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Abstract

Permutation testing is a non-parametric method for obtaining the max null distribution used to 

compute corrected p-values that provide strong control of false positives. In neuroimaging, 

however, the computational burden of running such an algorithm can be significant. We find that 

by viewing the permutation testing procedure as the construction of a very large permutation 

testing matrix, T, one can exploit structural properties derived from the data and the test statistics 

to reduce the runtime under certain conditions. In particular, we see that T is low-rank plus a low-

variance residual. This makes T a good candidate for low-rank matrix completion, where only a 

very small number of entries of T (~ 0.35% of all entries in our experiments) have to be computed 

to obtain a good estimate. Based on this observation, we present RapidPT, an algorithm that 

efficiently recovers the max null distribution commonly obtained through regular permutation 

testing in voxel-wise analysis. We present an extensive validation on a synthetic dataset and four 

varying sized datasets against two baselines: Statistical NonParametric Mapping (SnPM13) and a 

standard permutation testing implementation (referred as NaivePT). We find that RapidPT 

achieves its best runtime performance on medium sized datasets (50 ≤ n ≤ 200), with speedups of 

1.5× – 38× (vs. SnPM13) and 20×–1000× (vs. NaivePT). For larger datasets (n ≥ 200) RapidPT 

outperforms NaivePT (6× – 200×) on all datasets, and provides large speedups over SnPM13 when 

more than 10000 permutations (2× – 15×) are needed. The implementation is a standalone toolbox 

and also integrated within SnPM13, able to leverage multi-core architectures when available.

1Data used in preparation of this article was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
*Corresponding author. fgutierrez3@wisc.edu (F. Gutierrez-Barragan). 
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1. Introduction

Nonparametric voxel-wise analysis, e.g., via permutation tests, are widely used in the brain 

image analysis literature. Permutation tests are often utilized to control the family-wise error 

rate (FWER) in voxel-wise hypothesis testing. As opposed to parametric hypothesis testing 

schemes Friston et al. (1994); Worsley et al. (1992, 1996), nonparametric permutation tests 

Holmes et al. (1996); Nichols and Holmes (2002) can provide exact control of false positives 

while making minimal assumptions on the data. Further, despite the additional 

computational cost, permutation tests have been widely adopted in image analysis Arndt et 

al. (1996); Halber et al. (1997); Holmes et al. (1996); Nichols and Holmes (2002); Nichols 

and Hayasaka (2003) via implementations in broadly used software libraries available in the 

community SnPM (2013); FSL (2012); Winkler et al. (2014).

Running time aspects of permutation testing

Despite the varied advantages of permutation tests, there is a general consensus that the 

computational cost of performing permutation tests in neuroimaging analysis can often be 

quite high. As we will describe in more detail shortly, high dimensional imaging datasets 

essentially mean that for each permutation, hundreds of thousands of test statistics need to 

be computed. Further, as imaging technologies continue to get better (leading to higher 

resolution imaging data) and the concurrent slowdown in the predicted increase of processor 

speeds (Moore's law), it is reasonable to assume that the associated runtime will continue to 

be a problem in the short to medium term. To alleviate these runtime costs, ideas that rely on 

code optimization and parallel computing have been explored Eklund et al. (2011); Eklund 

(2012, 2013). These are interesting strategies but any hardware-based approach will be 

limited by the amount of resources at hand. Clearly, significant gains may be possible if 

more efficient schemes that exploit the underlying structure of the imaging data were 

available. It seems likely that such algorithms can better exploit the resources (e.g., cloud or 

compute cluster) one has available as part of a study and may also gain from hardware/code 

improvements that are being reported in the literature.

Data acquired in many scientific studies, especially imaging and genomic data, are highly 

structured. Individual genes and/or individual voxels share a great deal of commonality with 

other genes and voxels. It seems reasonable that such correlation can be exploited towards 

better (or more efficient) statistical algorithms. For example, in genomics, Cheverud (2001) 

and Li and Ji (2005) used correlations in the data to estimate the effective number of 

independent tests in a genome sequence to appropriately threshold the test statistics. Also 

motivated by bioinformatics problems, Knijnenburg et al. (2009) approached the question of 

estimating the tail of the distribution of permutation values via an approximation by a 

generalized Pareto distribution (using fewer permutations). In the context of more general 

statistical analysis, the authors in Subramanian et al. (2005) proposed Gene Set Enrichment 

Analysis (GSEA) which exploits the underlying structure among the genes, to analyze gene-
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sets (e.g., where sets were obtained from biological pathways) instead of individual genes. If 

the genes within a gene-set have similar expression pattern, one may see improvements in 

statistical power. This idea of exploiting the “structure” towards efficiency (broadly 

construed) was more rigorously studied in Efron and Tibshirani (2007) and a nice non-

parametric Bayesian perspective was offered in Dahl and Newton (2007). Within 

neuroimaging, a similar intuition drives Random Field theory based analysis Taylor and 

Worsley (2008), albeit the objective there is to obtain a less conservative correction, rather 

than computational efficiency. Recently, motivated by neuroimaging applications and 

computational issues, Gaonkar and Davatzikos (2013) derived an analytical approximation 

of statistical significance maps to reduce the computational burden imposed by permutation 

tests commonly used to identify which brain regions contribute to a Support Vector 

Machines (SVM) model. In summary, exploiting the structure of the data to obtain 

alternative efficient solutions is not new, but we find that in the context of permutation 

testing on imaging data, there is a great deal of voxel-to-voxel correlations that if leveraged 

properly can, in principle, yield interesting new algorithms.

For permutation testing tasks in neuroimaging in particular, several groups have recently 

investigated ideas to make use of the underlying structure of the data to accelerate the 

procedure. In a preliminary conference paper (Hinrichs et al. (2013)), we introduced the 

notion of exploiting correlations in neuroimaging data via the underlying low-rank structure 

of the permutation testing procedure. A few years later, Winkler et al. (2016) presented the 

first thorough evaluation of the accuracy and runtime gains of six approaches that leverage 

the problem structure to accelerate permutation testing for neuroimage analysis. Among 

these approaches Winkler et al. (2016) presented an algorithm which relied on some of the 

ideas introduced by Hinrichs et al. (2013) to accelerate permutation testing through low-rank 

matrix completion (LRMC). Overall, algorithms that exploit the underlying structure of 

permutation testing in neuroimaging have provided substantial computational speedups.

1.1. Main idea and contributions

The starting point of our formulation is to analyze the entire permutation testing procedure 

via numerical linear algebra. In particular, the object of interest is the permutation testing 

matrix, T. Each row of T corresponds to the voxel-wise statistics, and each column is a 

specific permutation of the labels of the data. This perspective is not commonly used 

because a typical permutation test in neuroimaging rarely instantiates or operates on this 

matrix of statistics. Apart from the fact that T, in neuroimaging, contains millions of entries, 

the reason for not working directly with it is because the goal is to derive the maximum null 

distribution. The central aspect of this work is to exploit the structure in T – the spatial 

correlation across different voxel-statistics. Such correlations are not atypical because the 

statistics are computed from anatomically correlated regions in the brain. Even far apart 

voxel neighbourhoods are inherently correlated because of the underlying biological 

structures. This idea drives the proposed novel permutation testing procedure. We describe 

the contributions of this paper based on the observation that the permutation testing matrix is 

filled with related entries.

• Theoretical Guarantees. The basic premise of this paper is that permutation 
testing in high-dimensions (especially, imaging data) is extremely redundant. We 
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show how we can model T as a low-rank plus a low-variance residual. We 

provide two theorems that support this claim and demonstrate its practical 

implications. Our first result justifies this modeling assumption and several of the 

components involved in recovering T. The second result shows that the error in 

the global maximum null distribution obtained from the estimate of T is quite 

small.

• A novel, fast and robust, multiple-hypothesis testing procedure. Building 

upon the theoretical development, we propose a fast and accurate algorithm for 

permutation testing involving high-dimensional imaging data. The algorithm 

achieves state of the art runtime performance by estimating (or recovering) the 

statistics in T rather than “explicitly” computing them. We refer to the algorithm 

as RapidPT, and we show that compared to existing state-of-the-art libraries for 

non-parametric testing, the proposed model achieves approximately 20× speed 

up over existing procedures. We further identify regimes where the speed up is 

even higher. RapidPT also is able to leverage serial and parallel computing 

environments seamlessly.

