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Abstract The present study was aimed to investigate the

health of vegetative and reproductive parts of sesame

plants during Bacillus methylotrophicus KE2 interaction by

their pigments, sugars, organic acid, amino acids, hor-

mones and antioxidant production analysis. In a green-

house study, B. methylotrophicus KE2 was sprayed to

sesame plants at late flowering stage. The bacterial treat-

ment enhanced photosynthetic pigments of plants including

pods than their controls. The shoots of plants had higher

amount of sucrose, glucose, galactose, xylitol and malic

acid, and while the pods of plants showed the more accu-

mulation of sucrose, glucose, inulin and xylitol in bac-

terium treated plants. However, alanine, cysteine, valine,

isoleucine, leucine, tyrosine, phenylalanine, arginine and

proline content in shoots and cysteine in pods were

increased by the effect of KE2 inoculation. Salicylic acid

production was declined in shoots and increased in pods

during bacterial exposure. In addition, abscisic acid con-

centration was lower in pods due to the effect of B.

methylotrophicus KE2 in pods over controls. The total

polyphenol synthesis was increased in shoots and pods of

sesame plants by bacterial interaction. The results of this

study revealed that foliar spray of B. methylotrophicus KE2

on sesame plants triggered the plant growth promoting and

defense metabolites in vegetative and reproductive organs

to improve the health status of sesame.
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The climatic changes on earth and continues cropping of

sesame in same agricultural field decline the crop produc-

tivity and soil health [1]. The growth and yield of sesame

are affected by environmental factors and various diseases,

and specifically their low genetic yield potential causes a

major reduction of plant yield [2, 3]. Although, chemical

fertilizers increase the plant growth and yield in agricul-

tural field, it pollutes the soil, water and air. Alternatively,

the application of plant beneficial microorganisms to crop

field can enhance the soil fertility and improve the plant

growth [4, 5]. The utilization of plant growth promoting

bacteria (PGPR) is considered as an environmental friendly

biotechnological method to enhance the plant growth and

yield. Several studies revealed that soil and endophytic

bacterial isolates have the capacity to produce plant growth

regulators such as auxins, cytokinins and gibberellins, and

to solubilize the phosphate, and then fix the atmospheric

nitrogen, which are used by plants for their growth and

development [6, 7]. The bacteria belonging to Bacillus are

identified from soil and other sources, and well-reported on

plant growth promotion. The spore formation character of

Bacillus species is giving more attention than other PGPR

to commercialize the viable bacterial fertilizers [8]. A

commercial product of Bacillus species, Alinit application

influenced the plant growth to increase the yield (40%) of

crop plants [9]. Bacillus species are ubiquitous in nature,
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and enhance the plant growth directly by producing indole

acetic acid, gibberellins and phosphate solubilization or

indirectly induce systemic resistance of plants against

phytopathogens through the secretion of lytic enzymes,

antimicrobial peptides and competition for nutrient and

space [10]. Very few Bacillus species were successfully

sprayed on plants to promote the plant growth and to

protect them from disease causing agents or pests. The

foliar application of Bacillus thuringiensis to crop plants

controls pest infection is widely reported [11]. Besides

some of the studies were conducted with foliar spray of

Bacillus species to control diseases in crop plants, no work

has been carried out to study the effect of foliar spray of

Bacillus species on plant functional chemicals to health

aspect. The sign of plant health has been proved by

enhancing photosynthetic rate, carbohydrates, amino acids,

antioxidants and reducing stress related components. In

current study was aimed to elucidate the effect of foliar

spray of B. methylotrophicus KE2 on sesame plants by

analyzing photosynthesis pigments, carbohydrates, organic

acid, amino acids, hormones and antioxidant content.

The bacterial isolate, B. methylotrophicus KE2 was

cultured [12] and applied to sterilized sesame seeds con-

taining petri-dish and inoculated 25 �C in a dark incubator.

