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Abstract

As asthma is a disease that results from host x environment interactions, an approach which allows 

assessment of the impact of the environment on the host is needed to understand disease. 

Metabolomics has appealing potential as an application to study pathways to childhood asthma 

development. The objective of this review is to provide an overview of metabolomics methods, 

and their application to understanding host x environment pathways in asthma development. We 

reviewed recent literature on advances in metabolomics and their application to study pathways to 

childhood asthma development. We highlighted 1) the potential of metabolomics in understanding 

the pathogenesis of disease and the discovery of biomarkers, 2) choice of metabolomics 

techniques, biospecimen handling, and data analysis, 3) the application to studying the role of 

environment on asthma development, 4) review of metabolomics applied to the outcome of 

asthma, 5) recommendations for application of metabolomics based –omics data integration in 

understanding disease pathogenesis, and 6) limitations. In conclusion metabolomics allows use of 

biospecimens to identify useful biomarkers and pathways involved in disease development, and 

subsequently to inform a greater understanding of the disease pathogenesis and endotypes, and 

predicting the clinical course of childhood asthma phenotypes.
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Introduction - What is Metabolomics?

Metabolomics is the study of the metabolite composition, the metabolome, of a cell type, 

tissue, organ, or organism.1 The metabolome is the collection of endogenous small 

molecules that mark specific fingerprints of cellular biochemistry.2 Metabolomics measures 

global sets of low molecular weight metabolites (including amino acids, organic acids, 

sugars, fatty acids, lipids, steroids, small peptides, vitamins, etc.), thus providing a 

“snapshot” of relevant biological processes. It provides a readout of metabolic activity status 

in relation to genetic variations, gene expression, or external stimuli.3 Such external stimuli 

include infections4 and allergens5, where specific metabolome profile marks the interaction 

between the environmental agent and host molecules, i.e. gene x environment 

(Deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins, lipids, and other 

enzymes). Metabolites, in addition to being produced directly by the host organism, can be 

derived by host microbiota, as well as transformed from xenobiotic, dietary, and other 

exogenous sources.6

Situated at the end of the -omics tetralogy (Figure 1), metabolomics provides an opportunity 

to answer questions that are not possible with other -omics technologies. The spectrum from 

genomics to proteomics can provide information on what might be happening in a cell 

(probable cause of phenotype), processes that are subject to epigenetic regulation and post-

translational modifications. Metabolomics on the other hand provides a snapshot of the 

entire physiology of the host and its response to the environment, which can be associated 

with the outcome phenotype (for example healthy vs disease) and endotypes.3,7 

Metabolomics combines high-throughput analytical techniques with bioinformatics tools to 

provide information on a large number of metabolites simultaneously.2,8

Why apply metabolomics approaches to studying host x environment 

pathways?

Metabolomics is an appealing application to monitor environment-host interaction since 

measured metabolites reflect alterations/dysfunctions of metabolic fluxes of various organs 

and cells.4 This method can also be used to trace back upstream molecular pathways, and as 

such reveal gene-environment interactions in disease development pathways.9 Thus, 

metabolomics offers the potential to identify biomarkers for host susceptibility, to assess 

response to environmental risk factors, to monitor for subsequent development of persistent 

wheeze and asthma, and elucidate biologic pathways.

How metabolomics may address the challenges of studying human infant 

environmental exposure and overcome limitations of animal models

Studying early life respiratory morbidity in infants and children is challenging. In vivo 
experiments with environmental exposures such as viral infection in infants are not possible 

due to obvious ethical issues.25 Thus, investigations to understand the pathogenesis are 

commonly conducted in either animal models26 or adult volunteers.27 However, experiments 

in adult human populations cannot be extrapolated to infant populations because of the 
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difference in immune systems, lung development, prior exposures, and the impact of and 

response to environment in different age hosts.

As an example, the use of murine models to study the pathogenesis of respiratory syncytial 

virus (RSV) as an early life environmental asthma risk factor has not fulfilled its promise 

largely due to differences in immune system28 and anatomy29 between humans and animals. 

In addition, animal models of human RSV infection are semi-permissive and the most 

permissive primates like chimpanzees, African green monkeys, and baboons still require a 

large virus inoculum to establish a significant infection.30 Thus these viruses are not natural 

pathogens in animals, and these experimental models do not replicate what occurs in human 

disease.

