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Abstract

Previous studies on changes in murine brain gene expression associated with the selection for 

ethanol preference have used F2 intercross or heterogeneous stock (HS) founders, derived from 

standard laboratory strains. However, these populations represent only a small proportion of the 

genetic variance available in Mus musculus. To investigate a wider range of genetic diversity, we 

selected mice for ethanol preference using an HS derived from the eight strains of the 

collaborative cross. These HS mice were selectively bred (four generations) for high and low 

ethanol preference. The nucleus accumbens shell of naive S4 mice was interrogated using RNA 

sequencing (RNA-Seq). Gene networks were constructed using the weighted gene coexpression 

network analysis assessing both coexpression and cosplicing. Selection targeted one of the 

network coexpression modules (greenyellow) that was significantly enriched in genes associated 

with receptor signaling activity including Chrna7, Grin2a, Htr2a and Oprd1. Connectivity in the 

module as measured by changes in the hub nodes was significantly reduced in the low preference 

line. Of particular interest was the observation that selection had marked effects on a large number 

of cell adhesion molecules, including cadherins and protocadherins. In addition, the coexpression 

data showed that selection had marked effects on long non-coding RNA hub nodes. Analysis of 

the cosplicing network data showed a significant effect of selection on a large cluster of Ras 
GTPase-binding genes including Cdkl5, Cyfip1, Ndrg1, Sod1 and Stxbp5. These data in part 

support the earlier observation that preference is linked to Ras/Mapk pathways.
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Selective breeding of mice for ethanol preference (and/or consumption) has been used to 

map quantitative trait loci (QTL) and to detect selection-related effects on brain gene 
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expression (Bice et al. 2006; Bubier et al. 2014; Hitzemann et al. 2009; Hoffman et al. 2014; 

Metten et al. 1998, 2014; Mulligan et al. 2006). Some consistent themes have emerged. For 

example, Mulligan et al. (2006) analyzed brain microarray data obtained in three selected 

lines (and six inbred mouse strains) and detected several gene clusters associated with 

preference; annotation of these clusters included enrichment in mitogen-activated protein 

kinase (MAPK) signaling and transcription regulation pathways. Metten et al. (2014) used a 

dual selection paradigm for preference and acute withdrawal to examine selection effects on 

gene expression. Similar to Mulligan et al. (2006), the analysis of the expression data 

showed selection effects on MAPK-related genes. More generally, Bubier et al. (2014) 

reviewed 86 preference gene data sets and found that MAPK-related genes have been 

detected in multiple studies; genes frequently detected have included Map4k3, Map4k5 and 

Mapk8.

The founder populations in the selection studies noted above were either F2 intercross or 

heterogeneous stock (HS) mice formed from crossing four or eight standard inbred 

laboratory strains. The HS were seen as an advantage over the F2 intercross animals because 

of the greater genetic diversity. However, it is now clear that with those founder populations, 

only a fraction of the genetic diversity available in Mus musculus was actually screened for 

preference-related genes and gene networks (see Keane et al. 2011; Roberts et al. 2007). 

Recently, solutions to this potential genetic bottleneck have become available in the form of 

two outbred populations related to the collaborative cross (CC) [the HS-CC and the diversity 

outbred (DO)], and these are now available for selective breeding (Iancu et al. 2010, 2013b; 

Svenson et al. 2012). The CC itself is a large panel of recombinant inbred (RI) strains where 

the eight founder strains included three wild-derived strains; it is estimated that the eight 

founders encompass >90% of M. musculus genetic diversity (Churchill et al. 2004). The HS-

CC and DO were created as complementary to the CC because large populations can be 

obtained relatively easily, can enable the precision mapping of complex traits and are ideal 

populations for selective breeding (Chesler 2014; Hitzemann et al. 2014).

In the current study, HS-CC founders were selectively bred for high and low ethanol 

preference using a standard 24/7, two-bottle choice paradigm (10% ethanol vs. water). The 

breeding scheme used was short term (four generations) in order to minimize the random 

fixation of genes unrelated to selection. Gene expression data (RNA-Seq) were collected 

from the nucleus accumbens (NAc) shell, a key component of the addiction circuit (Koob & 

Volkow 2010). Previously, we have shown the advantages of network-based approaches 

when examining gene expression data in animals selectively bred for high drinking in the 

dark (Iancu et al. 2013b), ethanol preference, and ethanol withdrawal (Metten et al. 2014). 

