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Plasma amino acid profile 
associated with fatty liver disease 
and co-occurrence of metabolic risk 
factors
Minoru Yamakado1, Takayuki Tanaka2, Kenji Nagao   2, Akira Imaizumi2, Michiharu Komatsu3, 
Takashi Daimon4, Hiroshi Miyano2, Mizuki Tani1, Akiko Toda1, Hiroshi Yamamoto2,  
Katsuhisa Horimoto   5 & Yuko Ishizaka1

Fatty liver disease (FLD) increases the risk of diabetes, cardiovascular disease, and steatohepatitis, 
which leads to fibrosis, cirrhosis, and hepatocellular carcinoma. Thus, the early detection of FLD is 
necessary. We aimed to find a quantitative and feasible model for discriminating the FLD, based on 
plasma free amino acid (PFAA) profiles. We constructed models of the relationship between PFAA levels 
in 2,000 generally healthy Japanese subjects and the diagnosis of FLD by abdominal ultrasound scan by 
multiple logistic regression analysis with variable selection. The performance of these models for FLD 
discrimination was validated using an independent data set of 2,160 subjects. The generated PFAA-
based model was able to identify FLD patients. The area under the receiver operating characteristic 
curve for the model was 0.83, which was higher than those of other existing liver function-associated 
markers ranging from 0.53 to 0.80. The value of the linear discriminant in the model yielded the 
adjusted odds ratio (with 95% confidence intervals) for a 1 standard deviation increase of 2.63 (2.14–
3.25) in the multiple logistic regression analysis with known liver function-associated covariates. 
Interestingly, the linear discriminant values were significantly associated with the progression of FLD, 
and patients with nonalcoholic steatohepatitis also exhibited higher values.

Due to changes in lifestyles, the prevalence of fatty liver disease (FLD) has been consistently increasing worldwide 
especially in Asian regions1–3. Patients with FLD frequently do not exhibit signs or subjective symptoms until 
their illness becomes advanced, and such patients are at risk of developing steatohepatitis, fibrosis, cirrhosis, and 
hepatocellular carcinoma2,4–6. FLD also increases the risk of developing insulin resistance, diabetes, and cardio-
vascular diseases7. Thus, the early detection of FLD, which triggers earlier lifestyle modification, is necessary. FLD 
can be identified and diagnosed by abdominal ultrasound scans. However, the use of ultrasound as a diagnostic 
method is problematic because the inspection takes time and is unlikely to be conducted during a routine phys-
ical examination. Instead, subjects with suspected liver damage are initially screened by biochemical analyses, 
including the assessment of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) serum level8. 
Because these enzymes are released from damaged hepatocytes into the blood following hepatocellular injury or 
death, they are not specific biomarkers of a fatty liver8.

In clinical settings, biomarkers generated from metabolomics are becoming one of the most important diag-
nostic criteria that can be objectively measured and evaluated as indicators of normal or pathological states, as 
well as a tool for assessing the outcome of therapeutic interventions. Focused-metabolomics, with well-managed 
sample collection, and accurate and reproducible measurements appear to be a realistic approach9. One of the 
traditional examples using a combination of plasma free amino acid (PFAA) profiles for diagnostic markers is 
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Fischer’s ratio, which is the ratio of branched-chain amino acids (BCAAs: valine, leucine, isoleucine) to aromatic 
amino acids (AAAs: tyrosine, phenylalanine). Fischer’s ratio is used as a diagnostic marker for assessing liver 
metabolism, hepatic functional reserve, and the severity of liver dysfunction10,11. As liver dysfunction progresses, 
the plasma levels of BCAAs are decreased and AAAs are increased, respectively, thereby decreasing Fischer’s ratio.

Recent technological advances in focused-metabolomics have uncovered several metabolic signatures associ-
ated with FLD, including plasma amino acids12,13. However, to date, few quantitative studies have been performed 
in a large population, especially with respect to the optimal combination of PFAAs to evaluate the presence of 
FLD. In this study, we aimed to find a quantitative and feasible model for discriminating the FLD, based on PFAA 
profiles and confirmed the association with the progression of FLD.