The rate of seed germination was measured at 3 days. In a

green-house study, the sterilized sesame seeds were sown

in a tray containing autoclaved horticulture soil mixture

and inoculated at 30 ± 2 �C and irrigated at periodic

intervals. At the time of flowering, plants were sprayed

with 50% diluted B. methylotrophicus KE2 culture to ele-

ven-week-old sesame plants. The plants and pods were

harvested after one-month of treatment. The chlorophyll

and carotenoid were quantified according to the method of

Arnon [13] and Lichtenthaler [14]. The carbohydrate (su-

crose, glucose, inulin, galactose and xylitol) and malic acid

content in pods and shoots of plants sprayed with or

without B. methylotrophicus KE2 were quantified by the

method of Hinesley et al. [15]. The individual amino acids

concentrations were quantified by respective amino acids

standard peak values [5]. However, plant hormones such as

abscisic acid and salicylic acids content were determined

by the method of Kang et al. [7]. Total polyphenol

extraction and quantification were done according to the

procedure followed by Kumazawa et al. [16]. The results

were presented as mean values ± standard error, and

analysis of variance (ANOVA) to compare the statistical

difference based on Duncan’s multiple range test (DMRT)

by using SPSS software, at significance level of p B 0.05.

The secretion of secondary metabolites including plant

growth promoting substances from bacteria plays major

role on plant growth [4]. We found the beneficial effect of

B. methylotrophicus KE2 to increase the rate of seed ger-

mination (11%) than their controls (Supplementary Fig. 1).

Previously, we detected the varying concentration of

diverse gibberellins, indole-acetic acid in B. methy-

lotrophicus KE2 culture triggered the rate of seed germi-

nation of various crop plants [12]. The availability of those

plant growth promoting substances in B. methylotrophicus

KE2 bacterial culture was recommended to apply the cul-

ture as foliar spray in green-house-grown sesame plants at

post-flowering stage to know the vegetative and repro-

ductive health of plants. There were no disease symptoms

in sesame after the bacterial foliar treatment. However, B.

methylotrophicus KE2-associated plants had higher amount

of chlorophyll a, chlorophyll b, total chlorophyll and car-

otenoids in shoots and pods than bacterium-free plants

(Fig. 1). The status of chlorophyll concentration in plants is

one of the important factors to determine the photosyn-

thetic efficiency of plants. The higher synthesis of photo-

synthetic pigments can harvest more light energy and

converts it into chemical energy in cells, which is used for

growth and development of plants. On the other hand,

carotenoids act as precursor for vitamin A and antioxidants

to scavenge the reactive oxygen species in plant cells [17].

The presence of GAs and IAA in B. methylotrophicus KE2

might be supported the sesame plant health by increasing

photosynthetic pigments.

In current study, foliar spray of B. methylotrophicus

KE2 influenced the photosynthetic machinery in sesame

and increased the accumulation of sucrose, glucose,

galactose and xylitol in shoots (Fig. 2). The leaf-associated

bacteria secrete biosurfactants and contribute to increase

the diffusion of sugars in plants through cuticles and

stomatal pores [18]. Although, carobhydrates play a vital

role in plant immunity, their actual mechanism in plant–

microbe interactions still remains unknown. In plants,

sugars and hormones coordinate several metabolisms for

growth and development of plants and response to biotic

and abiotic stresses [19]. Wang et al. [20] reported that

accumulation of sugars and amino acids enhances abiotic

stress tolerance in plants. In addition, the sucrose and

glucose induce pathogen resistant proteins through sali-

cylic acid dependent or independent pathway [21]. B.

