Mitchison, D. A. Activity and penetration of antituberculosis drugs in mouse peritoneal macrophages infected with
Mycobacterium microti OV254. Antimicrobial agents and chemotherapy 33, 1255-1259 (1989).

Rey-Jurado, E., Tudo, G., Soy, D. & Gonzalez-Martin, J. Activity and interactions of levofloxacin, linezolid, ethambutol and amikacin
in three-drug combinations against Mycobacterium tuberculosis isolates in a human macrophage model. Int ] Antimicrob Agents 42,
524-530 (2013).

Minig, S. et al. Inmunomodulatory actions of antibiotics. Med Pregl 62, 327-330 (2009).

glycolipid antigen. Life Sci 63, 985-994 (1998).

Tentori, L. et al. Rifampin increases cytokine-induced expression of the CD1b molecule in human peripheral blood monocytes.
Antimicrobial agents and chemotherapy 42, 550-554 (1998).

Tousif, S. et al. Isoniazid induces apoptosis of activated CD4+ T cells: implications for post-therapy tuberculosis reactivation and
reinfection. The Journal of biological chemistry 289, 30190-30195 (2014).

Metushi, I. G. & Uetrecht, J. Isoniazid-induced liver injury and immune response in mice. J Immunotoxicol 11, 383-392 (2014).
Manca, C. et al. Host targeted activity of pyrazinamide in Mycobacterium tuberculosis infection. PloS one 8, 74082 (2013).
Mendez, S. et al. The antituberculosis drug pyrazinamide affects the course of cutaneous leishmaniasis in vivo and increases
activation of macrophages and dendritic cells. Antimicrobial agents and chemotherapy 53, 5114-5121 (2009).

Kim, J. J. et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host
Microbe 11, 457-468 (2012).

Berry, M. P. et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 466,
973-977 (2010).

Bloom, C.I. et al. Detectable changes in the blood transcriptome are present after two weeks of antituberculosis therapy. PloS one 7,
46191 (2012).

Baganha, M. E, Pego, A., Lima, M. A., Gaspar, E. V. & Cordeiro, A. R. Serum and pleural adenosine deaminase. Correlation with
lymphocytic populations. Chest 97, 605-610 (1990).

Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40,
274-288 (2014).

Hu, G. & Chen, J. A genome-wide regulatory network identifies key transcription factors for memory CD8( 4 ) T-cell development.
Nat Commun 4, 2830 (2013).

Antony, V. B, Sahn, S. A., Antony, A. C. & Repine, J. E. Bacillus Calmette-Guerin-stimulated neutrophils release chemotaxins for
monocytes in rabbit pleural spaces and in vitro. J Clin Invest 76, 1514-1521 (1985).

Barnes, P. F. et al. Compartmentalization of a CD4+ T lymphocyte subpopulation in tuberculous pleuritis. ] Immunol 142,
1114-1119 (1989).

Diamond, M. S. & Farzan, M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nature reviews. Immunology 13,
46-57 (2013).

Deveci, F, Akbulut, H. H., Turgut, T. & Muz, M. H. Changes in serum cytokine levels in active tuberculosis with treatment.
Mediators of inflammation 2005, 256-262 (2005).

Graham, S. A. et al. Identification of neutrophil granule glycoproteins as Lewis(x)-containing ligands cleared by the scavenger
receptor C-type lectin. The Journal of biological chemistry 286, 2433624349 (2011).

Ohtani, K. et al. The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. The Journal of biological
chemistry 276, 44222-44228 (2001).

Wang, R., Town, T., Gokarn, V., Flavell, R. A. & Chandawarkar, R. Y. HSP70 enhances macrophage phagocytosis by interaction with
lipid raft-associated TLR-7 and upregulating p38 MAPK and PI3K pathways. The Journal of surgical research 136, 58-69 (2006).
Asea, A. et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a
chaperone and cytokine. Nature medicine 6, 435-442 (2000).

Zeng, H., Ornatowska, M., Joo, M. S. & Sadikot, R. T. TREM-1 expression in macrophages is regulated at transcriptional level by
NF-kappaB and PU.1. European journal of immunology 37, 2300-2308 (2007).