Results
Construction of the robust PFAA- based fatty liver model (FLM).  We constructed a robust PFAA-
only-based FLM using the data from 2,000 subjects to identify FLD patients. The performance of this model 
was confirmed in the independent validation data set of 2,160 subjects. The training data set consisted of 2,000 
individuals (1,151 males and 849 females), 465 of whom were diagnosed as having FLD (Table 1). The validation 
data set consisted of 2,160 individuals (1,320 males and 840 females), 499 of whom were diagnosed as having 
FLD. Table 2 presents the concentrations of PFAAs. The levels of alanine (Ala), histidine (His), isoleucine (Ile), 
leucine (Leu), lysine (Lys), methionine (Met), ornithine (Orn), phenylalanine (Phe), proline (Pro), tryptophan 
(Trp), tyrosine (Tyr), and valine (Val) were significantly higher in patients with FLD, whereas the levels of citrul-
line (Cit), glycine (Gly), and serine (Ser) were lower in patients with FLD. In the FLM, which was chosen with 
regard to Akaike’s information criterion (AIC) and the likelihood ratio test, asparagine (Asn), Gly, Ala, Leu, Tyr, 
and arginine (Arg) were selected as explanatory variables. The amino acids which were elevated, reduced, and 
sustained in the patients with FLD were selected in this model. The resultant FLM was used for the following 
validation and characterization.

Training data set Validation data set

Group HC FLD HC FLD

N 1535 465 1661 499

(Male, Female) (784, 751) (367, 98) (932, 729) (388, 111)