We observed that network data provide additional and largely discrete information from 

differential expression. We continue this approach in the current study and also include a 

novel approach for analyzing cosplicing networks (Iancu et al. 2015). Key coexpression and 

cosplicing hub nodes were identified.
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Materials and methods

Husbandry

All mice used for the short-term selection (STS) were obtained from the colony at the 

Portland VA Medical Center, an Association for Assessment and Accreditation of 

Laboratory Animal Care-approved facility. All procedures were in accordance with the VA 

Institutional Animal Care and Use Committee and were performed according to NIH 

Guidelines for the Care and Use of Laboratory Animals. Mice were maintained at 21 ± 1°C 

in plastic cages (19 × 31 × 13 cm3) on Eco-Fresh bedding (Absorption Corp., Ferndale, WA, 

USA) with tap water and Purina 5001 chow (PMI Nutrition International, Brentwood, MO, 

USA). Pups were weaned and housed with same-sex littermates at postnatal day 21.

Animals

The HS-CC mice were the selection founders. The HS-CC was formed by interbreeding of 

the eight different inbred strains used to form the CC: 129Sv/Im, A/J, C57BL/6, CAST/Ei, 

NOD/Lt, NZO/HILt, PWK/Ph and WSB/EiJ. The intercrossing strategy was pseudo-random 

(Iancu et al. 2010). The HS-CC mice are maintained as 48 families using a rotational 

breeding scheme. The founder animals used for selection were from G23.

Behavior analysis: two-bottle choice ethanol preference

Ethanol self-administration was monitored in adult (8 weeks) HS-CC mice using the two-

bottle choice preference test (10% ethanol vs. water) (see Metten et al. 2014). Mice were 

individually housed and given 1 week of habituation, with continuous access to food and tap 

water, accessible from two 25-ml graduated glass cylinders fitted with rubber stoppers and 

stainless steel sipper tubes. Mice were acclimated to the taste and effects of ethanol by 

progressively increasing the concentration of ethanol (0%, 5% and 10% v/v) every 4 days. 

Every other day, the position of the ethanol bottle was reversed to control for side 

preferences.

Selection

After testing, S0 mice were selected for breeding based on their preference for 10% ethanol. 

The 20 males and 20 females with the highest preference values were paired, with brother–

sister matings avoided, to create a ‘high’ preference line; similarly, the 40 mice with the 

lowest preference scores were paired to create a ‘low’ preference line. Approximately 200 

pups from each generation were weaned and tested at adulthood as described above for three 

subsequent generations; active selection concluded at S3. S4 alcohol-naive pups were used 

for genetic analyses.

Genotyping the high and low ethanol preferring lines and quantification of genetic 
variability

Eighty-eight S4 animals (22 males and 22 females from each selected line) were genotyped 

using the MegaMUGA mouse genotyping array (Geneseek, Lincoln, NE, USA). The array 

provides robust calls for >77 000 single nucleotide polymorphisms (SNPs). For this analysis, 

genetic distances were calculated for each pair of samples, based on the number of identical 
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alleles at each marker and then summed over all markers. Next, the between-group and 

within-group distances were calculated following the analysis of molecular variance 

approach (Excoffier et al. 1992).

Dissection of tissue and extraction of RNA

Naive S4 mice (N = 12/line/sex) were euthanized, brains removed and immediately frozen 

on dry ice. Frozen brains were sliced in 55-μ coronal sections on a freezing microtome at 

−13°C and slices containing the NAc were mounted on polyethylene naphthalate-covered 

slides. Mounted slices were lightly thionin stained under RNAse-free conditions and 

dehydrated in increasing concentrations of ethanol diluted in RNAse-free water (50%, 70%, 

95% and 100%) for 30 seconds each and then air-dried. The NAc shell was dissected 

bilaterally on a Leica LMD-6000 (Leica Microsystems Inc., Buffalo Grove, IL) using known 

anatomical landmarks (Paxinos & Franklin 2007). Dissected tissue was processed with the 

Arcturus Picopure Kit (ThermoFisher Scientific, Waltham, MA) yielding on average 200 ng 

of total RNA. RNA quality was assessed using the Caliper Labchip GX (PerkinElmer, 

Waltham, MA) and RNA Quality Scores (RQS).