• A plugin in SnPM (with stand-alone libraries). Given the importance and the 

wide usage of permutation testing in neuroimaging (and other studies involving 

high-dimensional and multimodal data), we introduce a heavily tested 

implementation of RapidPT integrated as a plugin within the current 

development version of SnPM — a widely used non-parametric testing toolbox. 

Users can invoke RapidPT directly from within the SnPM graphical user 

interface and benefit from SnPM's familiar pre-processing and post-processing 

capabilities. This final contribution, without a separate installation, brings the 

performance promised by the theorems to the neuroimaging community. Our 

documentation Gutierrez-Barragan and Ithapu (2016) gives an overview of how 

to use RapidPT within SnPM.

Although the present work shares some of the goals and motivation of Winkler et al. (2016) 

– specifically, utilizing the algebraic structure of T – there are substantial technical 

differences in the present approach, which we outline further below. First, unlike Winkler et 

al. (2016), we directly study permutation testing for images at a more fundamental level and 

seek to characterize mathematical properties of relabeling (i.e., permutation) procedures 

operating on high-dimensional imaging data. This is different from assessing whether the 

underlying operations of classical statistical testing procedures can be reformulated (based 

on the correlations) to reduce computational burden as in Winkler et al. (2016). Second, by 

exploiting celebrated technical results in random matrix theory, we provide theoretical 

guarantees for estimation and recovery of T. Few such results were known. Note that 

empirically, our machinery avoids a large majority of the operations performed in Winkler et 

al. (2016). Third, some speed-up strategies proposed in Winkler et al. (2016) can be 

considered as special cases of our proposed algorithm — interestingly, if we were to 

increase the number ‘actual’ operations performed by RapidPT (from ≈1%, suggested by 

our experiments, to 50%), the computational workload begins approaching what is described 

in Winkler et al. (2016).

Gutierrez-Barragan et al. Page 4

Neuroimage. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. Permutation testing in neuroimaging

In this section, we first introduce some notations and basic concepts. Then, we give 

additional background on permutation testing for hypothesis testing in neuroimaging to 

motivate our formulation. Matrices and vectors will be denoted by bold upper-case and 

lower-case letters respectively, and scalars will be represented using non-bold letters. For a 

matrix X, X[i, : ] denotes the ith row and X[i, j] denotes the element in ith row and jth 

column.

Permutation testing is a nonparametric procedure for estimating the empirical distribution of 

the global null Edgington (1969b, a); Edgington and Onghena (2007). For a two-sample 

univariate statistical test, a permutation test computes an unbiased estimate of the null 

distribution of the relevant univariate statistic (e.g., t or χ2). Although univariate null 

distributions are, in general, well characterized, the sample maximum of the voxel-wise 

statistics usually does not have an analytical form due to strong correlations across voxels, as 

discussed in Section 1. Permutation testing is appropriate in this high-dimensional setting 

because it is nonparametric and does not impose any restriction on the correlations across 

the voxel-wise statistics. Indeed, when the test corresponds to group differences between 

samples based on a stratification variable, under the null hypothesis ℋ0, the grouping labels 

given to the samples are artificial, i.e., they correspond to the set of all possible relabellings 
of the samples. In neuroimaging studies, typically the groups correspond to the presense or 

absence of an underlying disease condition (e.g., controls and diseased). Whenever ℋ0 is 

true, the data sample representing a healthy subject is, roughly speaking, ‘similar’ to a 

diseased subject. Under this setting, in principle, interchanging the labels of the two 

instances will have no effect on the distribution of the resulting voxel-wise statistics across 

all the dimensions (or covariates or features). So, if we randomly permute the labels of the 

data instances from both groups, under ℋ0 the recomputed sets of voxel-wise statistics 

correspond to the same global null distribution. We denote the number of such relabellings 

(or permutations) by L. The histogram of all L maximum statistics i.e., the maximum across 

all voxel-wise statistics for a given permutation, is the empirical estimate of the exact 
maximum null distribution under ℋ0. When given the true/real labeling, to test for 

significant group-wise differences, one can simply compute the fraction of the max null that 

is more extreme than the maximum statistic computed across all voxels for this real labeling.

The case for strong null

Observe that when testing multiple sets of hypotheses there are two different types of control 

for the Type 1 error rate (FWER): weak and strong control Hochberg (1987). A test is 

referred to as weak control for FWER whenever the Type 1 error rate is controlled only 

when all the hypotheses involved (here, the number of voxels being tested) are true. That is, 

ℋ0 is true for (all) voxels. On the other hand, a test provides strong control for FWER 

whenever Type 1 error rate is controlled under any combination/proportion of the true 

hypotheses. It is known that the procedure described above (i.e., using the max null 

distribution calculated across all voxel-wise statistics) provides strong control of FWER 

Holmes et al. (1996). This is easy to verify because the maximum of all voxel-wise statistics 

is used to compute the corrected p-value, and so, the exact proportion of which hypotheses 
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are true does not matter. Further, testing based on strong control will classify non-activated 

voxels as activated with a probability upper bounded by α, i.e., it has localizing power 

Holmes et al. (1996), a desirable property in neuroimaging studies in particular. For the 

remainder of this paper, we will focus on such strong control and restrict our presentation to 

the case of group difference analysis for two groups.

2.1. NAIVEPT: the exhaustive permutation testing procedure

Fig. 1 and algorithm 1 illustrate the permutation testing procedure. Given the data instances 

from two groups, X1 ∈ ℝv×n1 and X2 ∈ ℝv×n2, where n1 and n2 denote the number of 

subjects from each group respectively. Also, v denotes the number of voxels in the brain 

image. Let n = n1 + n2 and X = [X1; X2] give the (row-wise) stacked data matrix (X ∈ 
ℝv×n). Note that a permutation of the columns of X corresponds to a group relabeling. The v 
distinct voxel-wise statistics are then computed for L such permutations, and used to 

construct the permutation testing matrix T ∈ ℝv×L. The empirical estimate of the max null is 

simply the histogram of the maximum of each of the columns of T – denoted by hL. 

Algorithm 1 is occasionally referred to as Monte Carlo permutation tests in the literature 

because of the random sampling involved in generating the statistics. This standard 

description of a permutation test will be used in the following sections to describe our 

proposed testing algorithm.

Algorithm 1

NAIVEPT The exhaustive permutation testing procedure.

Input: X1, X2, L

Output: T, hL

  X = [X1; X2], n = n1 + n2

  m1 …, mL ← [∅]

  for i ∈ 1, …, L do

    j1 …, jn ~ PERMUTE[1, n]

    X̃1 ← X[:, j1, …, jn1], X̃2 ← X[:, jn1+1, …, jn]

    T[:, i] ← test(X̃1, X̃2)

    mi ← MAX(T[:, i])

  end for

  hL ← HISTOGRAM(m1, …, mL)

2.2. The situation when L is large

Evidently as the number of permutations (L) increases Algorithm 1 becomes extremely 

expensive. Nonetheless, performing a large number of permutations is essential in 

neuroimaging for various reasons. We discuss these reasons in some detail next.

1. Random sampling methods draw many samples from near the mode(s) of the 

distribution of interest, but fewer samples from the tail. To characterize the 

threshold for a small portion of the tail of a distribution, we must invariably draw 

a very large number of samples just so that the estimate converges. So, if we 

want an α = 0.01 threshold from the max null distribution, we require many 
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thousands of permutation samples — a computationally expensive procedure in 

neuroimaging as previously discussed.

2. Ideally we want to obtain a precise threshold for any α, in particular small α. 

However, the smallest possible p-value that can be obtained from the empirical 

null is . Therefore, to calculate very low p-values (essential in many 

applications), L must be very large.

3. A typical characteristic of brain imaging disorders, for instance in the early (e.g., 

preclinical) stages of Alzheimer's disease (AD) and other forms of dementia, is 

that the disease signature is subtle — for instance, in AD, the deposition of 

Amyloid load estimated via positron emission tomographic (PET) images or 

atrophy captured in longitudinal structural magnetic resonance images (MRI) 

image scans in the asymptomatic stage of the disease. The signal is weak in this 

setting and requires large sample size studies (i.e., large n) and a need for 

estimating the Type 1 error threshold with high confidence. The necessity for 

high confidence tail estimation implies that we need to sample many more 

relabelings, requiring a large number of permutations L.