Age (years) 53.4 ± 11.1 53.7 ± 10.0 58.7 ± 10.9 57.8 ± 9.6

Body weight (kg) 58.9 ± 10.5 72.0 ± 11.9*** 59.1 ± 10.8 70.5 ± 11.1***

BMI (kg/m2) 21.9 ± 2.7 26.0 ± 3.3*** 22.0 ± 2.8 25.6 ± 3.1***

WC (cm) 80.2 ± 8.1 91.3 ± 8.0*** 80.9 ± 8.5 90.8 ± 7.7***

HDL-C (mg/dL) 63.6 ± 14.7 51.3 ± 12.1*** 63.9 ± 15.5 52.6 ± 11.4***

LDL-C (mg/dL) 122.9 ± 29.5 136.6 ± 32.0*** 122.2 ± 29.1 131.1 ± 29.6***

Triglyceride (mg/dL) 96.9 ± 66.5 159.2 ± 87.8*** 99.0 ± 73.4 159.8 ± 94.4***

Total protein (g/dL) 7.1 ± 0.4 7.3 ± 0.4*** 7.2 ± 0.4 7.3 ± 0.4***

T-CHO (mg/dL) 205.3 ± 32.3 212.5 ± 34.4*** 208.0 ± 31.5 210.7 ± 32.2

FPG (mg/dL) 94.7 ± 14.1 106.5 ± 20.7*** 96.3 ± 15.7 107.4 ± 21.2***

HbA1c (%) 5.6 ± 0.5 5.9 ± 0.8*** 5.7 ± 0.5 6.0 ± 0.7***

Insulin (μU/mL) 5.3 ± 3.0 9.8 ± 5.2*** 5.5 ± 3.0 10.1 ± 5.5***

HOMA-IR 1.3 ± 1.1 2.6 ± 1.6*** 1.3 ± 0.9 2.7 ± 1.7***

SBP (mmHg) 121.0 ± 18.2 132.3 ± 17.5*** 120.4 ± 17.5 129.3 ± 16.0***

DBP (mmHg) 76.4 ± 11.0 83.3 ± 10.5*** 75.9 ± 10.7 81.3 ± 10.0***

AST (U/I) 21.3 ± 8.6 26.8 ± 13.0*** 20.6 ± 6.1 26.5 ± 16.1***

ALT (U/I) 20.0 ± 11.9 36.8 ± 22.6*** 18.7 ± 11.8 33.2 ± 21.8***

LDH (U/I) 166.0 ± 29.9 176.9 ± 32.8*** 174.2 ± 31.8 177.3 ± 30.0

ALP (U/I) 201.5 ± 61.7 217.3 ± 62.2*** 202.9 ± 61.4 219.1 ± 60.2***

γ-GTP (U/I) 38.3 ± 43.3 64.0 ± 65.7*** 36.3 ± 40.7 64.1 ± 137.7***

Fischer’s ratio 3.3 ± 0.5 3.4 ± 0.5*** 3.3 ± 0.5 3.4 ± 0.5***

VFA (cm2) 107.4 ± 61.7 164.1 ± 51.9*** 105.9 ± 55.3 176.9 ± 52.7***

Table 1.  Demographic and clinical characteristics of the healthy controls (HC) and the patients with fatty liver 
disease (FLD). Continuous variables are summarized as means ± standard deviations, and were compared 
between HC and FLD groups with the use of Welch’s t-test (*p < 0.05, **p < 0.01, and ***p < 0.001). In 
training data set, one WC value is missing in HC group and two WC values are missing in FLD group; 
therefore these individuals were not included. BMI: body mass index, WC: waist circumference, HDL-C: 
high-density lipoprotein cholesterol, LDL-C: low-density lipoprotein cholesterol, T-CHO: total cholesterol, 
FPG: Fasting plasma glucose, HbA1c: hemoglobin A1C, HOMA-IR: homeostasis model assessment of insulin 
resistance, SBP: systolic blood pressure, DBP: diastolic blood pressure, AST: aspartate aminotransferase, ALT: 
alanine aminotransferase, LDH: lactate dehydrogenase, ALP: alkaline phosphatase, γ-GTP: gamma-glutamyl 
transpeptidase, VFA: visceral fat area by computed tomography.



www.nature.com/scientificreports/

3Scientific REPOrTs | 7: 14485  | DOI:10.1038/s41598-017-14974-w

Discriminant capability of the PFAA- based FLM.  The performance of the linear discriminant in the 
FLM and liver function-associated markers for discrimination between FLD patients and HCs was evaluated with 
the use of the receiver-operating-characteristic (ROC) curve and the estimate with 95% confidence interval (CI) 
of the area under the ROC curve (ROC_AUC). Between FLD patients and HCs, the ROC_AUC of the linear dis-
criminant in the FLM was 0.84 (95% CI: 0.82, 0.86) in the training data set and 0.83 (95% CI: 0.81 to 0.85) in the 
validation data set (Fig. 1A,B). This ROC_AUC was statistically higher (Delong’s test: p < 0.001) than those of the 
following liver function-associated markers whose discriminating capabilities were as follows: the ROC_AUCs 
of gamma-glutamyl transpeptidase (γ-GTP), AST, Fischer’s ratio, alkaline phosphatase (ALP), and lactate dehy-
drogenase (LDH) were 0.72 (95% CI: 0.69 to 0.74), 0.66 (95% CI: 0.64 to 0.69), 0.60 (95% CI: 0.58 to 0.63), 0.58 
(95% CI: 0.56 to 0.61), and 0.53 (95% CI: 0.50 to 0.56), respectively. The ROC_AUC of the linear discriminant in 
the FLM was also higher (Delong’s test: p < 0.01) than that of ALT whose ROC_AUC was 0.80 (95% CI: 0.78 to 
0.82). Table 3 shows sensitivity, specificity, positive predictive value, negative predictive value, and efficiency of 
the linear discriminant in the FLM.

The odds ratios (ORs) for the FLM values for discriminating FLD are presented in Table 4. In the unadjusted 
models, the ORs associated with a 1 standard deviation (SD) increase in FLM value was 4.97 (95% CI: 4.23 to 
5.84). The quintile analysis revealed a trend towards increased OR according to the FLM value (likelihood-ratio 
test: p < 0.001), and the ORs of top quintile group compared with the bottom quintile group were 48.79 (27.68 to 
86.01). Adjusting for the variables affecting the likelihood of FLD (age, sex, AST, ALT, LDH, ALP, and γ-GTP), 
similar results were obtained, and the ORs associated with a 1 SD increase in FLM value was 4.96 (95% CI: 4.13 
to 5.95). The ORs of the top quintile group compared with the bottom quintile group was 44.51 (21.40 to 92.60). 
These associations remained statistically significant after adjusting for following covariates: age, sex, AST, ALT, 
LDH, ALP, γ-GTP, weight, BMI, waist circumference, high-density lipoprotein cholesterol (HDL-C), low-density 
lipoprotein cholesterol (LDL-C), triglyceride (TG), total protein (TP), total cholesterol (T-CHO), Fasting plasma 
glucose (FPG), hemoglobin A1C (HbA1c), homeostasis model assessment of insulin resistance (HOMA-IR), 
systolic blood pressure (SBP), and diastolic blood pressure (DBP). The ORs associated with 1 SD increase in the 
FLM value was 2.63 (95% CI: 2.14 to 3.25). The quintile analysis revealed a trend towards increased OR according 
to the FLM value, and the ORs of the top quintile group compared with the bottom quintile group was 8.16 (95% 
CI: 3.49 to 19.07). We have also confirmed that similar performance was obtained using the training data set 
(Supplemental Figure 2). It suggests that the PFAA-based FLM was useful for identifying patients at high risk for 
FLD, even after adjusting for commonly accepted risk factors.