Yuan, Z. et al. Triggering receptor expressed on myeloid cells 1 (TREM-1)-mediated Bcl-2 induction prolongs macrophage survival.
The Journal of biological chemistry 289, 15118-15129 (2014).

Ford, J. W. & McVicar, D. W. TREM and TREM-like receptors in inflammation and disease. Current opinion in immunology 21,
38-46 (2009).

Joosten, S. A., Fletcher, H. A. & Ottenhoff, T. H. A helicopter perspective on TB biomarkers: pathway and process based analysis of
gene expression data provides new insight into TB pathogenesis. PloS one 8, €73230 (2013).

Vulcano, M. et al. Unique regulation of CCL18 production by maturing dendritic cells. ] Immunol 170, 3843-3849 (2003).

de Oliveira, L. R. et al. Analysis of Toll-like receptors, iNOS and cytokine profiles in patients with pulmonary tuberculosis during
anti-tuberculosis treatment. PloS one 9, €88572 (2014).

Kim, D. & Salzberg, S. L. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12, R72 (2011).

166-169 (2015).

Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene
expression data. Bioinformatics 26, 139-140 (2010).

Huang da, W, Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics
resources. Nat Protoc 4, 44-57 (2009).

Xu, J. et al. Oral bioavailability of rifampicin, isoniazid, ethambutol, and pyrazinamide in a 4-drug fixed-dose combination compared
with the separate formulations in healthy Chinese male volunteers. Clin Ther 35, 161-168 (2013).

SCIENTIFICREPORTS |7: 14982 | DOI:10.1038/s41598-017-14808-9 9



www.nature.com/scientificreports/

Acknowledgements

We thank assistance of doctors Zhiyong Zhang, Yanbin Xu, Miao Wang, Weili Chen, Xuesong Tan, Jisi Sun,
Mingguang Zhou, Zhi Shao and Hui Jia from Hospital of Infectious Diseases of Changchun to collect TPF
samples. This work was supported by the First Hospital of Jilin University, National High-tech Research and
Development Projects (863) (2014AA021603) and Scientific Research Foundation in the Science and Technology
Development Plan of Jilin Province (20150520142JH).

Author Contributions
S.W,, J.Z., L.Su., HX,, and Q.P. performed the experiments. J.Z., X.Q., L.So., Y.L,, Y.S., D.L. and L.P. performed
TPF sample collection. S.W. and G.H. analyzed the data. G.H., S.H. and J.C. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-14808-9.

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
M | jcense, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017

SCIENTIFICREPORTS |7: 14982 | DOI:10.1038/s41598-017-14808-9 10


http://dx.doi.org/10.1038/s41598-017-14808-9
http://creativecommons.org/licenses/by/4.0/

	Antibiotics induce polarization of pleural macrophages to M2-like phenotype in patients with tuberculous pleuritis

	Results

	Pleural macrophages are polarized in response to antibiotics treatment. 
	Antibiotics inhibit pro-inflammatory cytokine production. 
	Pleural macrophages polarize to an M2-like phenotype following antibiotics treatment. 
	Antibiotics exert direct effect on pleural macrophages. 

	Discussion

	Methods

	Patients and study design. 
	Sample acquisition. 
	Cell surface and intracellular cytokine staining. 
	ELISA. 
	Pleural macrophage purification, RNA isolation, RNA-sequencing and data analysis. 
	In vitro anti-TB drug treatment. 
	Real time RT-PCR. 
	Statistical method. 

	Acknowledgements

	Figure 1 Comparison of surface marker expression by pleural macrophages before and after antibiotics treatment.
	Figure 2 Comparison of cytokine levels in pleural fluids from patients with tuberculous pleuritis before and after antibiotics treatment.
	Figure 3 Pleural macrophages are polarized to an M2-like phenotype by antibiotics treatment.
	Figure 4 Comparison of gene expression in pleural macrophages with and without antibiotics treatment in vitro.
	Table 1 Clinical characteristics of patients.