3. A convex formulation to characterize the structure of T

It turns out that the computational burden of algorithm 1 can be mitigated by exploiting the 

structural properties of the permutation testing matrix T. Our strategy uses ideas from 

LRMC, subspace tracking, and random matrix theory, to exploit the correlated structure of T 
and model it in an alternative form. In this section, we first introduce LRMC, followed by 

the overview of the eigen-spectrum properties of T, which then leads to our proposed model 

of T.

3.1. Low-rank matrix completion

Given only a small fraction of the entries in a matrix, the problem of low-rank matrix 

completion (LRMC) Candès and Tao (2010) seeks to recover the missing entries of the 

entire matrix. Clearly, with no assumption on the properties of the matrix, such a recovery is 

ill-posed. Instead, if we assume that the column space of the matrix is low-rank and the 

observed entries are randomly sampled, then the authors of Candès and Tao (2010) and 

others have shown that, with sufficiently small number of entries, one can recover the 

orthogonal basis of the row space as well as the expansion coefficients for each column — 

that is, fully recover the missing entries of the matrix. Specifically, the number of entries 

required is roughly r log(d) where r is the column space's rank and d is the ambient 

dimension. By placing an ℓ1-norm penalty on the eigenvalues of the recovered matrix, i.e., 

the nuclear norm Fazel et al. (2004); Recht et al. (2010), one optimizes a convex relaxation 

of an (nonconvex) objective function which explicitly minimizes the rank. Alternatively, we 

can specify a rank r ahead of time, and estimate an orthogonal basis of that rank by 

following a gradient along the Grassmannian manifold Balzano et al. (2010); He et al. 

(2012). The LRMC problem has received a great deal of attention in the period after the 

Netflix Prize Bennett and Lanning (2007), and numerous applications in machine learning 
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and computer vision have been investigated Ji et al. (2010). Details regarding existing 

algorithms and their analyses including strong recovery guarantees are available in Candès 

and Recht (2009, 2011).

LRMC Formulation—Let us consider a matrix T ∈ ℝv×L. Denote the set of randomly 

subsampled entries of this matrix as Ω. This means that we have access to TΩ, and our 

recovery task corresponds to estimating TΩC, where ΩC corresponds to the complement of 

the set Ω. Let us denote the estimate of the complete matrix be T̂. The completion problem 

can be written as the following optimization task,

(1)

(2)

(3)

where U ∈ ℝv×r is the low-rank basis of T, i.e., the columns of U correspond to the 

orthogonal basis vectors of the column space of T. Here, Ω gives the measured entries and 

W is the matrix of coefficients that lets us reconstruct T̂.

3.2. Low-rank plus a long tail in T

Most datasets encountered in the real world (and especially in neuroimaging) have a 

dominant low-rank component. While the data may not be exactly characterized by a low-

rank basis, the residual will not significantly alter the eigen-spectrum of the sample 

covariance in general. Strong correlations nearly always imply a skewed eigen-spectrum, 

because as the eigen-spectrum becomes flat, the resulting covariance matrix tends to become 

sparser (the “uncertainty principle” between low-rank and sparse matrices Chandrasekaran 

et al. (2011)). Low-rank structure in the data is encountered even more frequently in 

neuroimaging — unlike natural images in computer vision, there is much stronger voxel-to-

voxel homogeneity in a brain image.

While performing statistical hypothesis testing on these images, the low-rank structure 

described above carries through to T for purely linear statistics such as sample means, mean 

differences and so on. However, non-linearities in the test statistic, e.g., normalizing by 

pooled variances, will perturb the eigen-spectrum of the original data, contributing a long 

tail of eigenvalues (see Fig. 2). This large number of significant singular values needs to be 

accounted for, if one intends to model T using low-rank structure. Ideally, we require that 

this long tail should either decay rapidly, or that it does not overlap with the dominant 

eigenvalues. This is equivalent to asking that the resulting non-linearities do not decorrelate 
the test statistics, to the point that the matrix T cannot be approximated by a low-rank matrix 
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with high fidelity. For t-statistics, the non-linearities come from normalization by pooled 

variances, see for example a two-sample t-test shown in (4). Here (μ1, σ1) and (μ2, σ2) are 

the mean and standard deviations for the two groups respectively. Since the pooled variances 

calculated from correlated data X are unlikely to change very much from one permutation 

sample to another (except outliers), we expect that the spectrum of T will resemble that of 

the data (or sample) covariance, with the addition of a long, exponentially decaying tail. 
More generally, if the non-linearity does not decorrelate the test statistics too much, it will 

almost certainly preserve the low-rank structure.

(4)

3.2.1. Does low-rank plus a long tail assumption hold for other image 
modalities?—The underlying thesis of our proposed framework is that the permutation 

testing matrix T, in general, has this low-rank plus long tail structure. In Fig. 2, we show 

evidence that this is in fact the case for a variety of imaging modalities that are commonly 

used in medical studies – Arterial Spin Labeling (ASL), Magnetic Resonance Imaging 

(MRI), and two Positron Emission Tomography (PET) modalities including 

fluorodeoxyglucose (FDG) and Pittsburgh compound B (PiB). Using several images coming 

from each of these modalities four different Ts are constructed. Each row in Fig. 2 shows the 

decay of the singular value spectrum of these four different Ts. The low-rank (left column) 

and the remaining long tail (right column) is clearly seen in these spectrum plots which 

suggests that the core modeling assumptions are satisfied. We note that the MRI data that 

was used in Fig. 2 was in fact the de facto dataset for our evaluation presented in section 6. 

The underlying construct of such high correlations across multiple covariates or predictors is 

common to most biological datasets beyond brain scans, like genetic datasets.

3.3. Overview of proposed method

If the low-rank structure dominates the long tail described above, then its contribution to T 
can be modeled as a low variance Gaussian I.I.D. residual. A Central Limit argument 

appeals to the number of independent eigenfunctions that contribute to this residual, and, the 

orthogonality of eigenfunctions implies that as more of them meaningfully contribute to 

each entry in the residual, the more independent those entries become. In other words, if this 

long tail begins at a low magnitude and decays slowly, then we can treat it as a Gaussian I.I.D. 

residual; and if it decays rapidly, then the residual will perhaps be less Gaussian, but also 

more negligible. Thus, our algorithm makes no direct assumption about these eigenvalues 

themselves, but rather that the residual corresponds to a low-variance I.I.D. Gaussian random 

matrix – its contribution to the covariance of test statistics will be Wishart distributed, and 

from this property, we can characterize its eigenvalues.

Why should we expect runtime improvements?—The low-rank + long tail structure 

of the permutation testing matrix then translates to the following identity,
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(5)

where S is the unknown I.I.D. Gaussian random matrix. We do not restrict ourselves to one-

sided tests here, and so, S is modeled to be zero-mean. Later in Section 4, we show that this 

apparent zero-mean assumption is addressed because of a post-processing step. The low-

rank portion of T can be reconstructed by sub-sampling the matrix at Ω using the LRMC 

optimization from (1). Recall from the discussion in Section 3.1 that Ω corresponds to a 

subset of indices of the entries in T, i.e., instead of computing all voxel-wise statistics for a 

given relabeling (a column of T), only a small fraction η, referred to as the sub-sampling 

rate, are computed. Later in Sections 5 and 6, we will show that η is very small (on the 

orders of <1%). Therefore, the overall number of entries in Ω — the number of statistics 
actually calculated to recover T – is ηvL as opposed to vL for η≪1.

Since the core of the proposed method is to model T by accessing only a small subset of its 

entries Ω, we refer to it as a rapid permutation testing procedure – RAPIDPT. Observe that a 

large contributor to the running time of online subspace tracking algorithms, including the 

LRMC optimization from (1), is the module which updates the basis set U; but once a good 

estimate for U has been found, this additional calculation is no longer needed. Second, the 

eventual goal of the testing procedure is to recover the max null as discussed earlier in 

Section 2, which then implies that the residual S should also be recovered with high fidelity. 

Exact recovery of S is not possible. Although, for our purposes, we only need its effect on 

the distribution of the maximum per permutation test. An estimate of the mean and variance 

of S then provides reasonably good estimates of the max null. We therefore divide the entire 

process into two steps: training, and recovery which is described in detail in the next section.

4. Rapid permutation testing – RAPIDPT

In this section, we discuss the specifics of the training and recovery stages of RAPIDPT, and 

then present the complete algorithm, followed by some theoretical guarantees regarding 

consistency and recovery of T. Fig. 3 shows a graphical representation of the RapidPT 

algorithm 2.