The association of high FLM value with aggravating conditions of metabolic syndrome.  The 
FLM value was significantly associated with the accumulation of metabolic syndrome-associated risk factors 
(Fig. 1C). The Jonckheere-Terpstra trend test demonstrated that the FLM value was elevated with the accumu-
lation of risk factors (p < 0.001), suggesting that the FLM could identify subjects with risk factors to metabolic 
syndrome.

Training data set Validation data set

Group HC FLD HC FLD

N 1535 465 1661 499

Alanine 327.6 ± 70.4 386.0 ± 71.0*** 327.3 ± 68.4 389.0 ± 68.0***

Arginine 90.3 ± 17.2 92.0 ± 15.7 89.1 ± 17.1 90.5 ± 16.0

Asparagine 45.5 ± 6.7 44.9 ± 6.5 45.1 ± 7.2 44.7 ± 6.5

Citrulline 31.0 ± 7.4 30.0 ± 6.8** 31.4 ± 7.3 30.0 ± 6.5***

Glutamine 572.3 ± 64.3 570.5 ± 64.3 559.7 ± 68.0 560.2 ± 64.5

Glycine 212.4 ± 49.8 186.2 ± 36.1*** 212.2 ± 53.0 187.8 ± 37.4***

Histidine 79.7 ± 9.2 83.3 ± 10.3*** 78.6 ± 9.2 82.2 ± 10.0***

Isoleucine 58.0 ± 13.4 71.6 ± 14.4*** 57.7 ± 12.9 71.0 ± 14.2***

Leucine 115.1 ± 22.9 138.2 ± 23.1*** 113.9 ± 21.9 136.2 ± 23.0***

Lysine 181.8 ± 30.2 196.1 ± 26.3*** 183.9 ± 29.3 198.8 ± 28.8***

Methionine 25.1 ± 4.2 27.5 ± 4.4*** 24.7 ± 4.1 26.8 ± 4.2***

Ornithine 49.5 ± 12.2 52.6 ± 10.6*** 51.9 ± 12.9 56.2 ± 12.6***

Phenylalanine 56.7 ± 8.1 62.9 ± 10.0*** 56.6 ± 8.0 61.8 ± 8.1***

Proline 129.4 ± 39.4 153.1 ± 41.7*** 129.7 ± 40.1 153.2 ± 39.8***

Serine 112.0 ± 19.1 105.0 ± 16.6*** 110.5 ± 18.5 107.0 ± 17.1***

Threonine 120.5 ± 25.0 121.1 ± 23.3 118.2 ± 24.4 121.5 ± 22.5**

Tryptophan 56.7 ± 8.9 62.5 ± 9.1*** 55.6 ± 8.5 62.0 ± 8.8***

Tyrosine 61.0 ± 10.9 71.2 ± 11.1*** 60.9 ± 10.5 70.8 ± 11.4***

Valine 210.8 ± 38.3 249.9 ± 38.5*** 209.9 ± 37.5 246.9 ± 38.7***

Table 2.  The plasma free amino acid levels in the healthy controls (HC) and the patients with fatty liver disease 
(FLD). Unit is μmol/L. Continuous variables are summarized as means ± standard deviations, and were 
compared between HC and FLD groups with the use of Welch’s t-test (*p < 0.05, **p < 0.01, and ***p < 0.001).
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Furthermore, the subjects with nonalcoholic steatohepatitis (NASH) also exhibited higher FLM values com-
pared with HCs (Fig. 1D). The FLM values for NASH patients were as high as those for patients with FLD, both of 
which were significantly higher than the values in HCs (Kruskal-Wallis test: p < 0.001, Dunn’s multiple compari-
sons test: p < 0.01 for HCs vs FLD patients; p < 0.05 for HCs vs NASH patients).

Discussion
In this study, we used a focused metabolomic approach with well-managed sample collection and measurements 
with respect to reproducibility to generate a PFAA-based FLM. The FLM was able to discriminate between FLD 

Figure 1.  The discriminant capability of the plasma free amino acid-based model for fatty liver disease and 
association with metabolic dysfunction. (A) The ROC curves of the fatty liver model (FLM), ALT, γ-GTP, 
AST, Fischer’s ratio, ALP, and LDH for the discrimination between patients with fatty liver disease (FLD) 
and healthy subjects. (B) The values of the areas under the ROC curves (ROC_AUC) for discriminating the 
patients with FLD from healthy subjects. The top and bottom of the boxes indicate the 95% confidence interval 
of ROC_AUCs. (C) Relationship between the FLM value and the accumulation of risk factors associated with 
metabolic dysfunction. The FLM value was plotted against the number of risk factors associated with metabolic 
dysfunction (hypertension, hyperglycemia, hyperlipidemia, and visceral obesity). The box extends from the 
25th to 75th percentiles. The line in the middle of the box is plotted at the median. The whiskers are drawn 
down to the 1st percentile and up to the 99th. Points below and above the whiskers are drawn as individual dots. 
The significant upward trend was illustrated by the Jonckheere-Terpstra trend test. (D) Box plot of FLM values 
for healthy controls (HC), patients with FLD, and patients with nonalcoholic steatohepatitis (NASH). ALT: 
alanine aminotransferase, γ-GTP: gamma-glutamyl transpeptidase, AST: aspartate aminotransferase, ALP: 
alkaline phosphatase, and LDH: lactate dehydrogenase.

