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Abstract

In recent years, a new neurodegenerative tauopathy labeled Chronic Traumatic Encephalopathy 

(CTE), has been identified that is believed to be primarily a sequela of repeated mild traumatic 

brain injury (TBI), often referred to as concussion, that occurs in athletes participating in contact 

sports (e.g. boxing, football, football, rugby, soccer, ice hockey) or in military combatants, 

especially after blast-induced injuries. Since the identification of CTE, and its neuropathological 

finding of deposits of hyperphosphorylated tau protein, mechanistic attention has been on lumping 

the disorder together with various other non-traumatic neurodegenerative tauopathies. Indeed, 

brains from suspected CTE cases that have come to autopsy have been confirmed to have deposits 

of hyperphosphorylated tau in locations that make its anatomical distribution distinct for other 

tauopathies. The fact that these individuals experienced repetitive TBI episodes during their 

athletic or military careers suggests that the secondary injury mechanisms that have been 

extensively characterized in acute TBI preclinical models, and in TBI patients, including 

glutamate excitotoxicity, intracellular calcium overload, mitochondrial dysfunction, free radical-

induced oxidative damage and neuroinflammation, may contribute to the brain damage associated 

with CTE. Thus, the current review begins with an in depth analysis of what is known about the 

tau protein and its functions and dysfunctions followed by a discussion of the major TBI 

secondary injury mechanisms, and how the latter have been shown to contribute to tau pathology. 

The value of this review is that it might lead to improved neuroprotective strategies for either 

prophylactically attenuating the development of CTE or slowing its progression.
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1. Introduction

Chronic traumatic encephalopathy (CTE) is classified as a neurodegenerative tauophathy 

(McKee et al., 2016). In addition to CTE several other tauopathies exist including 

Alzheimer's disease (AD), frontotemporal dementia (FTD), progressive supra nuclear palsy 

(PSP), corticobasal degeneration, Pick's disease, and argyrophilic grain disease (Lee and 

Leugers, 2012). One defining characteristic of tauopathies is hyperphosphorylation of the 

protein tau. Once hyperphosphorylated, tau assumes a tightly folded confirmation, 

increasing susceptibility to aggregation, conformational change, filament assembly, 

polymerization into paired helical filaments, and bundling of paired helical filaments into 

neurofibrillary tangles and neuropil threads (Mietelska-Porowska et al., 2014).

Clinically, CTE is characterized by cognitive, behavioral, and/or mood dysfunction, with the 

possible accompaniment of motor symptoms (Montenigro et al., 2014). Unfortunately, the 

current incidence and prevalence of CTE is unknown (Kiernan et al., 2015) because 

although CTE can be suspected clinically, a definitive diagnosis can only be made post-

mortem (McKee et al., 2016). Recently, a consensus meeting was held to define the 

neuropathological criteria of CTE, and concluded that a CTE diagnosis should be based 

upon identification of an irregular pattern of abnormally hyperphosphorylated tau 

accumulations in astrocytes and neurons located around small blood vessels and at the 

depths of cortical sulci (McKee et al., 2016). Additional non-specific, but supportive features 

of CTE, include hippocampal tangles, neurofibrillary tangles in the subcortical nuclei, and 

TAR DNA-binding protein 43 (TDP-43) reactivity in the temporal cortex, hippocampus and 

amygdala (McKee et al., 2016). However, in reaching the consensus, definition other 

neuropathologic characteristics of CTE were not addressed including gliosis, inflammation, 

hemosiderin deposition, and the presence of comorbid pathologies such as Aβ and α-

synuclein deposition (McKee et al., 2016). Although the neuropathologic criteria for CTE 

have now been defined, identification of CTE as a unique entity remains controversial for 

several reasons including reliance on retrospective case reports subject to selection bias for 

identification of cases (Maroon et al., 2015), as well a lack of prospective and epidemiologic 

studies (McCrory et al., 2013). Indeed, the clinical diagnostic criteria of CTE vs. other 
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neurodegenerative disorders (e.g. AD) for which the history of one or more traumatic brain 

injuries is an established risk factor is still being intensely debated.

Nevertheless, to date, CTE pathology has only been identified in individuals with a history 

of traumatic brain injury (TBI) (McKee et al., 2016). CTE pathology has been observed in 

the brains of military personnel who have sustained blast injuries, and in athletes who 

participate in sports where the risk of sustaining repetitive head injuries is high including 

boxing, football, soccer, hockey and rugby (Goldstein et al., 2012; Kiernan et al., 2015; 

McKee et al., 2009; McKee and Robinson, 2014; McKee et al., 2013; Omalu et al., 2011b; 

Omalu et al., 2006; Omalu et al., 2005). Although there are several tauopathies, the 

pathoanatomic location of tau deposition in CTE makes it distinct from the others (Kiernan 

et al., 2015; McKee et al., 2016). However, the neuronal tau found in CTE does share a 

similar profile in regard to isoform ratio and phosphorylation state as the tau in AD (Kiernan 

et al., 2015; McKee et al., 2014; Schmidt et al., 2001). CTE and AD share other similarities; 

brain injury also increases the risk of developing AD (Guo et al., 2000; Nemetz et al., 1999; 

Plassman et al., 2000). In fact both pathologic tau (Ikonomovic et al., 2004; Johnson et al., 
2012; Uryu et al., 2007) and Aβ deposition (Johnson et al., 2012; Reynolds et al., 2005; 

Reynolds et al., 2006) are seen following a single severe TBI.