RNA-Seq

Library formation (polyA+, stranded) and sequencing were all performed according to 

Illumina’s (San Diego, CA) specifications at the OHSU Massively Parallel Sequencing 

Shared Resource. Libraries were multiplexed 6 per lane, yielding approximately 25–30 

million total reads per sample. FastQC was used for quality checks on the raw sequence 

data. Sequence data were then aligned using STAR [Spliced Transcripts Alignment to a 

Reference, 2.3.0e (Dobin et al. 2013)] allowing for a maximum of three mismatches per 100 

bp read. For all samples, >85% of the reads were uniquely aligned. Using the Bedtools suite 

(2.26.0), reads were aligned to known genomic features to generate counts at the gene and 

exon level. Gene and exon expression data were imported into the R application 

environment; upper-quartile normalization was performed using the edgeR Bioconductor 

package (Robinson et al. 2010). The read density threshold for inclusion in the network 

analyses for genes and exons was 30 and 5, respectively. Network connectivity for both 

coexpression and cosplicing were calculated as described elsewhere (Iancu et al. 2015). 

Genes in the top 50% for both coexpression and cosplicing connectivity (see below) were 

used for further analysis (7545 genes). The expression data are available via NCBI Gene 

Expression Omnibus (accession number GSE65950, ID: 200065950).

DE and DV analyses

The DE (differentially expressed) was determined using edgeR, with the option of ‘tagwise’ 

dispersion; the threshold for significance was set at a false discovery rate (FDR) < 0.05. For 

gene DV (differentially variable), we utilized the ‘var.test’ procedure in the R ‘stats’ 

package. For exon DV, we computed pairwise distances between all samples (Canberra 

metric) and then utilized the ‘mrpp’ function in the ‘vegan’ R package. The mrpp function is 

sensitive to differences in spread/dispersion of pairwise distances, as well as within/between 

group distance differences.
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Coexpression and Cosplicing network construction and effects of selection

The coexpression network was constructed by means of the Weighted Gene Coexpression 

Network Analysis (WGCNA) (Iancu et al. 2012; Langfelder & Horvath 2008) using a 

consensus module approach followed by assessment of selection effects on network 

structure (Ando et al. 2015; Gill et al. 2010; Iancu et al. 2013a; Ideker & Krogan 2012). 

Cosplicing networks were constructed using a procedure we have termed CoSplicEx (Iancu 

et al. 2015). The procedure for CoSplicEx network construction was identical to that for the 

coexpression networks, except that the Pearson correlations were replaced with Mantel 

correlations (Iancu et al. 2015). In the coexpression network, the difference in correlation 

strength was evaluated utilizing the ‘var.test’ R function. To mitigate the computational load, 

we restricted the search to Pearson correlations between individual genes that differed by 

≥0.5 before power transformation. For CoSplicEx edges, we implemented a permutation 

procedure that compared differences in correlation strengths between the selected groups 

with differences in correlation strengths between two randomly assigned groups. This 

general procedure has been used to quantify network rewiring in both genomic (Gill et al. 
2010) and neural imaging studies (Hosseini et al. 2012). Using this procedure, we identified 

the number of changed edges for each gene and then inquired as to whether some genes had 

a disproportionately high number of changing edges. For the latter, the binomial test was 

used with the following parameters. The average incidence of changing edges (the rate of the 

binomial test) was computed by dividing the number of changing edges (P < 0.01) by the 

total number of network edges. The number of trials (for each gene) was equal to the 

number of edges. The number of ‘successes’ was equal to the number of significantly 

changing edges (P < 0.01). Genes enriched in changing edges are denoted as differentially 

wired (DW).

Module characterization

Functional significance of all modules was evaluated using gene ontology (GO) enrichment 

analysis using the GO-stats R package (Ashburner et al. 2000; Falcon & Gentleman 2007). 

Because of the nested structure of the GO terms, a graph decorrelation procedure was used 

(Alexa et al. 2006). To implement a ranking procedure, we integrated differential network 

results at the module and gene summarization levels into a comprehensive gene screening 

procedure. Modules enriched in gene or edge changes were the primary focus of further 

annotations. At the individual gene level, we focused on module hubs with normalized 

intramodular connectivity above 0.8. The GOrilla algorithm (Eden et al. 2009) was used to 

provide a visual representation of GO annotation enrichment and to examine annotation 

enrichment of selected groups of genes against a background set of all network genes.

Results

Selection for ethanol preference

After three generations of bidirectional selection for ethanol preference, there was a marked 

difference between the high and low lines (Fig. 1). At S3, the difference in preference ratio 

was 0.49 vs. 0.15 (F1,209 = 103, P < 0.001). In both groups, females showed a preference 

than males (F1,209 = 20, P < 0.001). Notably, 65% of females and 37% of males of high 
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preference lines achieved a preference ratio of >0.5 compared with 6.5% of females and 

2.3% of males of low preference lines.