4.1. The training phase

The goal of the training phase is to estimate the basis U. Here, we perform a small number 

of fully sampled permutation tests, i.e., for approximately a few hundred of the columns of 

T (each of which corresponds to a permutation) denoted by ℓ, all the v voxel-wise statistics 

are computed. This v × ℓ “sub-matrix” of T is referred to as the training set, denoted by Tex. 

In our experiments, ℓ was selected to be either a fraction or a multiple of the total number of 

subjects n as described in section 5.4. From Tex, we estimate the basis U using sub-sampled 

matrix completion methods Balzano et al. (2010); He et al. (2012), making multiple passes 

over the training set with the (given) sub-sampling rate η, until convergence. This 

corresponds to initializing U as a random orthogonal matrix of a pre-determined rank r, and 

using the columns of Tex repeatedly to iteratively update it until convergence (see Balzano et 

al. (2010); He et al. (2012) for details regarding subspace tracking). Once U is obtained in 
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this manner, Wex is obtained by running a simple least-squares procedure on Tex and U. The 

histogram of Tex − UWex will then be an estimate of the empirical distribution of the 

residual S over the training set. We denote the standard deviation of these ‘left over’ entries 

as σ. We now discuss a few relevant aspects of this training phase.

Notice that in principle, one can estimate U directly from Tex by simply computing the 

leading r principal components. This involves a brute-force approximation of U by 

computing the singular-value decomposition of a dense v × ℓ matrix. Even for reasonably 

small v, this is a costly operation. Second, T̂, by definition, contains a non-trivial residual. 

We have no direct control on the structure of S except that it is I.I.D Gaussian. Clearly, the 

variance of entries of S will depend on the fidelity of the approximation provided by U. 

Since the sub-sampling rate η (the size of the set Ω compared to vL) is known ahead of time, 

estimating U via a subspace-tracking procedure using η fraction of the entries of Tex (where 

each column of Tex modifies an existing estimate of U, one-by-one, without requiring to 

store all the entries of Tex) directly provides an estimate of S.

Bias-Variance Trade-off—When using a very sparse subsampling method i.e., sampling 

with small η, there is a bias-variance trade-off in estimating S. Clearly, if we use the entire 

matrix T to estimate U, W and S, we will obtain reliable estimates of S. But, there is an 

overfitting problem: the least-squares objective used in fittingW (in getting a good estimate 

of the max null) to such a small sample of entries is likely to grossly underestimate the 

variance of S compared to when we use the entire matrix; the sub-sampling problem is not 

nearly as over-constrained as it is for the full matrix. This sampling artifact reduces the 

apparent variance of S, and induces a bias in the distribution of the sample maximum, 

because extreme values are found less frequently. This sampling artifact has the effect of 

“shifting” the distribution of the sample maximum towards zero. We refer to this as a bias-

variance trade-off because, we can think of the need for shift as an outcome of the sub-

optimality of the estimate of σ versus the deviation of the true max null from the estimated 

max null, We correct for this bias by estimating the amount of the shift during the training 

phase, and then shifting the recovered sample max distribution by this estimated amount. 

This shift is denoted by μ.

4.2. The recovery phase

In the recovery phase, we sub-sample a small fraction of the entries of each column of T 
successively, i.e., for each new relabeling, the voxel-wise statistics are computed over a 

small fraction of all the voxels to populate TΩ. Using this TΩ, and the pre-estimated U, the 

reconstruction coefficients for this column w ∈ ℝr×1 are computed. After adding the random 

residuals – I.I.D Gaussian with mean μ and standard deviation σ, to this Uw, we have our 

estimate T̂ for this specific relabeling/permutation. Recall that S was originally modeled to 

be zero-mean (see (5)), but the presence of the shift μ suggests a  (μ, σ2) distribution 

instead. Overall, this entails recovering a total of v voxel-wise statistics from ηv of such 

entries where η≪1. This process repeats for all the remaining L − ℓ columns of T, eventually 

providing T̂. Once T̂ has been estimated, we proceed exactly as in the NAIVEPT, to compute 

the max null and test for the significance of the true labeling.
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4.3. The algorithm

Algorithm 2 and Fig. 3 summarizes RAPIDPT. The algorithm takes in the input data X, the 

rank of the basis r, the sub-sampling rate η, the number of training columns ℓ and the total 

number of columns L as inputs, and returns the estimated permutation testing matrix T and 

the max null distribution hL. As described earlier in Sections 4.1 and 4.2, Algorithm 2 first 

estimates U, σ and the shift μ, which are then used to compute W and S for the L number of 

permutations.

Algorithm 2

The RAPIDPT algorithm for permutation testing.

Input: X1, X2, r, η, L, ℓ, stat

Output: T̂, hL

  X = [X1; X2], n = n1 + n2

  TRAINING

  U ← RAND. ORTH., Wex = [∅]

  for i ∈ 1, …, ℓ do

    j1 …, jn ~ PERMUTE[1, n]

    X̃1 ← X[:, j1, …, jn1]

    X̃2 ← X[:, jn1+1, …, jn]

    Tex[:, i] ← test(X̃1, X̃2)

    k1, …, k⌈ηυ⌉ ~ UNIF[1, υ]

    T̃ ← Tex[k1, …, k⌈ηυ⌉, i]

    U, Wex[:, i] ← SUBSPACE-TRACKING(r)

  end for

  σ ← STANDARD DEVIATION{Tex − UWex}Ω

  μ ← supi MAX{Tex[:, i] − UWex[:, i]}

  for i ∈ 1, …, ℓ do

    T̂[:, i] ← T[:, i]

  end for

  RECOVERY

  for i ∈ ℓ + 1, …, L do

    k1, …, k⌈ηυ⌉ ~ UNIF[1, υ]

    j1 …, jn ~ PERMUTE[1, n]

    X̃1 ← X[k1, …, k⌈ηυ⌉, j1, …, jn1]

    X̃2 ← X[k1, …, k⌈ηυ⌉, jn1+1, …, jn]

    T̃ ← test(X̃1, X̃2)

    W[:, i] ← COMPLETE(U, T ̃, k1, …, k⌈ηυ⌉)

    s ← i.i.d υ(0, σ2)

    T̂[:, i] ← UW[:, i] + s

  end for

  for i ∈ 1, …, L do

    if i ≤ ℓ then

      mi ← MAX(T̂)[:, i])
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    else

      mi ← MAX(T̂)[:, i] + μ

    end if

  end for

  hL ← HISTOGRAM(m1, …, mL)

4.4. Summary of theoretical guarantees

Algorithm 2 shows an efficient way to recover the max null by modeling T as a low-rank 

(UW) plus a low-variance residual (S). While this is useful, one may ask if this modeling 

assumption is reasonable and whether such a procedure will, in fact, recover the true 

statistics. Our two technical results answer these questions, and for brevity, we present them 

in the supplementary material accompanying the main paper. The informal summary of the 

results is (1) the basic model (i.e., low-rank and low-variance residual) is indeed meaningful 

for the setting we are interested in, and (2) Recovering the low-rank and the residual by 

Algorithm 2 guarantees a high fidelity estimate of the max null, and shows that the error is 

small.

5. Experimental setup

We evaluate RapidPT in multiple phases. First we perform a simulation study where the goal 

is to empirically demonstrate the requirements on the input hyperparameters that will 

guarantee an accurate recovery of the max null. These empirical results are compared to the 

analytical bounds governed by the theory (and further discussed in the supplement). The 

purpose of these evaluations is to walk the reader through the choices of hyperparameters, 

and how the algorithm is very robust to them. Next, we perform another simulation study 

where our goal is to evaluate the performance of RapidPT on multiple synthetic datasets 

generated by changing the strength of group-wise differences and the sparsity of the signal 

(e.g., how many voxels are different). We then conduct an extensive experiments to evaluate 

RapidPT against competitive methods on real brain imaging datasets. These include 

comparisons of RapidPT's accuracy, runtime speedups and overall performance gains against 

two baselines. The first baseline we used was the latest release of the widely used MATLAB 

toolbox for nonparametric permutation testing in neuroimaging, Statistical NonParametric 

Mapping (SnPM) (SnPM (2013); Nichols and Holmes (2002)). The second baseline was a 

standard MATLAB implementation of algorithm 1, which we will call NaivePT. Both 

baselines serve to evaluate RapidPT's accuracy. Further, the very small differences between 

the results provided by SnPM and NaivePT offer a secondary reference point that tells us an 

acceptable range for RapidPT's results (in terms of differences). For runtime performance, 

SnPM acts as a state of the art baseline. On the other hand, NaivePT is used to evaluate how 

an unoptimized permutation testing implementation will perform on the datasets we use in 

our experiments. In the next section, we describe the experimental data, the hyperparameters 

space evaluated, the methods used to quantify accuracy, and the environment where all 

experiments were run.
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5.1. Simulation Data I

The dataset consisted of n = 30 synthetic images composed of v = 20000 voxels. The signal 

in each voxel is derived from one of the following two normal distributions: N(μ = 0, σ2 = 1) 

and N(μ = 1, σ2 = 1). Two groups were then constructed with 15 images in each and letting 

1% (200 voxels) exhibit voxel-wise group differences. The signal in the remaining 99% of 

the voxels was assumed to come from N(μ = 0, σ2 = 1).