Although advancements have been made in defining the core neuropathological features of 

CTE, much about CTE is still unknown. Similar to brain injury itself, CTE is heterogeneous 

both in its supporting neuropathological features (McKee et al., 2016) and in its clinical 

presentation. Clinically, CTE is suspected of having at least two subtypes, a younger onset 

subtype predominated by behavior and mood symptoms but with minimal cognitive or motor 

impairment, and an older onset subtype characterized by cognitive impairment and motor 

dysfunction (Stern et al., 2013). However, up to four clinical subtypes have been proposed 

(Montenigro et al., 2014).

The pathophysiologic processes which lead to the development of CTE, the main 

characteristic of which is pathologic tau deposition, are not well understood. Although 

repetitive TBI has been singled out as a major etiologic factor in CTE and brain injury is 

considered necessary for its development (McKee et al., 2016), individuals who have 

experienced repetitive TBI do not always go on to develop CTE (Hazrati et al., 2013; McKee 

et al., 2013; Omalu et al., 2011a). Additional factors hypothesized to contribute to CTE 

include environment, genetics and injury characteristics, e.g. age at injury, type and severity 

of injury, number of hits, duration between injuries, etc. (Ojo et al., 2016) Although animal 

models are being utilized to further characterize CTE and repetitive TBI, many have failed to 

recapitulate the tau pathology seen in CTE or have required the use of transgenic mice 

already predisposed to develop tau pathology (Ojo et al., 2016). Therefore, there is much 

still to be elucidated regarding the progression of CTE following injury. However, despite 

the paucity of information regarding how CTE tau pathology progresses over time, the tau 

protein itself and processes that contribute to its dysfunction have been well characterized in 

the literature, thanks in large part to AD, FTD and TBI models in which tauopathy is 

a.commonly occurring pathology.
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In this review, which focuses on CTE, we attempt to integrate what is known about 

canonical post-traumatic neurodegenerative processes and the tau protein in order to identify 

mechanisms which could possibly lead to, or contribute to, chronic tau dysfunction 

following TBI that might serve as pharmacological neuroprotective targets. We have chosen 

to direct our attention to CTE because, by definition it is associated with the previous 

occurrence of repetitive, and possibly singular TBI even though, a history of TBI is known 

to be a risk factor for other neurodegenerative disorders that are involve the same secondary 

post-TBI degenerative mechanisms. Thus, throughout the rest of this review, we consistently 

mention what is known about the interaction of post-TBI secondary injury processes such as 

mitochondrial dysfunction oxidative stress, intracellular calcium overload, etc., with the 

pathogenesis of other neurodegenerative disorders as AD, that involve tauopathies that 

appear to be somewhat pathologically distinct from CTE. While this review is mainly 

directed at CTE, our literature review has revealed a rich interaction between acute post-TBI 

secondary injury mechanisms and tauopathy development in general.

2. The Tau Protein – Functions and Dysfunctions

2.1 Functions

There are several detailed reviews that cover structure, function, and post-translational 

modification of the tau protein (Fontaine et al., 2015; Lee and Leugers, 2012; Morris et al., 
2011). Tau is encoded for by the MAPT gene found on chromosome 17, a gene that is 

mutated in several tauopathies including FTD (Ferrari et al., 2011) and PSP (Im et al., 2015). 

In humans, alternative splicing generates six isoforms of tau containing either three (3R) or 

four (4R) microtubule binding repeats (Goedert and Jakes, 1990), leading to formation of 

isoforms with differing characteristics (Lee and Leugers, 2012). Additional heterogeneity 

exists in the n-terminal region as well (Goedert and Jakes, 1990). As stated previously, the 

neuronal tau of CTE has a similar isoform ratio and phosphorylation state as the tau of AD 

(Kiernan et al., 2015; McKee et al., 2014; Schmidt et al., 2001). AD is reported to have a 2:1 

ratio of 4R:3R tau (Chen et al., 2010b; Conrad et al., 2007; Ginsberg et al., 2006), a shift 

from the equal 4R:3R ratio found in healthy adult brains (Goedert and Jakes, 1990; Kosik et 
al., 1989).