Genetic variability analysis of high and low preference selected lines

Only those SNPs on the genotyping array with an alternative allele frequency of >5% (N = 

61 731) were included in the analysis. Total genetic distance among samples was calculated 

and plotted (Fig. 2). Genetic distances in the selected lines were relatively constrained when 

compared with the HS-CC founder strains. Strong divergence between the high and low 

preferring lines was observed. From a genetic distance perspective, the High line was closest 

to the WSB/EiJ inbred strain. Note that considerable genetic diversity was maintained in the 

selected lines.

Coexpression and cosplicing network construction

Consensus coexpression and cosplicing networks were constructed. A total of 7545 genes 

met the criteria for inclusion in the analyses. The adjacency matrices were clustered into 19 

modules for coexpression and 23 modules for cosplicing; each module was randomly 

assigned a nominal color. The genes associated with each coexpression and cosplicing 

module are found in Tables S1 and S2 (Supporting information), respectively. The clustering 

results were validated using a Z-score quantification of module quality. All modules had at 

least a moderate (Z > 4) quality score in one (and most in more than one) measure of 

network quality [density, separability or connectivity; see Langfelder et al. (2011)]. The GO 

annotations for the coexpression and cosplicing modules are found in Tables S3 and S4, 

respectively.

Selection effects on gene-level expression

Selection resulted in 7 DE genes, 223 DV genes and 1974 DW genes (FDR < 0.05). The 

identity of these genes, their raw and FDR adjusted P-values, module assignment and 

intramodular connectivity values are found in Table S1. Genes previously reported as 

significantly associated with preference consumption and DE by Mulligan et al. (2006) were 

flagged. Given the small number of DE genes, these were not considered further.

For the DV genes (Table S5), higher variability was observed in the high line (208 genes 

with higher variability in the high line vs. 15 genes with higher variability in the low line). 

Annotation of the DV genes (Eden et al. 2009) showed significant enrichment in genes 

associated with cell–cell signaling and included the GO categories ‘Response to Endogenous 

Stimulus’ and ‘Signaling Receptor Activity’ (Table S5). The 19 genes in the latter category 

included Adra1a, Chrna7, Fzd3, Gabrb2, Grin2a, Grin2b, Htr2a, Kit, Oprd1 and Sort1. Fdz3, 

Kit and Sort1 were detected as DE by Mulligan et al. (2006). Coexpression network 

information was used to further annotate the DV genes. The DV genes exhibited significant 

enrichment in two coexpression modules: greenyellow (P < 10−42) and pink (P < 7 × 10−3) 

(Table S5). The GO annotation of these modules is found in Table S3. The greenyellow 

module was notably enriched in annotations associated with neurons, e.g. neuronal cell body 

(P < 1 × 10−5) and signaling receptor activity (P < 5 × 10−6). The pink module was enriched 

in annotation associated with glutamate secretion (P < 5 × 10−4).
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Annotation of the DW genes showed significant enrichment in genes associated with cell–

cell adhesion (Table S6) and neuron part. Genes in the former category included 18 

protocadherin related genes; only one of these, Pdch15, was detected as DE between 

preferring and non-preferring animals by Mulligan et al. (2006). Genes associated with 

neuron part included a number of glutamate receptor subunits (Gria3, Grid2, Grik2, Grin2a, 

Grm1, Grm3, Grm4 and Grm7), voltage-gated potassium channels (Kcna4, Kcnab1, Kcnb1, 

Kcnb2 and Kcnd2) and kinesin-related genes (Kif1a, Kif1b, Kif5a, Kif5b and Kif5c). Of the 

genes associated with neuron part, 27 were also detected as DE by Mulligan et al. (2006); 

these included Grid2, Mapk1, Mapk8ip3, Pde4b, Psen1, Shank3 and Snap25. The DW genes 

were significantly enriched in five coexpression modules: brown (P < 3 × 10−14), 

greenyellow (P < 1 × 10−18), lightcyan (P < 3 × 10−10), pink (P < 3 × 10−4) and yellow (P < 

2 × 10−7). Annotations for the greenyellow and pink module are discussed above. The brown 

module (Table S3) was enriched in annotations associated with synaptic function, including 

synaptic transmission (P < 2 × 10−5); the lightcyan module was enriched in annotation for 

the synapse (P < 1 × 10−5) and the yellow module was enriched in genes associated with the 

nuclear part (P < 9 × 10−7) and RNA splicing (P < 1 × 10−5).