With recent development of -omics methods, previously unrecognized molecular level host-

environment interactions can be investigated with repeated collection of less invasive bio-

specimens and integration of high-throughput metabolomics and other -omics data using 

bioinformatics tools.31 Metabolomics presents a chance to augment in vivo studies in 

primates and monitor the natural course of response to risk factor exposure. Metabolomics is 

also intrinsically suitable for in vitro study of primary airway cells and for ex vivo 
experimental models on explanted airway tissues, although ex vivo methods are limited by 

ethical issues of tissue collection and short-term viability of the tissue.32

Despite the promise of discovery of novel molecular biomarkers and new insights into 

disease pathobiology, there are important limitations and design issues that must be 

considered. The metabolic profile of an organism is dynamic, thus it is important to 

recognize that metabolites only represent a snapshot of current bodily or cellular activity. 

While a strength of this approach is that the measure of the metabolome represents the 

reaction to an exposure or what is happening at a single point in time in a dynamic system, 

the dynamic flux of metabolites must be considered. Metabolomics experiments are also 

hampered by methodological difficulties including very low molecular concentrations, 

variability and lack of standardized sampling, as well as complex analytical and data 

processing methods.33,34

Metabolomics experimental approaches

Metabolomics experiments are roughly categorized into two approaches: untargeted (global) 

and targeted. These strategies differ in many aspects, first and foremost in study objective 

(discovery vs hypothesis testing), but also in the level of quantitation, complexity of sample 

preparation, experimental accuracy and precision, and number of metabolites detected.

Untargeted metabolomics is an unbiased analysis of the metabolite composition of the 

biological entity in a specific physiological state under given environmental conditions.35 

We should note that with limitations of current analytical platforms, as well as the conditions 

under which the samples are collected and processed, it is impossible to cover all 

metabolites in an unbiased manner. However, an untargeted approach can be still regarded as 

unbiased because no metabolite is identified prior to sample analysis. The hypothesis tested 

in this scenario is not associated with a particular metabolite or group of metabolites 
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(metabolome), though knowledge of metabolite classes of biological interest helps in 

selecting an appropriate analytical platform and the sample preparation method to enhance 

detection of metabolites of interest.36 The global nature of untargeted metabolomics 

experiments enables novel areas of metabolism to be identified, but it is currently technically 

infeasible to positively identify all detected molecules.36 Despite the technological progress, 

the main disadvantage of untargeted metabolomics is the time required to process the 

extensive amounts of raw data, the difficulties in identifying and characterizing unknown 

small molecules, the reliance on the intrinsic analytical coverage of the platform employed, 

and the bias towards detection of high-abundance molecules.37 In general, epidemiological 

studies using untargeted approaches pose challenges as to platform selection and metabolite 

identification, and further studies are needed to explore replication, synthesis, and impact of 

current results.38 Nevertheless, untargeted metabolomics has been used to discriminate 

severity and phenotypes of asthma. 39, 40

Targeted metabolite profiling is an approach aimed at quantification of a prior known subset 

of metabolites that usually are of related chemical structure and/or biological activity.38,33 

The targeted approach takes advantage of the understanding of a vast array of metabolic 

enzymes, their kinetics, end products, and the known biochemical pathways in which the set 

of metabolites takes part.37 Bias toward low abundance molecules is reduced with methods 

such as triple quadrupole mass spectrometer (TQMS) that are quantitatively reliable and 

allow for quantification of low-concentration metabolites that are difficult to detect.1 In 

addition, sample preparation can be optimized to reduce the dominance of high-abundance 

molecules.38 Targeted metabolomics have been applied to distinguish asthma patients from 

controls without disease. The metabolites measured in these targeted studies include 

adenosine, Adenosine monophosphate, purine, alkanes, aldehydes, ketones, and volatile 

organic compounds (VOCs) in exhaled breath condensate from children.42,43

Metabolomics analytical technologies

The two most common analytical approaches for the generation of metabolomics data are 

nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). NMR is a 

spectroscopic technique based on the principle of energy absorption and re-emission of the 

atom nuclei due to variations in an external magnetic field.44 NMR produces spectral data 

that allow for quantification of the concentration and for characterization of chemical 

structure of metabolites.