methylotrophicus KE2 sprayed sesame plants in this

experiment showed higher concentration of sucrose, glu-

cose and inulin, lower amount of galactose in pods over the

controls. Xylitol was found only in pods at bacterial

treatment (Fig. 2). The galactose is a monosaccharide and

one of the major neutral sugars in pectin. The hydrolytic

cleavage of galactose-rich pectin side chains is caused to

decrease of galactose. Stolle-Smits et al. [22] and Louvet

et al. [23] suggested that during fruit development stage,

galactose content slowly reduces in pods. Gonzalez-Ro-

driguez et al. [24] reported that sucrose and glucose content

were increased in pineapple plants sprayed with Azoto-

bacter chroococcum. Sucrose is an osmotic substance in
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plants prevents oxidative stress induced from biotic and

abiotic factors [25] and their perception is increased by

malic acids [26]. In current study, we found B. methy-

lotrophicus KE2 treatment increased the malic acids con-

centration in sesame plants (Fig. 2). Plant growth

promoting bacteria secrete malic acids to promote the plant

growth is widely reported [4]. Malic acid plays a vital role

in Krebs’ cycle for producing energy [27]. The subsequent

process of higher photosynthetic rate and sugars production

by the influence of B. methylotrophicus KE2 on sesame

plants led to regulates the amino acids synthesis. In gen-

eral, number of Bacillus species has the ability to fix the

atmospheric nitrogen and supply the nutrients to plants.

The amino acids, a source of nitrogen can be possibly

uptake by plant roots through amino acids transporters

[28]. The micro-organisms impact the amino acids uptake

by plants from soil [3]. Recently, we reported that B.

megaterium inoculation regulates endogenous plant car-

bohydrates and amino acids synthesis to promote the

mustard plant growth [4]. However, the IAA secreting

Enterbacter sp. SE992 induced amino acids, sugars and

hormonal regulation in cucumber helped to enhance the

salt tolerance of plants [29]. Very few studies were

reported the PGPR-induced changes on amino acids in

crop. In current study showed that B. methylotrophicus

KE2 foliar inoculation favored to sesame vegetative

Fig. 1 Changes on photosynthetic pigments in sesame during B. methylotrophicus KE2 interaction. Means (n = 3) followed by the same letter

were not significantly different (p B 0.05) according to Duncan’s multiple range test

Indian J Microbiol (Oct–Dec 2017) 57(4):409–415 411

123



412 Indian J Microbiol (Oct–Dec 2017) 57(4):409–415

123



(shoot) growth by enhancing nine amino acids (Ala, Cys,

Val, Ile, Leu, Tyr, Phe, Arg and Pro) content and sup-

pressed the amino acids production in pods except Cys

synthesis (Table 1). Although, the amount of individual

amino acids was comparatively higher in pods than sesame

shoots at controlled environments, bacterial treatment

inhibited the production of several amino acids in pods.

Best of our knowledge, there is no report on amino acids

metabolic regulation in pods during bacterial foliar spray.

We made the first attempt to elucidate the bacterium

induced metabolic alteration in amino acids synthesis in

sesame plants. The beneficial bacterial inoculation in soil

significantly influenced the amino acids metabolism in

plants as documented in our recent studies. For instant, B.

megaterium, Rhodobacter sphaeroides, Lactobacillus

plantarum, and Saccharomyces cerevisiae enhanced the

several individual amino acids to promote the plant growth

[4, 5]. The foliar application of B. methylotrophicus KE2 at

flowering period might be impacted amino acids synthesis

during pod development, which led to reduce the accu-

mulation of amino acids in pods.

The understanding of hormonal interaction during plant

growth is still major challenge for plant researchers. B.

methylotrophicus KE2 suppressed the synthesis of salicylic

acid in sesame shoots and abscisic acid in pods represents,

this bacterial spray can useful to avoid the stress condition

in plants (Table 2). Previously, we documented that

bFig. 2 Influence of B. methylotrophicus KE2 association on sugars

and organic acid production in sesame plants. Means (n = 3)

followed by the same letter were not significantly different

(p B 0.05) according to Duncan’s multiple range test

Table 1 B. methylotrophicus

KE2 induced changes on amino

acids synthesis in sesame plants.