The DW and coexpression network data were integrated to focus on those nodes that are 

hubs in only one of the selected lines and show a significant change in affected edges. Two 

hundred and fifty-three genes met these criteria (Table S7). Two modules, greenyellow (P < 

10−7) and lightcyan (P < 3 × 10−3), were significantly enriched in affected genes; the brown 

module showed a trend (P > 0.08) toward significant enrichment. Of the affected hub nodes 

in the greenyellow and lightcyan modules (N = 65), only two genes had a higher 

intramodular connectivity in the low line (Gm12356 and Dpp6), and both were found in the 

lightcyan module. The effects of selection specifically on the greenyellow hub node Oprd1 
and more generally on intramodular connectivity are illustrated in Fig. 3. Connectivity in the 

low line is reduced; for Oprd1, the decrease in connectivity was marked (0.88 to 0.46; see 

Table S7).

It was of interest to note that among the affected hub nodes in the greenyellow and lightcyan 

modules, 13 of the nodes were non-coding RNAs, largely antisense to protein-coding genes. 

One of these non-codes (Gm26672) is antisense to a gene family of the protocadherins 

described above and includes Pcdhga2, a5, a6, a7b2, b5 and b7. The EnrichR tool (Chen et 
al. 2013; Kuleshov et al. 2016) was used to determine if the greenyellow and lightcyan hub 

nodes were significantly enriched in transcription factor (TF) and/or micro-RNA (mi-RNA)-

binding sites. No significant enrichment was detected for the greenyellow hubs; however, for 

the lightcyan module hubs there was a significant enrichment (corrected P < 0.01) in 

TCFAP2A, ZBT7A and NFKB1 TF-binding sites.

Selection effects on gene cosplicing

The cosplicing network was formed as described elsewhere (Iancu et al. 2015). Twenty-nine 

genes displayed alternative exon usage (AEU, identified as splicing significance in Table 

S2), no genes displayed DV in splicing patterns and 1633 genes exhibited DW (FDR < 0.05; 

Table S2). Only the DW genes were analyzed further. The DW genes were enriched in 

annotations associated with Golgi vesicle transport, the nuclear pore and Ras GTPase 

Colville et al. Page 7

Genes Brain Behav. Author manuscript; available in PMC 2017 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binding (Table S8). Genes in the latter category included a cluster of Rab-, Rap- and 

syntaxin-binding protein-associated genes. The DW genes were significantly enriched in 

three cosplicing modules [brown (P < 4 × 10−27), green (P < 1 × 10−21) and yellow (P < 7 × 

10−8), Table S8]. The brown module was significantly enriched in annotations associated 

with GTPase binding, as was the green module. The green module also showed enrichment 

in neuronal membrane annotations, e.g. neuron part (P < 10−7) and post-synaptic density (P 
< 9 × 10−7). Genes in the latter category included Gria1, Gria3, Htr2a and Htr5a.

The DW and splicing network data were integrated to focus on those nodes that are hubs in 

only one of the selected lines and show a significant change in affected edges. Thirty-four 

genes met these criteria (Table S9). When compared with all DW genes, there are no 

significant functional, molecular or component GO annotation enrichments for this group of 

genes, nor was there a significant enrichment in one or more of the cosplicing modules. The 

number of significantly changing hubs in the high and low lines was equal. Several of the 

hub nodes have been directly associated with alcohol-related phenotypes: Tnik, Pde10a, 

Ndrg1, Sos1, Tmem208, Nploc4, Slc6a15 and Pcsk1 (Bell et al. 2009; Costin et al. 2013; 

Logrip & Zorrilla 2014; Parsons et al. 2012; Rodd et al. 2009). An additional 18 of the 

splicing hubs are associated with mouse preference QTL intervals (GeneWeaver.org) (Table 

S9).

Discussion

Brain gene expression data are available for mice selectively bred for ethanol preference 

from F2 intercross, HS4, HS/NPT and HS/Ibg founders and for inbred laboratory strains and 

RI strains that differ in ethanol preference (or consumption) (Bubier et al. 2014; Hoffman et 
al. 2014; Metten et al. 2014; Mulligan et al. 2006; Williams & Mulligan 2012). However, as 

sequence data became available from multiple inbred mouse strains (Keane et al. 2011; 