Mass spectrometry acquires spectral data in the form of a mass-to-charge ratio (m/z) and a 

relative intensity of the ionized compound.45 MS based metabolomics is generally preceded 

by a separation step, which reduces the complexity of the biological sample and allows the 

MS analysis of different sets of molecules at different times.46 The most common separation 

techniques in MS technology are liquid chromatography (LC) and gas chromatography (GC) 

columns, termed as LC-MS and GC-MS techniques.47

The choice of metabolomics techniques should be based on the objective of the study, type 

of sample, and resource availability. NMR is highly selective, highly reproducible, requires 

less sample preparation, and it produces spectra that correlate directly and linearly with 
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compound concentration.48 However, NMR has relatively low sensitivity, and accordingly 

only the most abundant species can generally be detected.49 On the other hand, mass 

spectrometry, when combined with effective sample preparation and chromatographic 

separation, has high sensitivity and specificity, as well as good dynamic range, which makes 

it advantageous especially for targeted metabolomics.49 Among major weaknesses of MS in 

metabolomics is quantification; the type of sample preparation used and its molecular 

environment affects signal intensity.49

While NMR and MS based analytical platforms are currently time-consuming for clinical 

and translational application, there are new advances in measuring VOCs in real-time, 

specifically for exhaled breath components. Semiconductor metal oxide (SMO)-based 

chemiresistive sensors are being used widely due to their amenability to miniaturization, for 

example development of electronic nose (E-nose), which enhances mobility and cost 

effectiveness.50 SMO measures the electrical resistance signal from the buildup of VOC at 

the surface of the polymer inducing swelling of the polymer film.51 However, low sensitivity 

and less selectivity of SMO-based sensors are limitations for precise phenotype and 

endotype identification of diseases.52

The choice of biospecimen for the study of the metabolomics of respiratory 

disease

Biospecimens that can be used in metabolomics experiments for studying asthma 

development, response to environmental exposures, and asthma morbidity, include urine, 

stool, blood (plasma, serum, and whole blood), sputum, saliva, exhaled breath (condensate 

(EBC) and direct (EB)), nasal lavage fluid, and bronchoaveolar lavage fluid. The choice of 

biospecimen should be based on relevance and suitability to the research question and ease 

of sample collection procedures. Figure 2 provides a visual of rank of the biospecimen with 

regard to ease of collection (access, abundance, and invasiveness of collection method), 

specificity to the pathophysiology, and comprehensiveness of metabolite composition. The 

detail of biospecimen properties along with advantages and disadvantages for metabolomics 

experiment to study the development of asthma and response to environmental exposure are 

described in Table 1.

Study design

Metabolomics epidemiological studies face unique challenges of bias starting with study 

design and selection of target population. Like other clinical-translational investigations, 

metabolomics studies should first have a well-defined question and include a study 

population of representative subjects from a well-defined population in whom unrelated 

factors that impact the measure of the metabolome can be held constant (e.g. medications, 

diet, timing, etc.).71 As an example, if a study is designed to include both control and disease 

subjects, the subjects need to be similar at baseline with regard to such characteristics as 

hospitalization, medication, nutrition, genetic variants, and physical activity.71 

Heterogeneity in severity of the disease among selected subjects should also be similar to the 

target population. If the study is designed as a time series (repeated measure within 

subjects), the effect of age on metabolites should additionally be considered. However, the 

Turi et al. Page 5

J Allergy Clin Immunol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



initial biomarkers that are identified under the minimum difference between case and control 

populations need to be verified in heterogeneous populations to ascertain real world clinical 

application of the biomarkers.

Determining the sample size

Like all experiments, metabolomics studies require a certain number of samples to be able to 

effectively estimate the significance of the difference between study groups. Currently there 

is no standard power calculation approach for metabolomics, in part because the effect size 

of the metabolites on phenotype and number of metabolites to be identified are unknown a 
priori.72 While an adaptive design can help in overcoming the challenges of a priori 
unknown effect size in determining sample size, challenges stemming from the large 

dimensional nature of the data remain, especially in the case of untargeted metabolomics 

where the number of metabolites detected exceeds the number of samples. Furthermore, if 

metabolites belong to the same metabolic pathways, their abundances are highly correlated.
73,72 Recently, Blaise and colleagues73 introduced a new approach, based on multivariate 

simulation, which deals with the highly correlated structure and high-dimensionality of 

metabolic phenotyping data.