5.2. Simulation Data II

The dataset consisted of a total of 48 synthetically generated datasets, each with v = 20000 

voxels. The datasets were generated by varying: the number of images (n) in the dataset, the 

strength of the signal (i.e., deviation of μ in N(μ, 1) from N(0, 1)) and the sparsity of the 

signal (percentage of voxels showing group differences). The dataset sizes were n = 60, n = 

150, n = 600. Each dataset was split into two equally sized groups for which various degrees 

of signal and sparsity of the signal were used to generate the different datasets. The first 

“group” (for group-difference analysis) in all datasets was generated from a standard normal 

distribution, N(μ = 0, σ2 = 1). In the second “group”, we chose {1%, 5%, 10%, 25%} of the 

voxels from one of four normal distributions (N(μ = 1, σ2 = 1), N(μ = 5, σ2 = 1), N(μ = 10, 

σ2 = 1), N(μ = 25, σ2 = 1)). The signal in the remaining voxels in the second group was also 

obtained from N(μ = 0, σ2 = 1).

To summarize the simulation setup, Simulation Data I fixes the dataset and changes the 

algorithmic hyperparameters whereas Simulation Data II fixes the algorithmic 

hyperparameters and generates different datasets.

5.3. Data

The data used to evaluate RapidPT comes from the Alzheimer's disease Neuroimaging 

Initiative-II (ADNI2) dataset. The ADNI project was launched in 2003 by the National 

Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the 

Food and Drug Administration, private pharmaceutical companies, and nonprofit 

organizations, as a $60 million, 5-year public-private partnership. The overall goal of ADNI 

is to test whether serial MRI, positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of MCI and early AD. Determination of sensitive and specific markers of very 

early AD progression is intended to aid researchers and clinicians to develop new treatments 

and monitor their effectiveness, as well as lessen the time and cost of clinical trials. The 

principal investigator of this initiative is Michael W. Weiner, M.D., VA Medical Center and 

University of California – San Francisco. ADNI is the result of the efforts of many co-

investigators from a broad range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. The initial aim 

of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research – 

approximately 200 cognitively normal older individuals to be followed for 3 years, 400 

people with MCI to be followed for 3 years, and 200 people with early AD to be followed 

for 2 years.
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For the experiments presented in this paper, we used gray matter tissue probability maps 

derived from T1-weighted magnetic resonance imaging (MRI) data. From this data, we 

constructed four varying sized datasets. We sampled n1 and n2 subjects from the CN and AD 

groups in the cohort, respectively. Table 1 shows a summary of the datasets used for our 

evaluations.

5.3.1. Data pre-processing—All images were pre-processed using voxel-based 

morphometry (VBM) toolbox in Statistical Parametric Mapping software (SPM, http://

www.fil.ion.ucl.ac.uk/spm). After pre-processing, we obtain a data matrix X composed of n 
rows and v columns for each dataset shown in Table 1. Each row in X corresponds to a 

subject and each column is associated to a voxel that denotes approximately the same 

anatomical location across subjects (since the images are already co-registered). This pre-

processing is commonly used in the literature and not specialized to our experiments.

5.4. Hyperparameters

As outlined in Algorithm 2, there are three high-level input parameters that will impact the 

performance of the procedure: the number of training samples (l), the sub-sampling rate (η), 

and the number of permutations (L). To demonstrate the robustness of the algorithm to these 

parameter settings, we explored and report on hundreds of combinations of these 

hyperparameters on each dataset. This also helps us identify the general scenarios under 

which RapidPT will be a much superior alternative to regular permutation testing. The 

baselines for a given combination of these hyperparameters are given by the max null 

distribution constructed by SnPM and NaivePT. The number of permutations used for the 

max null distributions of the baselines is the same as the number of permutations used by 

RapidPT for a given combination of hyperparameters.

• Number of Training Samples: The number of training samples, l, determines how 

many columns of T are calculated to estimate the basis of the subspace, and also 

how many training passes are performed to estimate the shift that corrects for the 

bias-variance tradeoff discussed in Section 4.1. We decided to use the total 

number of subjects n as a guide to pick a sensible l, the rationale is that the 

maximum possible rank of T is n (as discussed in Section 3). Further, l is also 

used to determine the number of passes performed to calculate the shift of the 

max null distribution. Calculating the shift is a cheap step, therefore it makes 

sense to use all the information available in Tex to calculate the shift. Table 2 

shows a summary of the different values for l used in our evaluations.

• Sub-sampling rate: The sub-sampling rate, η, is the percentage of all the entries 

of T that we will calculate (i.e., sample) when recovering the max null 

distribution. In the recovery phase, η determines how many voxel-wise test 

statistics will be calculated at each permutation to recover a column of T̄. For 

instance, if the data matrix has v columns (number of voxels) then instead of 

calculating v test statistics, we will sample only ηv (where η≪1) random 

columns and calculate test statistics only for those columns. Table 3 shows a 

summary of the different values of η used in our evaluations.
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• Number of Permutations The number of permutations, L, determines the total 

number of columns in T. By varying L we are able to see how the size of T 
affects the accuracy of the algorithm and also how it scales compared to a 

standard permutation testing implementation with the same number of 

permutations (e.g., NaivePT or SnPM). Table 4 shows a summary of the different 

values for L used in our evaluations.

5.5. Accuracy benchmarks

In order to assess the accuracy and overall usefulness of the recovered max null distribution 

by RapidPT we used three different measures: Kullback-Leibler Divergence (KL-

Divergence), t-thresholds/p-values and the resampling risk.

Kullback-Leibler Divergence—The KL-Divergence provides a measure of the difference 

between two probability distributions. One of the distributions represents the ground truth 

(SnPM or NaivePT) and the other an “approximation” (obtained via RapidPT). In this case, 

the distributions are the max null distributions (hL). We use the KL-Divergence to identify 

under which circumstances (i.e., hyperparameters) RapidPT provides a good estimate of the 

overall max null distribution and if there are cases where the results are unsatisfactory.

T-thresholds/p-values—Once we have evaluated whether all methods recover a similar 

max null distribution, we analyze if t-thresholds associated to a given p-value calculated 

from each max null distribution are also similar.

Resampling risk—Two methods can recover a similar max null distribution and p-values, 

and yet partially disagree in which voxels should be classified as statistically significant 

(e.g., within a group difference analysis). The resampling risk is the probability that the 

decision of accepting/rejecting the null hypothesis differs between two methods (Jockel 

(1984)). Let v1 and v2 be the number of voxels whose null hypothesis was rejected 

according to the max null derived from Method 1 and 2, respectively. Further, let vc be the 

number of voxels that are the (set) intersection of v1 and v2. The resampling risk can then be 

calculated as shown in (6).

(6)

5.6. Implementation environment and other details

All evaluation runs reported in this paper were performed on multiple machines with the 

same hardware configuration. The setup consisted of multiple 16 core machine with two 

Intel(R) Xeon(R) CPU E5-2670, each with 8 cores. This means that any MATLAB 

application will be able to run a maximum of 16 threads. To evaluate the runtime 

performance of RapidPT, we performed all experiments on two different setups which 

forced MATLAB to use a specific number of threads. First, we forced MATLAB to only use 

a single thread (single core) when running SnPM, RapidPT, and NaivePT. The performance 

results on a single threaded environment attempt to emulate a scenario where the application 
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was running on an older laptop/workstation serially. In the second setup, we allow MATLAB 

to use all 16 threads available to demonstrate how RapidPT is also able to leverage a parallel 

computing environment to reduce its overall runtime.