Roberts et al. 2007), it has become clear that the preference/consumption studies have 

engaged only a fraction of the genetic diversity available in M. musculus. By increasing the 

genetic diversity, one has the potential to detect new pathways regulating ethanol preference 

and consequently to detect new targets for manipulation. With this perspective in mind, the 

current study was undertaken using HS-CC animals as the founders for short-term selective 

breeding. Three generations of breeding were sufficient for significant segregation of the 

high and low preference lines; preference in the high line was approximately 10 times 

greater than in the low line. Genotyping the lines not only confirmed the segregation of the 

lines but also illustrated that considerable genetic diversity was retained (Fig. 2). The 

genotype data also showed that from a genetic perspective, the high line was closest to the 

WSB founder strain. These data were of interest in that it has been reported that in both the 

HS-CC and the related DO mice there is a WSB-dominant meiotic drive locus on 

chromosome 2 (Chesler et al. 2016); numerous preference QTL have been detected on 

chromosome 2, albeit in less genetically diverse populations (Belknap & Atkins 2001). 

Using a selective breeding protocol, the meiotic drive locus and the associated WSB alleles 

have been eliminated from the DO population (Chesler et al. 2016). We have compared these 

DO mice with the HS-CC; no difference was detected in either acute or chronic preference 

consumption (data not shown). For both the HS-CC and the ‘new’ DO, approximately 25% 

of the animals consume daily >10 g/kg of ethanol.
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As described by Grahame et al. (1999) and Oberlin et al. (2011), replicate lines of high 

alcohol preferring and low alcohol preferring mice have been selected from HS/Ibg 

founders. These were long-term selections, continued for >20 generations and achieved 

considerable segregation of the high and low preferring lines. The characteristics of these 

mice are described in numerous publications (Oberlin et al. 2011). The HS/Ibg (named for 

the place of their derivation, the Institute of Behavioral Genetics, Boulder, CO) founders are 

genetically similar to the HS/NPT (derived at the Northport VAMC, North-port, NY) and 

have a relatively low genetic diversity when compared with the HS-CC. The STS protocol 

used in the current study and implanted to minimize the random fixation of genes unrelated 

to preference is similar to the design found in the studies of Metten et al. (1998, 2014). 

These studies focused on the effects of selection and the apparent inverse genetic 

relationship between preference and acute ethanol withdrawal. The current high and low 

preference lines were tested for differences in acute withdrawal following a 4 g/kg alcohol 

challenge; none were detected (data not shown). These studies also showed that there was no 

difference between the selected lines in the loss of and recovery of the righting reflex. The 

selected lines were not tested for differences in preference for other tastants. However, 

among the HS-CC founders, there is only a weak correlation (r = 0.21; N = 96) between 

preference for ethanol and preference for 0.2% saccharin.

The RNA-Seq data were analyzed at both the gene and exon level. Both analysis strategies 

confirmed earlier findings that the number of genes associated with ethanol preference is 

large and that these genes involve multiple functional pathways. However, the data differ 

from previous results (Mulligan et al. 2006) in that only a small number of genes (N = 7) 

were significantly DE (FDR < 0.05). We recognize that the sample sizes used in the current 

study were moderate (N = 24/line) and thus the power to detect significant changes was 

limited. Nonetheless, the data suggest that at least from the perspective of the NAc shell, 

numerous and large changes in gene expression are not necessary for selection.

The DV gene expression statistic is one approach for assessing whether there are differences 

in the regulation of gene expression between groups. Mar et al. (2011) have suggested that 

the variance in gene expression may be far more important in understanding disease etiology 

than previously recognized. Further, these authors noted that genes with high expression 

variability tend to function as cell surface receptors. In the current data set, we observed that 

223 genes showed significant DV between the high and low preference lines, and consistent 

with Mar et al. (2011), this group of genes was enriched for cell–cell signaling, synaptic 

signaling and signaling receptor activity (Table S5). Importantly, for this group of genes, 

higher variability was significantly skewed to the high preference line (high vs. low: 208 vs. 

15). Numerous members of the signaling receptor activity genes, including Chrna7, Gabrb2, 

Grin2a, Grin2b, Fzd3, Htr2a, Igf1r, Kit, Oprd1 and Sort1, have been associated with one or 

more alcohol phenotypes, including preference (Bowers et al. 2005; Bubier et al. 2014; Cao 

et al. 2014; de la Monte et al. 2012; Dick et al. 2006; Enoch 2013; Lo et al. 2016; Mulligan 

et al. 2006; Zhang et al. 2008).