Sample collection, handling, and analysis

For metabolomics studies, the sample collection, sample processing, and appropriate sample 

storage procedures should ensure that all samples are treated in the same manner.74,75,76 

Uniformity in type and brand of collection tubes, aliquot tubes, and pipette tips is crucial. It 

is important to freeze the samples immediately and minimize factors such as, freeze-thaw 

cycles, contamination, and differing preservation methods to reduce small changes to the 

metabolic profiles.77,78,79 Freezing immediately is also critical as some metabolites 

transform very rapidly if enzymatic activity is not stopped completely.80,81

Studies using biospecimen repositories should ensure that samples have identical histories in 

terms of collection, storage, and processing, which require careful planning especially for 

samples that are collected as part of large multipurpose studies. Like most biological 

molecules, metabolites degrade overtime even when frozen. Thus the earliest possible 

analysis and avoiding samples with freeze-thaw history prevents potential loss of biomarker 

analytes.81,82

Biological samples undergoing metabolomics analyses require a standardized metabolite 

extraction protocol.48,83 The protocol needs to be optimized and validated to specific 

biospecimen type and metabolite species of interest. The intrinsic characteristics of the 

biospecimen such as presence of water, salt, and protein can pose challenges depending on 

the analytical platform, thus additional steps are required to suppress any undesired noise.84 

Pooled quality control and blank samples must be included with each filtration/extraction 

batch of samples to allow for the monitoring of variability in sample processing and 

acquisition, especially for studies which include longitudinal and recurrent sampling.85,86
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Metabolomics data preprocessing and analysis

Analysis of metabolomics data poses challenges common to other –omics and some 

challenges unique to metabolomics, including high dimensionality, use of multiple analytical 

methods (NMR, LC/GC-MS, etc.), high degree of collinearity between features, non-random 

missing data, nonlinearity, and non-normality. High-throughput NMR and MS spectral data 

need to undergo preprocessing in order to ensure the quality and replicability.87 Once the 

metabolite features are filtered, detected, identified, quantified, normalized, and scaled, data 

analysis can be performed either on the spectra itself (normalized peak intensity) or on the 

resultant concentration table. Parametric univariate tests such as t-test and analysis of 

variance (ANOVA), and nonparametric univariate tests such as Mann Whitney U and 

Kruskal Wallis one way analysis88 can be applied to identify biomarkers associated with the 

outcome of interest. It is important to recognize that univariate tests suffer from the multiple 

test problem and need correction.89 Unsupervised multivariate statistics such as principal 

component analysis (PCA), self-organizing map (SOM), and hierarchical cluster analysis 

(HCA) are useful to explore pattern and clusters and to assess data quality problems such 

outliers and batch effects.90,91 Supervised methods such as partial least square discriminant 

analysis (PL-SDA) and orthogonal PLS-DA92,93 can be applied both to concentration tables 

and spectra for discriminating between disease phenotypes and endotypes, prediction, and 

biomarker identification. Machine learning tools such as hidden Markov, Bayesian, support 

vector machine (SVM), random forest, and neural network are useful for prediction and 

biomarker identification in large samples.94,95

The use of metabolomics data to identify biomarkers using supervised multivariate and 

machine learning methods has limitations, including overfitting, which denotes the over 

specification of a model on the basis of irrelevant variables that separate the groups, but are 

not related to the classification criterion itself. To remedy the overfitting problem, adequate 

sample size are needed, the model should be calibrated with the application of internal cross-

validation or bootstrapping, and the results should be validated in an independent external 

sample. Ideally, an independent team conducts the external validation step on independent 

subjects and on an independent analytical platform, but it is sufficient if blinded validation 

finds correlation between biomarker and the clinically important outcome.

Knowledge based methods for biological data interpretation

Following robust statistical analysis, the selected metabolites should be interpreted within 

the context of relevant metabolic pathways. Metabolic pathways are groups of metabolites 

and associated genes and proteins that are related to the same biological process and directly 

or indirectly related by one or multiple enzymatic reactions.96,97 Several curated biological 

databases have been constructed and referenced by metabolomics investigators over the last 

decade.98,99,100 Open source and commercial bioinformatics tools are available to access, 

draw, edit, and visualize the pathway networks related to the metabolites identified.101,102

In addition, metabolites representation in metabolic pathways can be objectively assessed 

with metabolite set enrichment analysis (MSEA) and quantitative enrichment analysis 

(QEA).103 MSEA and QEA evaluate the probability that metabolites are represented in the 

Turi et al. Page 7

J Allergy Clin Immunol. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pathway more than expected by chance or due to phenotype. MSEA uses a preselected set of 

metabolites while QEA is based on the concentration of metabolites from experiments. The 

latter accounts for correlation between metabolites, whether a few metabolites significantly 

change, or whether there is a pattern of change in which a large number of metabolites 

change slightly but consistently.104

Application of metabolomics to study the impact of environment on the 

host

Using the example of infant respiratory viral infection as an early life exposure and asthma 

risk factor it is easy to demonstrate how metabolomics sheds light on the impact of an 

environmental exposure on the host, on elucidating disease pathways, and on identifying 

biomarkers of disease.