Although all machines had the same hardware setup, to further ensure that we were making 

a fair runtime performance comparison, all measurements of a given Figure shown in 

Section 6 were obtained from the same machine.

6. Results

The hyperparameter space explored through hundreds of runs allowed identifying specific 

scenarios where RapidPT is most effective. To demonstrate accuracy, we first show the 

impact of the hyperparameters on the recovery of the max null distribution by analyzing KL-

Divergence. Then we focus on the comparison of the corrected p-values across methods and 

the resampling risk associated with those p-values. To demonstrate the runtime performance 

gains of RapidPT, we first calculate the speedup results across hyperparameters. We then 

focus on the hyperparameters that a user would use and look at how RapidPT, SnPM, and 

NaivePT scale with respect to the dataset and the number of permutations. Overall, the large 

hyperparameter space that was explored in these experiments produced hundreds of figures. 

In this section, we summarize the results of all figures within each subsection, but only 

present the figures that we believe will convey the most important information about 

RapidPT. An extended results section is presented in the supplementary materials. We point 

out that following the results and the corresponding discussion of the plots and figures, we 

discuss the open-source toolbox version of RapidPT that is mde available online.

6.1. Accuracy

6.1.1. Simulations—Fig. 4 shows the log KL-Divergence between the max null recovered 

by regular permutation testing and the max null recovered by RapidPT. We can observe that 

once the sub-sampling rate, η, exceeds the minimum value established by LRMC theory, 

RapidPT is able to accurately recover the max null with a KL-Divergence < 10−2. 

Furthermore, increasing l can lead to slightly lower KL-Divergence as seen in the middle 

and right most plots. Finally, increasing the number of permutation improves the accuracy. A 

through discussion of how to choose the important hyperparameters is in Section 7.3.

Fig. 5 shows the log percent difference between the t-thresholds for different p-values 

obtained from the true max null and the one recovered by RapidPT. Similar to Fig. 4, it is 

evident that once the strict requirement on the minimum value of η is achieved, we obtain a 

reliable t-threshold i.e., percent difference <10−3. Additionally, increasing the number of 

training samples (progression of plots from left to right) gives an improvement in the 

accuracy, however, not incredibly significant since we are already at negligible percent 

differences. Overall we see that RapidPT is able to estimate accurate thresholds even at 

extremely low p-value regimes.

Fig. 6 shows the KL-Divergence between the max null recovered by regular permutation 

testing and the max null recovered by RapidPT on 48 synthetically generated datasets (16 in 

each column). The input hyperparameters used were fixed to L = 50000, η = 2ηmin, and l = 
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n, where ηmin refers to the theoretical minimum sub-sampling rate and n is the dataset size. 

As expected, the strength or sparsity of the signal does not have an impact on the 

performance of RapidPT. The dataset size, however, does have a slight impact on the 

accuracy but we still find that the recovered t-thresholds for the smaller datasets are within 

2% of the true threshold.

6.1.2. Results on the ADNI dataset

6.1.2.1. Can we recover the max null distribution?: The left column of Fig. 7 uses a 

colormap to summarize the KL-Divergence results obtained from comparing the max null 

distributions of a single run of SnPM versus multiple RapidPT runs with various 

hyperparameters. The right column of Fig. 7 puts the numbers displayed in the colormaps 

into context by showing the actual max null distributions for a single combination of 

hyperparameters. Each row corresponds to each of the four datasets used in our evaluations.

The sub-sampling rate was the hyperparameter that had the most significant impact on the 

KL-Divergence. As shown in Fig. 7, a sub-sampling rate of 0.1% led to high KL-

Divergence, i.e., the max null distribution was not recovered in this case. For every other 

combination of hyperparameters RapidPT was able to sample at rates as low as 0.35% and 

still recover an accurate max null distribution. Most KL-Divergence values were in the 0.01 

– 0.05 range with some occasional values between 0.05 – 0.15. However, using the max null 

distributions derived from only 2000 permutations leads to the resulting KL-Divergence to 

range mainly between 0.05 – 0.15, as shown in the supplementary results.

6.1.2.2. Are we rejecting the correct null hypotheses?: The test statistics obtained using 

the original data labels whose value exceed the t-threshold associated to a given p-value will 

correspond to the null hypothesis rejected. Fig. 8 shows the resultant mapping between t-
threshold and p-values for the max null distribution for a given set of hyperparameters. It is 

evident that the difference across methods is minimal. Moreover, Fig. 8 shows that low p-

values (p < 0.1), which are the main object of interest, show the lowest differences. 

However, despite the low percent differences between the p-values, in the larger datasets 

(100, 200, and 400 subjects) RapidPT consistently yields slightly more conservative p-

values near the tails of the distribution. Nonetheless, Fig. 11 shows that the resampling risk 

between RapidPT and the two baselines remains very close to the resampling risk between 

both baselines. In practice, these plots show that RapidPT will reject the null hypothesis for 

a slightly lower number of voxels than SnPM or NaivePT.

Despite the slight difference in thresholds, the actual brain regions whose null hypotheses 

were rejected consistently match between both methods as shown in Figs. 9 and 10. 

Additionally, the regions picked up by both RapidPT and SnPM in Fig. 9 correspond to the 

Hippocampus – which is one of the primary structural brain imaging region that corresponds 

to the signature of cognitive decay at the onset of Alzheimer's disease. The regions in Fig. 10 

contain a subset of the brain regions in Fig. 9 which is expected from the thresholds shown 

in the right column of Fig. 7.
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6.2. Runtime performance

6.2.1. Effect of hyperparameters on the speed of RapidPT—Figs. 12 and 13 show 

the speedup gains of RapidPT over SnPM and NaivePT, respectively. Each column 

corresponds to a single dataset, and each row corresponds to a different number of 

permutations. The supplementary results include an exhaustive version of these results that 

show the speedup gains of RapidPT for many additional number of permutations.

As shown in Fig. 12, RapidPT outperforms SnPM in most scenarios. With the exception of 

the L = 2000 and L = 5000 runs on the larger datasets (n = 200 and n = 400), the colormaps 

show that RapidPT is 1.5–30× faster than SnPM. As expected, a low η (0.35%, 0.5%) and 

 leads to the best runtime performance without a noticeable accuracy tradeoff, as 

can be seen also in Fig. 7 earlier.

Fig. 13 shows how RapidPT performs against a non-optimized permutation testing 

implementation. In this setup, RapidPT outperforms NaivePT in every single combination of 

the hyperparameters. The same speedup trends that were seen when comparing RapidPT and 

SnPM are seen between RapidPT and NaivePT but with a much larger magnitude. For the 

remainder of this section, the runtime results of NaivePT are no longer compared because 

the difference is too large.

6.2.2. Scaling of RapidPT vs. SnPM—As opposed to η and l which only seem to have 

an impact on the runtime performance of RapidPT, the number of permutations and the size 

of the dataset have an impact on the runtime of both RapidPT and SnPM. In this section, we 

compare how RapidPT and SnPM scale as we vary these two parameters. Figs. 14 and 15 

show the runtime performance of RapidPT for η = 0.35% and l = n.

Number of Permutations: Fig. 14 shows the super linear scaling of SnPM compared to 

RapidPT for all datasets as the number of permutation increases. Doubling the number of 

permutations in SnPM leads to an increase in the runtime by a factor of about two. On the 

other hand, doubling the number of permutations for RapidPT only affects the runtime of the 

recovery phase leading to small increases in the timing performance. The performance of 

both implementations is only comparable if we focus on the lower range of the number of 

permutations (5000) across datasets. As this number increases, as was shown in Fig. 12, 

RapidPT outperforms the permutation testing implementation within SnPM.

Dataset Size: Fig. 15 shows the effect of the dataset size on the runtime of RapidPT and 

SnPM. In SnPM, as expected, increasing the dataset by a factor of two leads to an increase 

on the runtime by a factor of two. In RapidPT, however, increasing the dataset size has a 

variable effect on the runtime. The training phase ends up contributing more to the runtime 

as the dataset size increases, while the recovery phase runtime increases at much slower rate.

Overall, scaling the number of permutations have a stronger impact on the runtime 

performance of SnPM than RapidPT. On the other hand, scaling the dataset size has a more 

negative effect on the timing of RapidPT than in SnPM. Furthermore, if both parameters are 
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increased at the same time the runtime of SnPM increases at a much faster rate than the 

runtime of RapidPT.