The DV genes were highly enriched (P < 10−42) in a single coexpression module 

(greenyellow). The module was of moderate size (227 members) and, not surprisingly, was 

significantly enriched in annotations associated with receptor signaling and neuronal 
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membrane-related genes. Using our consensus module approach for selection line data 

(Iancu et al. 2013a, 2013b), it was observed that essentially all of the hub nodes in the 

greenyellow module were affected by selection. Using the EnrichR tool (Chen et al. 2013; 

Kuleshov et al. 2016), these hub nodes were not detected as significantly enriched in TF- or 

mi-RNA-binding sites. However, the protein–protein interaction hub protein tool showed 

that a significant number of the greenyellow hub nodes were functionally downstream from 

Fyn kinase (corrected P < 7 × 10−7). This cluster of hub nodes included Cdkl5, Dcc, Pde4d, 

Gpr63, Cbl, Dock1 and Add2. Fyn has been implicated in the regulation of a variety of 

ethanol phenotypes; Fyn knockout (KO) mice have been reported to show decreased or no 

difference in preference consumption and mice overexpressing Fyn have been reported to 

have decreased preference consumption (Boehm et al. 2003; Chen & Charness 2008; Farris 

& Miles 2013; Lee & Messing 2008; Yaka et al. 2003). Fyn is a member of the greenyellow 

module but was not significantly affected by selection. It also should be noted that among 

the Fyn-related cluster of hub nodes is Cdkl5, which has been associated with alcoholism 

(Liu et al. 2006; Sokolov et al. 2003).

The DW gene expression statistic assesses the change in connectivity of a single gene to all 

other genes in the network (N = 7545); the statistic counts the number of pairwise gene 

correlations that show a statistically significant change between the two selected groups, 

followed by identification of genes enriched in changing correlations/network edges. The 

data again point to the broad effect selection had on the shell transcriptome. Twenty-six 

percent of the genes included in the network analysis showed a significant change (FDR < 

0.05), indicating moderate effects on transcription that are dispersed among many genes. 

Not surprisingly many of the DW genes have been associated with a variety of alcohol 

phenotypes, including preference for Grid2, Mapk1, Mapk8ip3, Pde4b, Psen1, Shank3 and 

Snap25 (Mulligan et al. 2006). Of some note, the DW genes were significantly enriched in 

cell–cell adhesion genes, including 4 cadherin and 18 protocadherin genes. Previous studies 

have implicated Cdh11, Cdh12, Cdh13, Cdh19 Pchha9 and Pcdh15 in alcoholism or 

preference (Edenberg et al. 2010; Liu et al. 2009; Lydall et al. 2011; Mulligan et al. 2006; 

Sokolov et al. 2003; Treutlein et al. 2009). However, the data presented here suggest very 

broad effects on the protocadherins. It is interesting to speculate that this broad effect in part 

is the result of selection effects on the non-coding RNA, Gm26672, a hub in the lightcyan 

module and antisense to a large cluster of the affected protocadherins. More generally, the 

data presented here are the first to show that preference selection has significant effects on 

several non-coding RNA hub nodes.

Preference selection had a marked effect on alternative splicing. The mammalian genome 

contains over 20 000 protein-coding genes and alternative splicing produces approximately 

100 000 intermediate to highly expressed transcripts with the greatest diversity found in 

brain (Calarco et al. 2011; Li et al. 2007; Pan et al. 2008). There is evidence that drugs of 

abuse including alcohol affect alternative splicing and/or that the responses of drugs of abuse 

are transcript dependent (Acosta et al. 2011; Bulwa et al. 2011; Farris & Mayfield 2014; 

Glatt et al. 2011; Jin & Woodward 2006; Lee et al. 2014; Maiya et al. 2012; Raeder et al. 
2008; Rothenfluh et al. 2006; Wernicke et al. 2010). We and others (see Iancu et al. 2015 

and references therein) have observed that coordinated splicing has network properties 

amenable to analysis using tools such as WGCNA. While exon usage patterns can be 
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represented in several ways, we have chosen a method that utilizes Mantel correlations of 

Canberra distance matrices (Iancu et al. 2015). This method detects exon inclusion rates but 

does not provide information on isoform identity, which requires greater read depth than the 

current study (Lee et al. 2014).