Metabolic profiling has been utilized in infectious disease models to enhance prognostic or 

diagnostic methods, and to gain insight into disease pathogenesis. 105,106,107 Evidence 

shows that viruses takeover and reprogram metabolic pathways, demonstrating modified 

metabolism or new metabolic pathways that enhance virulence. 107.108109 Although to date, 

very few studies have applied metabolomics methods to investigate infant RSV and human 

rhinovirus (HRV) infections, it is one area in which metabolomics is beginning to be applied 

to characterize disease pathogenesis and endotypes. Atzei and colleagues110 studied a group 

of preterm neonates hospitalized due to RSV bronchiolitis comparing two 1H-NMR urine 

spectra from two bronchiolitis patients, which revealed alterations in several compounds like 

creatinine, betaine and glycine.110 Our group has developed the only other data to date 

profiling and contrasting the urinary metabolome of healthy and RSV infected infants, 

demonstrating that five metabolites were significantly decreased during acute RSV infection, 

represented in essential and nonessential amino acids, leukotriene, and urea cycle, and 

vitamin B metabolism pathways.111 Schee and colleagues profiled VOC in exhaled breath of 

preschool children who wheezed (with and without HRV infection) and did not wheeze 

demonstrating that the VOC profile between preschool children with and without acute 

respiratory wheeze differ, and a sustained and distinct VOC profile was observed in children 

with HRV-induced wheeze after resolution of symptoms.112 Fowler and colleagues have also 

demonstrated that VOC can be used to distinguish those with high and low pathogen load in 

lower respiratory tract among intensive care unit intubated and ventilated patients.113

Review of metabolomics applied to the outcome of childhood asthma

The first pediatric asthma metabolomics investigation was carried out by Carraro and 

colleagues114 less than a decade ago. They applied untargeted NMR metabolomics on EBC 

samples of 25 asthma patients and 11 controls between the ages of 7 and 15 years. 

Metabolomics profiles clearly discriminated children with and without asthma, with a 95% 

success rate in their classification, and identified acetylated and oxidized compounds that 

distinguished the children. In subsequent studies, researchers have applied untargeted 

NMR115, targeted LC-MS (targeting adenosine monophosphate and purine116 and 

leukotriene117), untargeted LC-MS118 and targeted GC-MS (targeting VOC119,120,121,43 and 

alkanes, alkenes, aldehydes, and ketones42) metabolomics technologies in EB120,121,42,43 
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and EBC116,117,118 samples to distinguish between asthmatic and healthy children,
116,117,120,121,43 phenotypes of asthma,118 wheezers and non wheezers,43 and transient 

wheezers and asthmatics42. In addition, E-nose VOC pattern recognition in EB has been 

successfully used to discriminate between asthmatic and control, as well as between mild 

and severe asthma in children.122

In plasma sample based targeted LC-MS lipid metabolomics application, McGeachie and 

colleagues123 found that monoHETE_0863 and sphingosine-1-phosphate could predict 

asthma control. In addition, integration of metabolomics and genetics data revealed that 

sphingolipid metabolism and immune response pathways were associated with asthma 

control. Similarly, Fitzpatrick and colleagues39 used untargeted LC-MS in plasma samples 

from children to discriminate mild and severe asthma. Fitzpatrick and colleagues39 identified 

two metabolic pathways (glycine, serine and threonine metabolism and N-acylethanolamine 

and N-acyltransferase pathways) associated with asthma severity. In addition, Saude and 

colleagues124 and Mattarucchi and colleagues40 applied targeted NMR and LC-MS to urine 

samples. Saude and colleagues showed that 23 and 28 metabolites separated stable asthmatic 

versus healthy controls, and stable asthmatics versus acute asthmatic patients, respectively. 

Mattarucchi and colleagues additionally found decreased excretion of methyl-imidazole 

acetic acid, urocanic acid and a metabolite similar to the structure of an isolusine–proline 

fragment in the asthmatics. These studies demonstrate that metabolomics may be used to 

identify biomarkers of disease and healthy states, as well as progression of disease states.

Limitations of metabolomics

Metabolomics provides a unique opportunity to study the interaction between environment 

and host because the metabolites represent the response to both environmental stimulation 

and upstream genetic and regulatory modification (epigenetics, transcription, post-

translational modification). However, metabolomics by itself may not capture the range of 

environmental agent characteristics or the range of host responses during the interaction. 