Cutoff point Sensitivity (%) Specificity (%) PPV (%) NPV (%) Efficiency (%)

First quintile 97 25 28 97 42

Second quintile 92 50 35 95 59

Third quintile 79 72 45 92 73

Forth quintile 54 90 62 87 82

Table 3.  Sensitivity, specificity, positive predictive value, negative predictive value, and efficiency of the fatty 
liver model (FLM) value in the validation data (N = 2,160). PPV: positive predictive rate, NPV: negative 
predictive rate.
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patients and HCs even after adjusting for commonly accepted risk factors including age, sex, AST, ALT, LDH, 
ALP, γ-GTP, weight, BMI, waist circumference, HDL-C, LDL-C, TG, TP, T-CHO, FPG, HbA1c, HOMA-IR, SBP, 
and DBP (Table 4). The quintile analysis revealed a trend towards increased ORs according to the FLM value, 
and the OR of the top quintile compared with the bottom quintile was 8.16 (95% CI: 3.49 to 19.07) even after 
controlling for generally accepted risk factors. In this study, 465 of 2,000 subjects (23.3%) were classified as having 
FLD in the training data set, and 499 of 2,160 subjects (23.1%) were classified as having FLD in the validation 
data set (Table 1). Since it is reported that 26.2% of subjects who underwent comprehensive medical check-up 
were FLD by abdominal ultrasound scan14, the present population could be considered as a general Japanese 
population.

We recently reported the statistical approach called “AminoIndex technology”9,15–17 to compress multidimen-
sional information from the PFAA profile into a single score to maximize the differences between the case and 
control population. It has been used to discriminate various physiological or disease states, including the progres-
sion of liver fibrosis in chronic hepatitis C patients15, visceral obesity and comorbidities18–20, and the identification 
of a risk for cardiovascular disease in diabetic patients21. In order for a biomarker to be successful in clinical set-
tings, it must surpass conventional methods with respect to reliability and discriminative capability and/or should 
be more informative about disease progression9.

The ROC_AUC of the linear discriminant in the FLM for identifying patients with FLD was higher than that 
of other liver function-associated markers, demonstrating a competitive edge over existing markers (Fig. 1A,B). 
If the liver is injured, the liver cells release ALT, γ-GTP, and AST into the blood, thereby raising the plasma levels 
and signaling the liver damage. Thus, these enzymes are sensitive indicators of liver damage caused by different 
types of disease but are not specific indicators for liver fat accumulation. Fischer’s ratio, which is the molar ratio 
of BCAAs to AAAs, is important for assessing the clinical stage of liver disease10,11. Fischer’s ratio decreases as 
hepatic fibrosis or hepatic dysfunction progresses and thus reflects the degree of hepatic impairment, however, 
Fischer’s ratio does not decrease as liver fat accumulates. More specifically, the BCAA levels were elevated in sub-
jects with FLD and NASH in this study, which is consistent with previous reports of the elevation of peripheral 
BCAAs12,13, whereas the BCAA levels decrease as the hepatic impairment progresses in the later stage of liver 
diseases. Thus the obtained FLM and Fischer’s ratio are completely different. The important next step is to exam-
ine the appropriate cutoff point of FLM value and to compare the accuracy of the model with existing markers. 
Although we calculated sensitivity, specificity, positive and negative predictive values, and efficiency in Table 3, 
we have to examine the clinical usefulness by comparing to existing markers with appropriate cutoff points in the 
next study.