Means (n = 3) followed by the

same letter in the column were

not significantly different

(p B 0.05) according to

Duncan’s multiple range test

Amino acids Bacterial Treatment Shoot (mg/g dwt) Pod (mg/g dwt)

Aspartic acid KE- 4.846 ± 0.20a 6.855 ± 0.32a

KE? 4.748 ± 0.21a 6.549 ± 0.34a

Threonine KE- 2.095 ± 0.13a 3.334 ± 0.10a

KE? 1.796 ± 0.02b 2.863 ± 0.03b

Serine KE- 1.954 ± 0.07a 3.003 ± 0.12a

KE? 1.472 ± 0.01b 2.540 ± 0.07b

Glutamic acid KE- 4.983 ± 0.10a 12.433 ± 1.3a

KE? 4.149 ± 0.02b 10.099 ± 0.4b

Glycine KE- 0.871 ± 0.01a 2.563 ± 0.11a

KE? 0.307 ± 0.01b 1.658 ± 0.05b

Alanine KE- 2.760 ± 0.13b 5.031 ± 0.21a

KE? 3.538 ± 0.10a 4.649 ± 0.16b

Cystine KE- 1.292 ± 0.04b 0.942 ± 0.04b

KE? 1.710 ± 0.03a 2.341 ± 0.13a

Valine KE- 2.283 ± 0.13b 4.849 ± 0.14a

KE? 3.062 ± 0.11a 4.251 ± 0.10b

Methionine KE- 0.292 ± 0.01a 1.152 ± 0.02a

KE? 0.093 ± 0.00b 0.746 ± 0.01b

Isoleucine KE - 1.763 ± 0.04b 3.898 ± 0.16a

KE? 2.467 ± 0.11a 3.466 ± 0.13b

Leucine KE- 2.602 ± 0.10b 7.286 ± 0.42a

KE? 3.150 ± 0.16a 6.452 ± 0.29b

Tyrosine KE- 1.255 ± 0.05b 3.164 ± 0.12a

KE? 1.986 ± 0.07a 2.569 ± 0.12b

Phenylalanine KE- 1.673 ± 0.02b 5.533 ± 0.28a

KE? 2.027 ± 0.11a 4.645 ± 0.17b

Histidine KE- 1.128 ± 0.02a 2.443 ± 0.10a

KE? 1.093 ± 0.03a 2.024 ± 0.09b

Arginine KE- 1.820 ± 0.06b 9.091 ± 0.42a

KE? 2.254 ± 0.12a 6.867 ± 0.27b

Proline KE- 2.746 ± 0.13b 3.895 ± 0.15a

KE? 3.264 ± 0.16a 0.156 ± 0.04b
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various soil bacterium stimulated gibberellins production

and reduced the abscisic acid for promoting cucumber

plant growth [5]. Physiological role of salicylic acid and

abscisic acid is unkown on plant growth and development,

but their contribution on stress condition was studied well

and suggested that salicylic acid is most responsive in

pathogen attach and abscisic acid prevent the abiotic

environmental stresses [30]. During oxidative stress, plants

synthesis more amount of abscisic acid to prevent the water

loss by closing stomata [31]. In addition, B. methy-

lotrophicus KE2 increased the antioxidant such as total

polyphenol in shoots and pods of sesame plants (Table 2),

which might be scavenged the photooxidative reactive

oxygen species and protected the plants against environ-

mental stresses [32].

In conclusion, the foliar spray of B. methylotrophicus

KE2 successfully promoted the health of sesame plants was

evidenced from the higher synthesis of physiological

components such as photosynthetic pigments, sugars, malic

acid, amino acids, total polyphenol and, declined level of

stress hormones, salicylic acid and abscisic acid in shoots

and pods of sesame plants. In this study suggest that either

soil drench or spray of B. methylotrophicus KE2 can able to

increase the vegetative and reproductive phage of plant

health during their interaction.
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