First, an environmental stimulus unleashes a cascade of host molecular pathways, and it is 

difficult to pinpoint which pathway is precisely associated with the specific stimuli. Second, 

metabolic profiles are subject to random fluctuations, and can be influenced by diet, sleep 

patterns, age, smoking, and many other variables that mask the effects of disease or toxicity. 

Third, many of the changes in metabolites are subtle and below detection limits of 

commonly applied analytical techniques. Furthermore, there are a variety of factors that 

influence the type and amount of metabolites detected: timing of sample collection, the 

sample collection procedure, sample processing, stabilization, stability and storage, 

extraction procedures, dilution of sample, type and number of analytical methods used, and 

preferences of analytical assays for metabolites with certain physico-chemical properties. 

Identifying biomarkers of disease from this background noise is a complex analytical and 

statistical challenge.

Integration with other -omics data and future directions

Disease development occurs in complex biological systems, where genetic, regulatory, and 

environmental stimuli trigger a broad range of input-output cascades in the biological 
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system. The pathogenesis of disease development needs to be examined within the context 

of this broad biological system. An emerging approach is to integrate data from a range of -

omics studies (genome, epigenome, transcriptome, proteome, and metabolome), which may 

provide greater opportunity to understand and model the process of disease development in 

the context of complex biological systems.125,126 Vertical and longitudinal integration of 

multi-omics data may reveal not only what will happen following exposure to an 

environmental risk factor, but also the long-term imprint of the exposure on the immune 

response and airway function leading to an understanding of the mechanisms through which 

the risk factor contributes to asthma development, and ultimately how asthma, or the disease 

under study, might be prevented.

Phenotyping and endotyping with multi-omics data can be performed using clustering, latent 

class models, and projection based methods. Further functional analyses using network and 

pathway inference can be performed with combining database and bioinformatics tools. 

Analysis of causal relationships using multi-omics data from experiments under different 

conditions and/or at different time points can be modeled in probabilistic causal networks. 

However, multi-omics data integration tools are in their infancy, and integration of data is 

complicated by many unresolved factors including handling of data with different 

measurement scales (eg. binary, ordinal, and interval) and how to manage missing data.

An example of progress in bioinformatics for integrating complex data, is the development 

of a promising method that overcomes the scale issue (integrative phenotyping framework, 

iPF) by Kim and coworkers and they have demonstrated its use in feature discovery and 

integrative clustering in high dimensional space.127 They applied their iPF method to a large 

dataset of lung samples of genomic and clinical data and identified endotypes of Chronic 

Obstructive Pulmonary Disease and Interstitial Lung Disease. However, the -omics data 

integrated using this method was limited to messenger (mRNA) and micro RNA (miRNA). 

There is still a need to extend such an approach to upstream (genome) and downstream 

(proteome and metabolome) -omics data.

Multi-omics data integration and analysis pipelines for studying the pathogenesis of disease 

and the influence of environmental risk factors are scarce. de Steenhuijsen Piters and 

colleagues were able to integrate host blood transcriptome and nasopharyngeal microbiome 

data to show that RSV infection immune response and disease severity are modulated by 

dominant colonizing microbiota.128 On a larger scale, the complexity of multi-omics data is 

challenging for integration because the data is generated not only from the analysis of host 

biospecimens, but may also include sequencing of the host microbiome, the environmental 

microbiome, the virus genome, and even –omics data from controlled in vitro and ex vivo 
experiments in host cell or tissue cultures. The multisource -omics data integration approach 

can be thought of as a top-down systems approach, the integration of -omics data at a 

population level; and a bottom-up systems approach, which integrates experimental data 

from primary cell in vitro experiments (Figure 3). The bottom-up systems approach provides 

detailed and validating information for the pathways hypotheses generated from the top-

down systems approach. The integration of the -omics data from the host and in response to 

environment is crucial in elucidating disease pathogenesis at a systems level. This is a novel 

approach, and contrary to traditional approaches where both are studied separately. In this 
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regard, asthma consortiums and cohorts such as the Unbiased Biomarkers for the Prediction 

of Respiratory Disease Outcomes (U-BIOPRED) project, the Severe Asthma Research 

Program (SARP), and the NIH Environmental Influences on Child Health Outcomes 

(ECHO) Children’s Respiratory Research and Environment Workgroup (CREW) have great 

potential in integrating complex clinical and biomolecular data and identifying and 

predicting various endotypes and phenotypes of asthma.129,130 Commercial and public 

collaborative initiative such as European Translational Information and Knowledge Service 