The PFAA alterations observed in these FLD patients (Table 2) might have been caused by both metabolic 
changes due to FLD and dietary habits. However, studies so far have suggested that metabolic shifts, rather than 
dietary habits, play a more significant role in PFAA alterations. Many reports suggest that PFAA profiles are 
altered by visceral obesity18–20 and insulin resistance19,22–25, resulting in an elevations in plasma BCAAs, AAAs, 
and Ala and a decrease in Gly levels. Tai et al.23 previously examined PFAA profiles in association with insulin 
resistance and dietary habit in 263 non-obese Chinese and Asian-Indian men and demonstrated that although 
dietary protein intake markedly differed between ethnic groups, it did not affect the PFAA levels. Rather, PFAA 
levels were strongly associated with HOMA-IR values. Paradoxically, a higher dietary intake of BCAAs has 
been reported to be related to a lower prevalence of being overweight or obese26, lower insulin resistance27, and 
decreased risk of diabetes28.

Unadjusted Adjusted2 Adjusted3

OR (95%CI) OR (95%CI) OR (95%CI)

FLM value (transformed to z-score)

  Per SD1 4.97 (4.23 to 5.84) 4.96 (4.13 to 5.95) 2.63 (2.14 to 3.25)

  p <0.001 <0.001 <0.001

FLM value (classified into the quintile groups)

  First group 1.00 (reference) 1.00 (reference) 1.00 (reference)

  Second group 1.91 (0.98 to 3.71) 1.86 (0.93 to 3.72) 1.31 (0.58 to 2.96)

  Third group 5.48 (3.03 to 9.91) 5.65 (2.96 to 10.76) 1.58 (0.72 to 3.44)

  Fourth group 12.02 (6.79 to 21.30) 13.44 (7.01 to 25.78) 3.35 (1.61 to 6.99)

  Fifth group 48.79 (27.68 to 86.01) 44.51 (21.40 to 
92.60) 8.16 (3.49 to 19.07)

  p for trend <0.001 <0.001 <0.001

Table 4.  Odds ratios (ORs) with 95% confidence intervals (CIs) for association between fatty liver disease and 
fatty liver model (FLM) value in the validation data (N = 2,160). 1Per SD: standard deviation for FLM value. 
2Adjusted for age, sex, AST, ALT, LDH, ALP, γ-GTP, and Fischer’s ratio. 3Adjusted for age, sex, AST, ALT, LDH, 
ALP, γ-GTP, Fischer’s ratio, weight, BMI, waist circumference, HDL-C, LDL-C, TG, TP, T-CHO, FPG, HbA1c, 
HOMA-IR, SBP, and DBP. Significant odds ratios are highlighted in bold type. p for trend was calculated 
by likelihood-ratio test. AST: aspartate aminotransferase, ALT: alanine aminotransferase, LDH: lactate 
dehydrogenase, ALP: alkaline phosphatase, γ-GTP: gamma-glutamyl transpeptidase, BMI: body mass index, 
HDL-C: high-density lipoprotein cholesterol, LDL-C: low-density lipoprotein cholesterol, TG: triglyceride, TP: 
total protein, T-CHO: total cholesterol, FPG: Fasting plasma glucose, HbA1c: hemoglobin A1C, HOMA-IR: 
homeostasis model assessment of insulin resistance, SBP: systolic blood pressure, DBP: diastolic blood pressure.
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The reason for the increase in blood BCAAs in patients with FLD is thought to be due to the lower uptake 
of BCAAs into the muscles caused by decreased insulin action and decreased utilization of amino acids in mus-
cles29,30. Moreover, BCAAs are metabolized in visceral adipose tissues as well, and insulin resistance causes a 
decrease in the expression of BCAA-catabolizing enzymes in adipose tissue29,31,32. Intriguingly, the FLM value 
was significantly associated with the progression of FLD in this study, and the patients with NASH also exhib-
ited higher FLM values (Fig. 1C,D). Greater elevation in FLM value was associated with higher likelihood for 
the co-occurrence of metabolic risk factors (visceral obesity, dysglycemia, high blood pressure, and dyslipi-
demia). Thus, the change in PFAA profiles which is reflected in FLM seems to be metabolic shifts caused by FLD 
and concomitant insulin resistance. The levels of Gly and Ser, two glucogenic amino acids, were lower in FLD 
patients. One possible reason for the reduction of Gly and Ser is an increased consumption of these amino acids 
by enhanced gluconeogenesis33 together with a decreased production by the enhancement of glyceroneogenesis. 
It has been reported that glucose production from both Gly and Ser in hepatocytes is increased in diabetic indi-
viduals, whereas this type of glucose production is low in healthy conditions. Although the levels of several other 
amino acids, such as Ala, and Cit, changed in FLD patients, the reasons are unclear. Thus, the mechanisms and 
physiological meaning underlying the PFAA alterations require further investigation.