The most well-known function of tau is its ability to bind microtubules, which promotes 

microtubule assembly and stabilization (Fontaine et al., 2015; Lee and Leugers, 2012; 

Morris et al., 2011). However, tau has several other functions, including axonal transport 

(Cuchillo-Ibanez et al., 2008; Lee and Leugers, 2012; Morris et al., 2011), regulation of 

actin and neurite outgrowth (Lee and Leugers, 2012; Morris et al., 2011), and regulation of 

signaling pathways (Morris et al., 2011). Tau can associate with heat shock proteins, 

chaperone proteins involved in the tau degradation pathway (Fontaine et al., 2015; Lee and 

Leugers, 2012), and although tau is primarily found associated with the cytoskeleton of 

axons, it can also localize to the nucleus, as well as interact with the plasma membrane and 

post-synaptic density (Fontaine et al., 2015; Lee and Leugers, 2012; Morris et al., 2011).

The binding of tau to microtubules can be regulated by the tau phosphorylation state, and 

phosphorylation of tau within the microtubule binding sites decreases the ability of tau to 

bind microtubules (Fontaine et al., 2015). Similarly, several of the tau mutations utilized in 
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transgenic tau mice, such as P301L and P301S, function to decrease binding of tau to 

microtubules and can lead to decreases in microtubule assembly (Fontaine et al., 2015; 

Hasegawa et al., 1998; Iovino et al., 2014). Several protein kinases and phosphatases 

regulate tau phosphorylation, and thus its ability to interact with microtubules (Fontaine et 
al., 2015; Martin et al., 2013; Morris et al., 2011).

2.2 Dysfunctions

One characteristic feature of tauopathies, such as CTE and AD, is tau hyperphosphorylation, 

where phosphorylation of tau at specific residues occurs as an ordered process, leading to 

tau aggregation (Alonso et al., 2001; Fontaine et al., 2015; Jeganathan et al., 2008; Morris et 
al., 2011) and oligomer formation (Tepper et al., 2014). In addition to tauopathies, TBI is 

also capable of inducing tau hyperphosphorylation (Ikonomovic et al., 2004; Uryu et al., 
2007; Yang et al., 2016).

In addition to phosphorylation other post-translational modifications to tau occur such as 

acetylation, glycosylation, sumolyation, ubiquitination, polyamination, oxidation, nitration, 

isomerization and truncation (Fontaine et al., 2015; Morris et al., 2011). Many of these post-

translational modifications have been implicated in the formation of pathologic tau. For 

example, oxidation of tau induces cross-linkages and aggregation (Reynolds et al., 2005) and 

nitration of tau decreases microtubule binding and assembly (Reynolds et al., 2005). 

Isomerization of pThr231 tau to the cis isoform attenuates tau dephosphorylation, decreases 

microtubule binding, and promotes aggregation (Wang and Zhang, 2015), and proteolytic 

cleavage of tau by calpain or caspase (Liu et al., 2011) can result in formation of truncated 

tau species which are prone to aggregation (Fontaine et al., 2015).

The mechanisms regarding tau toxicity in neurodegenerative disease remain controversial 

(Morris et al., 2011), with both loss of function and gain of function theories being proposed 

(Trojanowski and Lee, 2005). However, although hyperphosphorylated tau results in 

decreased binding of tau to microtubules, several studies indicate that knock-down of tau 

results in normal behavioral phenotypes, synaptic transmission and microtubule stability, 

without compensatory increases in other microtubule-binding proteins, such as MAP1 or 

MAP2, suggesting that tau toxicity may not be a direct result of loss of function (Morris et 
al., 2011). Rather, the toxicity associated with pathologic tau may in part be due to tau 

mislocalization and/or dysfunctional axonal transport. The majority of tau is localized to 

axons (Morris et al., 2011); however, tau hyperphosphorylation results in redistribution of 

tau from the axon to the somatodendritic compartment, an effect which is sufficient to 

impair synaptic function (Hoover et al., 2010), and several studies have shown that 

pathologic tau isoforms impair fast axonal transport (Lee and Leugers, 2012).

Evidence has also accumulated suggesting that tau oligomers, i.e. pre-filamentous tau 

aggregates, are more toxic than filamentous or monomeric tau (Spires-Jones et al., 2011). 

For example, injection of human tau oligomers into mouse brains results in impaired 

memory consolidation, as well as synaptic and mitochondrial dysfunction, whereas 

administration of tau monomers or fibrils does not (Lasagna-Reeves et al., 2011), while 

repression of human tau in transgenic mice results in attenuation of neuronal loss and 

cognitive impairment despite continued increases in neurofibrillary tangle formation 
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(Santacruz et al., 2005). Similarly, in a drosophila model of tauopathy, neurodegeneration 

can still be seen in the absence of neurofibrillary tangle formation (Wittmann et al., 2001). 