7. Discussion

7.1. Accuracy

7.1.1. Recovered Max null distribution—Monte carlo permutation tests perform a 

randomization step where a random subset of the total number of permutations is chosen. 

This means that the constructed max null distribution from one run might slightly differ 

from another run, and as the number of permutations increases, this difference will decrease. 

In terms of KL-Divergence, this means that the KL-Divergence between two permutation 

testing runs on the same data will be small, but not exactly zero. The results show that given 

a good set of hyperparameters the KL-Divergence between a run of RapidPT versus a 

regular permutation testing run leads to a very low KL-Divergence which is the expected 

result, even if we run the same permutation testing program twice. The evaluated scenarios 

show that a sensible set of hyperparameters can be easily defined as long as the subsampling 

rate is sufficient for the recovery of the permutation testing matrix. The minimum number of 

sub-sampled entries needed to accurately recover T depends on the rank and dimensions of 

T as discussed in section 3.1 and in the supplement. For the simulation study with n = 30, 

the minimum η required was 1.6% of all entries as shown in Figs. 4 and 5. The experiments 

on the other 48 synthetic datasets (Fig. 6) used 2ηmin as the sub-sampling rate. In our 

experiments on the ADNI dataset, η ≥ 0.35% led to a large enough set of sub-sampled 

entries to obtain an accurate estimate of the max null distribution. For a brief discussion on 

how to pick a sensible η and the minimum sub-sampling rate (ηmin), please refer to section 3 

of the supplementary material. Overall, once we have a sensible η, the resulting max null 

distribution constructed by RapidPT is consistent to the one recovered by regular 

permutation testing.

The number of permutations also has a significant impact on the KL-Divergence. As L 
increases, the KL-Divergence decreases. However, this is also true between any two 

permutation testing runs on the same dataset.

7.1.2. Evaluating p-values—As seen in the p-value spectrum plots, the p-values drawn 

from each max null distribution agree (given a good set of hyperparameters as discussed 

above). This follows from the low KL-Divergence, since the KL-Divergence is a measure of 

the overall difference between the distributions. The lowest differences, however, are located 

in the tails of the distributions. This means that the derived thresholds are expected to accept/

reject almost the same null hypotheses.

The extremely low p-value regime: As we will discuss in section 7.2 the largest speedups 

from RapidPT are obtained as the number of permutations increases. The main reason to 

increase L is to obtain smaller p-values. Figs. 5 and 8 show that RapidPT recovers extremely 

accurate t-threshold (percent differences <0.1%). Figs. 9 and 10 demonstrate this in a 

practical scenario where a large number of permutation (L = 100, 000) and a high 

percentage of the brain regions that rejected the null had a p-value <0.001. Therefore, a user 
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interested in using small p-values can benefit from large computational speedups when using 

RapidPT, with a negligible loss in accuracy.

7.1.3. Resampling risk

Small signal datasets: Although the p-values agree across methods, a small difference may 

lead to slightly more or less null hypotheses to be rejected by a given method. This has a 

direct impact on the resampling risk between RapidPT and regular permutation testing. In 

datasets where there is a small signal difference between groups, we may see an elevated 

resampling risk. The reason is because a very small number of null hypotheses will be 

rejected. Therefore, at a given p-value, p, one of the methods will reject a small number of 

null hypotheses which the second method will not reject until the p-value is p + δ, where 

δ≪1. This slight difference in the number of rejected null hypotheses may have a significant 

impact in the resampling risk. For instance in Fig. 11 (N = 200 at p = 0.05), RapidPT 

rejected 59 (out of ~ 568k statistics) null hypotheses and SnPM rejected 71: this led to a 

resampling risk of 8.45%. On the other hand, for N = 400 at p = 0.05 RapidPT rejected 2158 

(out of ~ 570k statistics) and SnPM rejected 2241 null hypotheses, resulting in a lower 

resampling risk of 1.85% even when there is a larger difference in the number of rejected 

hypotheses. Nonetheless, as we can see in the brain maps in Figs. 9 and 10 that this 

difference of RapidPT's and SnPM's rejections were among the boundary voxels of the 

rejection region (i.e., the mismatch is not at the center of the rejection/significant region). 

Note that once a reasonable small smoothing filter is applied to nullify noise (e.g., stand-

alone voxels) this apparent small difference will vanish visually. A similar situation is 

encountered in the 50 and 100 subject dataset (see supplement), where the number of null 

hypotheses rejected was extremely low (< 10) and single mismatch led to an elevated 

resampling risk. Therefore, the resampling risk is a useful measure if it is presented together 

with the number of null hypothesis being rejected. Hence, RapidPT yields a slightly more 

conservative test, primarily because it is based on sub-sampling. Nevertheless, this sub-

sampling is robust to locating the same voxel clusters that displayed group differences as the 

other methods.

7.2. Runtime performance

Our results show that under certain scenarios RapidPT provides substantial speedups over 

SnPM (state of the art) and NaivePT (simple implementation). From the runtime 

performance of NaivePT, it is evident that in practice it is more beneficial for the user to rely 

on a permutation testing toolbox such as SnPM. In the remainder of the discussion we will 

just consider the runtime performance of RapidPT and SnPM.

Dataset Size—Overall, the largest speedups in both the serial and parallel setups were 

obtained in the runs for the smallest dataset (N = 50). The number of training samples used 

to estimate the basis U is smaller and consequently the training phase time decreases. As the 

dataset size increases, the training time introduces a considerable overhead which negatively 

impacts the speedup of RapidPT over SnPM when less than 20000 permutations are being 

performed.
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Number of Permutations—The number of permutations have a linear impact on the 

runtime of both RapidPT and SnPM. But as shown in Fig. 14, RapidPT runtime increases at 

a lower rate than SnPM's. This is expected since the number of permutations only impacts 

the runtime of the recovery phase. Therefore, the training phase time for a given setup is 

constant as the number of permutations changes. The results show that for datasets with less 

than or equal to 400 subjects between 5000 – 10000 permutations is the threshold where 

despite the training overhead in RapidPT, the expected speedup is considerable to justify its 

use. In the larger datasets, when performing less than 5000 permutations, the training 

overhead becomes too large, as shown in the supplementary material.

7.2.1. Serial vs. parallel performance—The serial and parallel runs show very similar 

speedup trends across hyperparameters as shown in the results and supplementary material. 

However, in terms of actual runtime, both RapidPT and SnPM benefit from being able to run 

on a parallel environment. This is an essential feature for any software toolbox that will be 

running on modern workstations because multiple cores are available in nearly all computers 

shipped today.

7.3. Hyperparameter recommendations

Sub-sampling Rate—The KL-Divergence results, Figs. 4 and 7, show that as long as the 

sub-sampling rate is greater than or equal to a certain threshold, RapidPT is able to 

accurately recover the max null distribution. For the simulation study this threshold was 

1.6% and for the real data experiments 0.35% was a high enough sub-sampling rate. A 

minimum ηmin can be calculated using LRMC theory as shown in Section 3 of the 

supplementary material. This minimum value is simply a function of the number of voxels 

and the number of data instances. The simulation results in Figs. 4 and 5 explicitly show this 

ηmin. The toolbox itself sets it to a default conservative value of 2∗ηmin, which is also shown 

in Figs. 4 and 5. This slightly larger choice ensures the error in recovering the null is almost 

negligible. Overall, the accuracy of RapidPT will not significantly improve as the sub-

sampling rate increases (pass ηmin). On the other hand, a low sub-sampling rate can 

significantly reduce the runtime, in particular in the large L regime, and is therefore 

preferable. A user does not need to change this rate in practice (beyond what is given by the 

toolbox). However, if he/she is willing to be even more flexible by sacrificing some accuracy 

to achieve an even higher speed-up, it can be reduced appropriately.

Number of Training Samples—The number of training samples will ideally be the exact 

rank of T. This is usually not known, however, we know that the rank is bounded by the 

number of subjects in the data matrix used to generate T. Therefore, in our evaluations, we 

are able to accurately recover the max null distribution even when using as low as  training 

samples. The recommended number of training samples in practice is be n (which follows 

from rank structure of the testing matrix) and is the default setting within RapidPT toolbox.

Number of Permutations—When a large number of permutations is desired, RapidPT 

should be strongly considered due to its runtime gains. Not only RapidPT provides 

considerable runtime gains in the large L regime, but also its accuracy will improve as the 
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KL-Divergence results show. Note, however, that the user should also take into account the 

dataset size and look at the speedup colormaps to see the expected speedups.