Although we generated a PFAA-based FLM to identify FLD patients, there are two limitations in this study. 
The first limitation is lack of alcoholic intake data. The FLD comprises alcoholic and non-alcoholic FLD. Since the 
pathology between non-alcoholic vs alcoholic FLD are different, PFAA profiles might be different as well. Thus, 
the future studies to investigate whether the current FLM can evaluate both non-alcoholic and alcoholic FLD are 
wanted. The second limitation is population bias. Since this FLM was generated in Japanese population which has 
relatively high FLD ratio14, the performance of the FLM might be different in other populations.

In conclusion, our focused-metabolomic approach generated FLM, which conferred independent and differ-
ing contributions to increasing fatty liver risk relative to the currently known risk factors. Further longitudinal 
studies involving the sequential monitoring to examine the association between the FLM value and liver disease 
development, such as later NASH stages, fibrosis, cirrhosis, or hepatocellular carcinoma could be of importance 
for clarifying the physiological meaning of PFAA alterations.

Methods
Ethics.  The study was conducted in accordance with the Declaration of Helsinki, and the protocol was 
approved by the Ethical Committees of Mitsui Memorial Hospital and the Ethical Committees of Shinshu 
University School of Medicine. All subjects gave their informed consent for inclusion before they participated 
in the study. All the data were analyzed anonymously throughout the study. The study was registered in the 
University Hospital Medical Information Network Clinical Trials Registry UMIN000015679.

Control subjects and patients with FLD.  The main inclusion criteria were as follows; generally healthy 
Japanese subjects with or without FLD who had undergone the Ningen Dock comprehensive medical check-up 
system34 in 2008 at the Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital in Tokyo, 
not taking antidiabetic medications regularly, not having serious health problems, and at least 20 years old 
(N = 4,160). The patients with hepatitis C or hepatitis B were excluded.

The individuals were divided into two data sets. The first 2,000 chronologically ordered individuals were 
included in the training data set, and the remaining 2,160 individuals were included in the validation data set. 
Both training and validation data sets were composed of fatty liver occurrence data (yes = 1, no = 0), PFAA pro-
file data, and demographic and clinical characteristics’ data. The demographic and clinical characteristics of the 
patients are depicted in Table 1. Among all the data, there were 3 waist circumferences measures missing; there-
fore, these individuals were not included. Outliers were not excluded from the analyses, since they did not make 
a significant difference to the results.

NASH patients.  NASH patients (N = 10) who had undergone liver biopsy at the Shinshu University School 
of Medicine who have alcoholic intake data were recruited (Supplementary Table 1). Informed consent was 
obtained from each patient included in the study. For diagnosing NASH, liver biopsy specimens were obtained 
from segment 5 or 8 using 14-G needles and immediately fixed in 10% neutral formalin, embedded in paraffin, 
cut at 4-µm thickness, and stained with the hematoxylin and eosin or using the Azan–Mallory method. The 
average length of the samples was 15 ± 3 mm, and the average number of portal tracts found in each sample was 
11 ± 4.

Histological findings were assessed by an independent experienced pathologist in a blinded fashion and 
scored according to the staging/grading system proposed by Kleiner et al.35. The nonalcoholic fatty liver disease 
histological activity score was calculated as the unweighted sum of the scores for steatosis (0–3), lobular inflam-
mation (0–3), and ballooning (0–2). The histological diagnosis of steatohepatitis was made by the presence of 
macrovesicular steatosis, hepatocyte ballooning, and lobular inflammation.

Analyses of biochemical variables and quantification of PFAAs.  Blood samples were taken from the 
individuals after an overnight fast. FPG, and serum levels of T-CHO, HDL-C, LDL-C, TG, TP, and HbA1c were 
determined. Serum insulin levels were measured immunologically, and the HOMA-IR was calculated. The SBP 
and DBP were measured. Biochemical variables related to liver condition were measured, including AST, ALT, 
γ-GTP, ALP, and LDH. Liver fat content was examined by the ultrasound hepatic/renal ratio. The visceral fat area 
(VFA) was calculated from computed tomography images, and a 75 g oral glucose tolerance test was performed to 
obtain their 2-h post-challenge glucose levels for detecting the risk of diabetes in 865 subjects. The measurements 
of other variables were performed as previously described19,20,36.
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For the amino acid analyses, blood samples (5 mL) were collected from forearm veins after overnight fasting 
into tubes containing disodium ethylenediaminetetraacetate and were immediately placed on ice. The plasma 
amino acid concentrations were measured by high-performance liquid chromatography–electrospray ionization 
mass spectrometry followed by precolumn derivatization as previously described37–41. The following 19 amino 
acids were measured: Ala, Arg, Asn, Cit, glutamine, Gly, His, Ile, Leu, Lys, Met, Orn, Phe, Pro, Ser, threonine, Trp, 
Tyr, and Val.