The Mantel correlations, similar to the Pearson correlations for coexpression, were used to 

assess DW. The annotations for the DW genes differed significantly from the coexpression 

annotations (see above). Enrichment was detected for Golgi vesicle-mediated transport, the 

nuclear pore and Ras GTPase binding. The latter annotation is consistent with several 

reports, although not from the perspective of splicing, that preference consumption is 

associated generally with intracellular signaling and specifically with Ras/MAPK pathways 

(Metten et al. 2014; Mulligan et al. 2006). The number of Ras GTPase affected genes was 

large (N = 65) and included several different gene families, e.g. Rab, Rap and Srga. From the 

network perspective, most of these Ras GTPase genes were ‘leaf’ nodes, i.e. showing 

moderate to low intramodular connectivity. However, there were five hub nodes, all of which 

were significantly affected by selection: superoxide dismutase (Sod1), TBC1 domain family 

member 9 (Tbc1d9), nucleoporin 50 [Nup50, cytoplasmic FMR1-interacting protein 1 

(Cyfip1) and N-Myc-downstream regulated 1 (Ndrg1)]. The latter four are hub nodes in the 

low line and Sod1 is a hub in the high line. To our knowledge, none of these genes have been 

directly linked to ethanol preference. However, Ndrg1 has been shown to be affected by 

acute ethanol administration (Costin et al. 2013).

Thirty-six splicing hub nodes were significantly (FDR < 0.05) affected by selection. In 

contrast, 253 coexpression hub nodes were affected by selection (FDR < 0.05). The 

difference may reflect a greater stability of the splicing nodes and/or insufficient read depth 

to detect changes in the splicing network. Eighteen of these splicing hub nodes lie with 

known preference QTL intervals. However, the relevance of this observation will depend on 

which genes exhibit cis-regulated AEU. Of the remaining affected hub nodes, there is some 

gene expression evidence directly or indirectly linking eight of the hubs to ethanol 

phenotypes (Table S9); however, only one of these studies focused on preference risk. Carr 

et al. (2007) used inbred preferring and non-preferring rats to form congenic strains to 

determine what genes are DE in a Chr 4 QTL. Son of sevenless 1 (Sos1), a GTPase-

activating protein, was found to show modestly higher expression in the preferring animals. 

However, this was not confirmed with quantitative reverse transcriptase-polymerase chain 

reaction.

Beginning with the selection of the long-sleep and short-sleep mice (see references in 

McClearn & Kakihana 1981), there is a long record of using outbred animals as the founders 

for ethanol-related selective breeding (Crabbe et al. 2016). The current study continues this 

strategy using a founder population (the HS-CC) that is three to four times more genetically 

diverse than other HS populations such as the HS/NPT or HS/Ibg (Hitzemann et al. 1994; 

Roberts et al. 2007). As noted above, there was a prediction that by using a substantially 

more diverse founder population, new pathways/mechanisms associated with preference 

consumption would be detected and these in turn could lead to novel therapeutic strategies. 

However, much of the data suggest that rather than detecting novel pathways, a more 

genetically diverse population engages familiar pathways but from novel perspectives. This 
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conclusion is consistent with our observation that when comparing striatal gene regulation 

among F2, HS4 and HS-CC mice (Iancu et al. 2010) module annotation is more consistent 

than the alignment of genes within specific modules. For example, Ras/MAPK pathways 

have been repeatedly associated with the risk for excessive preference consumption (see 

above) but generally from the perspective of differential gene expression. In the current 

study, these pathways appeared prominent in the cosplicing data, suggesting a more subtle 

form of transcriptome regulation. However, we also note that selection from the HS-CC 

detected very broad effects on cell adhesion molecules and showed that long non-coding 

RNAs may have a prominent role in preference genetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Differences in ethanol preference and consumption as a result of bidirectional selection
Left y-axis: consumption of 10% ethanol averaged from experimental days 10 and 12 

expressed as g/kg ethanol consumed per day. Right y-axis: ethanol preference ratio (ratio of 

milliliters of 10% ethanol consumed to total milliliters of fluid consumed).
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Figure 2. Multidimensional scaling (MDS) plots of genome-wide differences between high 
(magenta) and low (turquoise) ethanol-preferring selected lines compared with the founding 
strains (B6 = red, AJ = brown, 129 = purple, NOD = black, NZO = orange, CAST = dark green, 
PWK = green, WSB = blue) of the HS-CC founder stock
This figure illustrates strong genetic divergence between high and low preferring lines, in 

part because of the incorporation of wild-derived alleles in the low line. Additionally, it is 

notable the WSB/EiJ strain appears most genetically similar to the high preferring line.
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Figure 3. Effects of selection on connectivity in Oprd1, a greenyellow module hub with significant 
enrichment in affected edges
(a) Connectivity patterns of Oprd1 in the high line network. (b) Connectivity pattern of 

Oprd1 in the low line network. Edge thickness and transparency are proportional with 

connection strength.
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