(eTRIKS) have developed a graph based knowledge integration tool that could help to 

integrate experimental and clinical knowledge to map disease pathways.131,132

In conclusion, metabolomics measures relevant biological processes, providing readout of 

metabolic activity status in relation to genetic variations, gene expression, or environmental 

stimuli. Metabolic profiles are unique in providing a snapshot of the interaction between the 

environmental agent and host molecules, providing an opportunity to answer questions that 

have not been addressed with other upstream -omics technologies. However, remaining, but 

an area of active development, is addressing the challenge of integrating and interpreting 

these complex data in order to address mechanistic questions about disease pathogenesis, 

disease phenotyping and endotyping, and disease prediction.
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ECHO Environmental Influences on Child Health Outcomes

eTRIKS European Translational Information and Knowledge Service

EB Exhaled Breath

EBC Exhaled breath condensate

HCA Hierarchical cluster analysis

HRV Human rhinovirus

iPF Integrative phenotyping framework

LC Liquid chromatography

GC Gas chromatography

RNA Ribonucleic acid
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mRNA Messenger RNA

MSEA Metabolite set enrichment analysis

miRNA Micro RNA

NIH National Institute of Health

NMR Nuclear magnetic resonance

PL-SDA Partial least square discriminant analysis

PCA Principal component analysis

QEA Quantitative enrichment analysis

RSV Respiratory syncytial virus

SOM Self-organizing map

SARP Severe Asthma Research Program

MS Spectroscopy and mass spectrometry

SMO Semiconductor metal oxide

TQMS Triple quadrupole mass spectrometer

SVM Support vector machine

U-BIOPREDUnbiased Biomarkers for the Prediction of Respiratory Disease Outcomes

VOC Volatile organic compound
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Figure 1. 
Tetralogy of -omics. The metabolome is at the end of the -omics spectrum and is influenced 

both by the changes to the upstream -omics (epigenome, post transcription and translation 

modifications) and environmental stimuli. The metabolites also play a role in regulation of 

the upstream -omics functions through feedback loops.
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Figure 2. 
Schematic depiction of the position of the biospecimen with regard to the invasiveness of 

collection (x-axis), relevance to airway environmental exposure (y-axis), and 

comprehensiveness of metabolites composition (represented by color gradient) and 

abundance of the biospecimen for collection (represented by size of the bubbles). The 

quantification of the biospecimen properties is subjective judgment of the authors on the 

scale of 1 to 10. EB=Exhaled breath, NLF= Nasal lavage fluid, and BALF=Bronchoalveolar 

lavage fluid.
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Figure 3. 
Illustration of multi-omics systems approach using a birth cohort (top-down systems 

approach) and in vitro and ex vivo experiments (bottom-up systems approach) to study 

pathogenesis and biomarker discovery using an example of reparatory viral infection 

exposure and acute morbidity, and associated subsequent chronic respiratory disease.
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Table 1

Characteristics and physiological relevance of common biospecimen used to study metabolomics of 

environmental response, asthma pathogenesis, and asthma phenotypes and endotypes.

Biospecimen Characteristics and physiological relevance 
to airway infection and diseases

Advantage Disadvantage

Urine • Stable composition

• Relatively less complex than 
serum and plasma52

• Reflects both physiological and 
pathological changes in proximal 
tissues and from blood perfusing 
distant organs53

• Composition differs by age, 
gender, and seasons of 
collection53

• Low concentration of total 
protein and high concentration of 
salts54

• Composed of both endogenous 
and exogenous metabolites

◆Noninvasive

◆Easy pediatric 
collection

◆Abundant for 
repeated collection

◆Integrative view of 
physiological and 
environmental 
metabolites

▪ Lack of proximity and 
specificity to airway 
physiology

▪ Requires transport and 
short-term storage on ice

▪ Low concentration of total 
protein and high 
concentration of salts is 
challenging for MS 
technologies

Blood • Composed of all molecules that 
are being secreted, excreted or 
discarded by different tissues in 
response to different 
physiological needs or stresses

• Metabolomics studies often use 
plasma and serum. Whole blood 
is commonly used for inborn 
errors of metabolism

• Maintains a normal homeostasis 
in the body by constant 
regulatory mechanisms

• Contains a substantial portion of 
large molecular weight proteins 
and lipoproteins 55