Dataset size—Although not a hyperparameter, as discussed above, the dataset size should 

play a role when the user selects which method to use. Large datasets (n ≥ 200), RapidPT 

will be a good option if the user is planning to perform a large number of permutations. For 

medium-sized datasets (50 ≤ n ≤ 200), RapidPT will most likely lead to good speedup gains. 

For small datasets (n ≤ 50), although RapidPT might lead to speedup gains over regular 

permutation testing, the total runtime will be on the order of minutes anyway.

As we briefly discussed in Section 1, Winkler et al. (2016) provides several strategies for 

reducing the runtime of permutation testing. But the authors do not report significant 

speedup gains against regular permutation testing on a 50 subject dataset with ≈200000 

voxels. On the other hand, RapidPT is able to consistently outperform a state of the art 

permutation testing implementation (SnPM) on a 50 subject dataset with ≈540k voxels. This 

boost in performance is, in large part, due to our low sub-sampling rates. Our subspace 

tracking algorithm is, nonetheless, able to perform recovery in this sparse sampling setting.

7.4. SnPM integration

SnPM is a toolbox that can be used within the software Statistical Parametric Mapping 

(SPM) SPM (2012). RapidPT has been integrated into the development version of SnPM 

SnPM (2013). This enables users to leverage the pre and post processing capabilities of 

SnPM. Through the graphical user interface (GUI) of SnPM the user can simply specify if 

they want to use RapidPT or not. Alternatively, the experienced user can also toggle a flag 

called RapidPT inside the snpm_defaults.m. Once this flag is set the user can simply 

proceed with their normal SnPM workflow. The SnPM GUI does not allow the user to set 

RapidPT's hyperparameters (η, l), however, the online documentation walks the user through 

the process of setting them manually. A preview of the online documentation can be seen in 

Fig. 16. Further discussion and walkthroughs of how to use SnPM and RapidPT within 

SnPM can be found in the documentation of both toolboxes Gutierrez-Barragan and Ithapu 

(2016); SnPM (2013). The RapidPT library webpage is at http://felipegb94.github.io/

RapidPT/.

8. Conclusion

In this paper, we have presented a new algorithmic framework that is able to efficiently 

approximate the max null distribution commonly obtained through permutation testing. By 

exploiting the structure of the permutation testing matrix, T, and applying recent ideas from 

online matrix completion we show through our theoretical analysis and experimental 

evaluations that one can subsample entries of T at extremely low-rates and still construct a 

good estimate of T. The algorithm first goes through a training phase where the basis and 

the distribution of the residual of T are estimated. Then it continues into the recovery phase 

where a small number of entries of each column of T are calculated and the rest are 

estimated through matrix completion. Finally, we obtain the max null distribution from the 

maximum value of each column in T. Experiments on four varying sized datasets derived 

from the ADNI2 dataset showed that if we sub-sample at a high enough rate we can 
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accurately recover the max null distribution at a fraction of the time in many scenarios. The 

implementation is available as a stand-alone open-source toolbox as well as a plugin for 

SnPM13 SnPM (2013), and is able to leverage multi-core architectures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flow diagram of the permutation testing procedure described in algorithm 1. Group 1 and 

Group 2 correspond to X1 and X2, each new max stat corresponds to each mi, and the global 

max null corresponds to hL.
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Fig. 2. 
Singular value spectrums for permutation testing matrices with dimensions generated from 

the imaging modalities: ASL, FDG PET, MRI, and PiB PET. Left: Full spectrum of T with L 
rows and v columns. Right: Residual singular values of T.
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Fig. 3. 
Flow diagram of the training and recovery steps in RapidPT. The number of training samples 

(l) and the rank of U(r) is the number of columns computed in the training phase (the blue 

area). The sub-sampling rate, η, is the fraction of red over green entries computed per 

column. The global max null is hL in the algorithm.

Gutierrez-Barragan et al. Page 28

Neuroimage. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
KL-Divergence between the true max null and the one recovered by RapidPT. Each line 

corresponds to a different number of permutations. The dotted lines are the theoretical 

minimum sub-sampling rate and the ”practical” one, i.e., the one the toolbox will set it to 

automatically if none is specified.
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Fig. 5. 
Percent difference between the t-threshold (for different p-values) obtained from the true 

max null and the one recovered by RapidPT. The dotted lines are the theoretical minimum 

sub-sampling rate and the ”practical” one, i.e., the one the toolbox will set it to automatically 

if none is specified.
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Fig. 6. 
KL-Divergence between the true max null and the one recovered by RapidPT on 48 datasets. 

The sub-sampling rate, η, used for each run was 2ηmin. The number of training samples, l, 
used for each run was n (i.e., the same as the number of images in the dataset).
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Fig. 7. 
Left: Colormap of the KL-Divergence between the max null distributions of RapidPT and 

SnPM. Each colormap is associated to a run on one of the datasets and a fixed number of 

permutations. The resulting KL-Divergence from 24 hyperparameter combinations is 

displayed on each colormap. Rows 1, 2, 3, and 4 of this figure are associated to the 50, 100, 

200, and 400 subject datasets respectively. Right: The max null distributions given by 

RapidPT, SnPM, and NaivePT for the hyperparameters: L = 10000, l = n, and η = 0.35%.
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Fig. 8. 
p-values for SnPM, RapidPT, and NaivePT. The hyperparameters used were: η = 0.35%, L = 

10000, and l = n. The results in this plot were obtained from the max null distributions 

shown in the right hand side of Fig. 7.
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Fig. 9. 
Thresholded FWER corrected statistical maps at (α = 0.05) with the n = 400 dataset. The 

hyperparameters used were: η = 0.5%, l = n, and L = 100000. The images show the test 

statistics for which the null was rejected in SnPM (top) and RapidPT (bottom). The tables 

show a numerical summary of the images. The columns refer to: k - cluster size, pFWE–corr -
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Fig. 10. 
Thresholded FWER corrected statistical maps at (α = 0.05) with the n = 200 dataset. The 

hyperparameters used were: η = 0.5%, l = n, and L = 100000. The images show the test 

statistics for which the null was rejected in SnPM (top) and RapidPT (bottom). The tables 

show a numerical summary of the images. The columns refer to: k - cluster size, pFWE–corr -
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Fig. 11. 
Resampling risk of NaivePT-SnPM, RapidPT-SnPM, and NaivePT-RapidPT. The 

hyperparameters used were: η = 0.35%, L = 10000, and l = n.
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Fig. 12. 
Colormaps of the speedup gains of RapidPT over SnPM in a serial and parallel computing 

environment. Each colormap corresponds to a run with a given dataset and a fixed number of 

permutations, and displays 20 different speedups resulting from different hyperparameter 

combinations. The first two rows correspond to the speedups obtained from the runs on 16 

cores, and the last two columns from runs on a single core. Columns 1, 2, 3, and 4 of this 

figure are correspond to the 50, 100, 200, and 400 subject datasets, respectively.
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Fig. 13. 
Colormap of the speedup gains of RapidPT over NaivePT. The organization of the 

colormaps and the information they display is the same as Fig. 12. These speedups 

correspond to both programs running on a MATLAB instance that could use all 16 available 

cores.
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Fig. 14. 
Effect of the number of permutations on the runtime performance of RapidPT and SnPM on 

16 cores (first row) and on a single core (second row). The hyperparameters used were: η = 

0.35% and l = n.
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Fig. 15. 
Effect of the dataset size on the performance of RapidPT and SnPM on 16 cores (first row) 

and on a single core (second row). The overall measured time of RapidPT is the result of the 

total time spent on the training phase and the recovery phase. The hyperparameters used 

were: η = 0.35%, L = 10000, and l = n.
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Fig. 16. 
Screenshots of the RapidPT website (left) and SnPM integration documentation (right).
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Table 1

Dataset sizes used in our experiments. The table lists the total number of subjects (n) and how many of the 

participants were sampled from the CN (n1) and AD groups (n2).

Dataset Size: n (n1,n2)

50 (25,25) 100 (50,50) 200 (100,100) 400 (200,200)
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Table 2

Number of training samples used to evaluate RapidPT. n corresponds to the total number of subjects in the 

dataset. For instance, for the 400 subject dataset the values for l used were 100, 200, 400, and 800.

Number of Training Samples: l

Simulations n 2n

Experiments n 2n
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