Definition of metabolic syndrome related risk factors.  According to the available biochemical data 
and computed tomography (CT) scanning data, the metabolic syndrome risk factors included hypertension, 
hyperglycemia, hyperlipidemia, and VFA were defined. The following criteria were used: hypertension, SBP equal 
to or higher than 140 mmHg or DBP equal to or higher than 90 mmHg; hyperglycemia, FPG equal to or higher 
than 110 mg/dL or blood glucose level equal to or higher than 140 mg/dL after oral glucose tolerance test; hyper-
lipidemia, LDL-C equal to or higher than 140 mg/dL or TG equal to or higher than 150 mg/dL; and visceral 
obesity, VFA by CT scan equal to or higher than 100 cm2. For VFA data, the number of individuals for whom the 
data were available was 865.

Statistical analysis.  Description and comparison of demographic and clinical characteristics.  Demographic 
and clinical characteristics are presented as means with SDs, and were compared between the healthy controls 
(HCs) who had no apparent FLD and FLD patients with the use of Welch’s t-test.

Construction of a robust PFAA-based FLM.  To construct a robust PFAA-only-based FLM that dis-
criminated between FLD patients and HCs, a multiple logistic regression model were fitted with leave-one-out 
cross-validation (LOOCV) to fatty liver occurrence data (response variable) and PFAA profile data (explanatory 
variables) in the training data set. All the possible combinations of 19 kinds of PFAAs were tried under the 
constraint that the maximum number of PFAAs was less than seven to avoid a potential over-fitting issue and to 
attain a parsimonious model. The LOOCV consisted of the following steps: (a) one sample was omitted sequen-
tially one by one from the data set; (b) the logistic regression model was estimated using the data in which one 
sample was omitted; (c) based on the estimated model, the value of linear discriminant for the omitted sample 
and AIC were calculated; (d) steps (a) to (c) were repeated until all the linear discriminant values of the data set 
were obtained. Consequently, the top 100 best-fit models were picked up with regard to AIC.

To obtain the best-fit model that was less affected by age and gender, the model with minimum AIC value was 
chosen as the final FLM, under the constraint that no statistically significant effects of incorporating age and sex 
were confirmed with the use of the likelihood-ratio test. Also, each effect of the PFAAs included in the final model 
was assessed with the use of Wald’s test.

Validation and clinical characterization of FLM.  Using the validation data set and NASH patients’ data 
set, the values of the linear discriminant in the obtained FLM (FLM values) were calculated, and then the FLM 
was validated as follows: (1) The performance of the linear discriminant in the FLM and liver function-associated 
markers for discrimination between FLD patients and HCs was evaluated with the use of the ROC curve and the 
estimate with 95% CI of the ROC_AUC. The ROC_AUC was compared with the use of Delong’s test42. Sensitivity 
(=num. of true positives/num. of FLD patients), specificity (=num. of true negatives/num. of HCs), positive pre-
dictive values (PPV = num. of true positives/num. of positive subjects), negative predictive values (NPV = num. 
of true negatives/num. of negative subjects), and efficiency (=num. of true positives and true negatives/num. of 
total subjects) were also estimated with the use of prevalence rate at 23.1% because 499 of 2,160 subjects were 
classified as having FLD in this validation data set, according to the quintile of the distribution of the FLM values; 
(2) Relationship between fatty liver occurrence and linear discriminant was assessed with the use of the logistic 
regression model with/without adjustment of demographic variables and metabolic syndrome related variables, 
where the FLM values were transformed to z-score and classified into five quintile groups. The ORs are presented 
with their 95% CIs and p values. Trend towards increased ORs among the five quintile groups was confirmed with 
the use of likelihood-ratio test; (3) Association of trend towards higher FLM values with the cumulative number 
of metabolic syndrome-related risk factors (summed up from 0 to 4 in each subject) was assessed with the use 
of the Jonckheere–Terpstra test; (4) Difference in the distribution of the FLM value among HCs, FLD patients, 
and NASH patients was assessed with the use of the Kruskal-Wallis test, followed by Dunn’s multiple pairwise 
comparison test.

Software.  MATLAB R2015a (The MathWorks, Natick, MA, USA) was used for all statistical analyses. 
GraphPad Prism 5 (GraphPad Software, La Jolla, CA, USA) was used for the ROC analysis. All probability values 
are two-sided, and value of p < 0.05 was considered statistically significant.
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