• Mostly composed of endogenous 
metabolites56

◆Provides an 
integrative view of 
the instantaneous 
metabolic status

◆Amenable to most 
analytic techniques 
and platforms

▪ Invasive collection

▪ Lack of specificity to 
airway physiology

▪ Less abundance for 
repeated pediatric 
collection

▪ Analytes are tube-additive 
dependent

▪ Identification of small 
molecule metabolites, 
especially using NMR is 55 

difficult

Induced Sputum • Complex biofluid

• Has high viscosity and uneven 
consistency57

• Composed of a mixture of 
mucins and other exudates

• Composed of protein/peptide 
components that may reflect 
disease presence or severity58

◆Relatively less 
invasive

◆Can be easily 
repeated

◆Physiologically 
relevant to the 
airways physiology

▪ Sample collection requires 
trained personnel

▪ Inducing saline solution 
may irritate airways

▪ Sampling is variable

▪ Contaminated with 
plasma, cells, saliva, and 
microbes58

▪ High viscosity requires 
further processing

Saliva • Clear and complex biofluid

• Equivalent to serum in reflecting 
the physiological state of the 
body

• Contains a variety of secreted 
enzymes, hormones, antibodies, 

◆Noninvasive

◆Easy collection

◆Abundant for 
repeated collection

▪ Endogenous metabolites 
concentrations are low 
compared with levels in 
the blood

▪ Contaminated by 
metabolites from food and 

J Allergy Clin Immunol. Author manuscript; available in PMC 2019 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Turi et al. Page 24

Biospecimen Characteristics and physiological relevance 
to airway infection and diseases

Advantage Disadvantage

antimicrobial constituents, 
growth factors, and low 
molecular weight molecules59

• Dominated by short-chain 
organic acids, with acetic acid 
being the most abundant60

◆Easy transport oral microflora, especially 
bacterial putrefaction

Exhaled breath 
(condensates and 
non-condensates)

• EB represents the airway lining 
fluid, which makes it very useful 
to study the biochemical and 
inflammatory molecules in the 
airway62

• Relatively simple composition 
and contains both volatile and 
nonvolatile molecules63

• VOC can be measured with GC-
MS from condensates or non-
condensates EB and directly with 
SOM from non-condensates EB

◆Non-invasive and 
easily obtainable

◆Can be repeated

◆Relevant to airway 
physiology

◆Suitable to analyze 
both volatile and non-
volatile metabolites64

▪ Sample collection is 
difficult in pediatric 
population

▪ Affected by exercise, 
mode and rate of 
breathing, nasal 
contamination, 
environmental 
temperature, and humidity

▪ Contaminated by 
exogenous environmental 
exposures and ammonia 
and sulfur-containing 
compounds from the oral 
cavity

Nasal lavage 
fluid (NLF)

• Obtained either via direct suction 
of nasal secretions, or using a 
nasal wash

• The upper respiratory tract is the 
barrier against environmental 
exposure

• Composed of large quantity of 
serum proteins and low 
concentration of nasal proteins 
and small molecules66

• Contains secretions that are 
involved during early stages of 
viral infection and inflammation

◆Relatively accessible

◆Relatively 
noninvasive sample 
collection

◆Can be repeated

◆Relevant to airway 
physiology

▪ Sample collection requires 
trained personnel

▪ Use of hypertonic saline 
solution may irritate and 
produce mucus (high total 
protein concentration)

▪ Low concentration nasal 
wash proteins

▪ Contains contaminants 
from environmental 
exposures

▪ Variation in concentration

Broncho aveolar 
lavage fluid 
(BALF)

• Thin liquid layer containing 
peptides and proteins that 
contribute to host defense and 
other functions67

• Represents the extracellular 
alveolar excretion from airway 
epithelial cells68

• The small molecule metabolites 
in BALF represent both those 
measured in serum and those that 
are lung specific69

◆Most physiologically 
relevant sample for 
studying lower 
airway respiratory 
diseases

▪ Inaccessible

▪ Sample collection requires 
highly trained personnel

▪ Very invasive

▪ Requires the introduction 
of exogenous fluid into 
alveolar space

▪ High protein and salt 
concentration and low 
concentrations of 
metabolites

Stool • Stool is comprised of 
endogenous human metabolites, 
gut microbiota metabolites, and 
residues or metabolites of 
digested materials

◆Noninvasive

◆Easy collection

◆Abundant for 
repeated collection

◆Metabolites represent 
chemical interactions 
between host and gut 
microbiota

▪ Less relevant to respiratory 
diseases

▪ Not commonly obtained in 
non clinical setting

▪ Difficulty distinguishing 
nutrition, endogenous, and 
microbiota metabolites
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