Interestingly, It has been hypothesized that one reason oligomeric tau is able to accumulate 

in tauopathies is due to the fact that both oligomeric tau and cleaved forms of tau, which 

have an increased propensity for aggregation compared to full-length tau, are preferentially 

degraded via autophagy (Chesser et al., 2013), a pathway reported to be defective in 

tauopathies (Piras et al., 2016) and TBI (Sarkar et al., 2014). Although proteasome 

dysfunction, the mechanism which preferentially degrades monomeric tau, has also been 

reported to occur following TBI due to mechanisms such as oxidative stress (Bader and 

Grune, 2006; Weih et al., 2001; Yao et al., 2008), monomeric full-length tau has a decreased 

propensity to aggregate compared to cleaved tau (Chesser et al., 2013) and is less toxic than 

oligomeric tau (Spires-Jones et al., 2011).

Tau is considered to have prion-like properties (Alonso et al., 2016; Medina and Avila, 

2014), which likely contribute to intracellular, intraregional, and trans-synaptic spread of 

pathologic tau (Liu et al., 2012; Medina and Avila, 2014). Tau can be secreted from neurons 

in its naked form or within exosomes or membrane vesicles (Chai et al., 2012; Medina and 

Avila, 2014; Saman et al., 2012; Simon et al., 2012). In healthy neurons the release of tau is 

induced by neuronal activity, however, neuronal activity is altered following TBI (Carron et 
al., 2016) and in tauopathy brains (Pooler et al., 2013), likely resulting in abnormal tau 

release (Pooler et al., 2013). Additionally, both c-terminal proteolytic cleavage of tau and tau 

overexpression are capable of enhancing tau secretion (Medina and Avila, 2014; Plouffe et 
al., 2012; Simon et al., 2012). In-vitro, extracellular tau is known to be toxic (Gomez-Ramos 

et al., 2006; Medina and Avila, 2014), through a mechanism which may involve increases in 

intracellular calcium levels via tau stimulation of muscarinic receptors (Gomez-Ramos et al., 
2008), and in further support of the toxic oligomeric theory, only extracellular tau 

aggregates, not tau monomers, are taken up by cells (Alonso et al., 2016; Frost et al., 2009; 

Wu et al., 2013). Once tau is secreted, the extracellular tau has the ability to enhance tau 

pathology. For example, transplanting TBI induced tau oligomers into naive brains of hTau 

transgenic mice results in oligomeric spread of tau and accelerated cognitive impairment 

(Gerson et al., 2016), secreted tau fibrils are capable of inducing transcellular misfolding and 

tau aggregation (Kfoury et al., 2012), and hyperphosphorylated tau is capable of forming 

filaments and tangles with non-phosphorylated tau (Alonso et al., 1996). Therefore, it is 

possible that in non-familial tauopathies, such as CTE, an initial event, such as repetitive 

TBI, triggers a misfolding cascade which can then be transmitted in a prion-like manner 

(Morales et al., 2015).

3. Traumatic Brain Injury - Pathophysiological Mechanisms

Although the specific mechanisms by which repetitive TBI can lead to CTE or by which a 

single severe TBI can lead to AD are still being elucidated, much of the pathology that 

occurs in tauopathies is paralleled in TBI. TBIs range from mild to severe, with at least 2.5 

million TBIs occurring in the United States annually (Faul M, 2010), the majority of which 

are classified as mild (Holm et al., 2005). However, these numbers are underestimates 

because mild TBIs often go unreported, especially in sports and military communities 

(Jordan, 2013; Marion et al., 2011), populations which are at additional risk for sustaining 
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repeat injuries. In fact, it is estimated that sports-related TBIs alone occur at a rate of 3.8 

million annually (Langlois et al., 2006).

3.1 Primary Injury Mechanisms

TBI consists of a primary injury followed by a secondary injury cascade. The primary injury 

occurs immediately and is caused by external forces, such as a direct impact, rapid 

acceleration/deceleration, or blast a wave. Primary injury can result in contusion, 

hemorrhage, ischemia, shearing and straining of axons and blood vessels, and diffuse axonal 

injury from the mechanical insult (Maas et al., 2008; McAllister, 2011; Weber, 2012). Of 

important relevance to CTE, which consists of tau pathology located at the depths of cortical 

sulci and around blood vessels, are deceleration/acceleration and blast forces (McKee et al., 
2016). Deceleration/acceleration forces are particularly damaging to long white matter tracts 

and the grey-white matter junctions of the cerebral cortex (McAllister, 2011), and blast 

injury has been reported to damage perivascular neural tissue due to transmission of pressure 

waves throughout the cerebral vasculature (McAllister, 2011).

3.2 Secondary Injury Mechanisms

Cellular strain and deformation caused by the primary injury results in membrane 

depolarization, mechanoporation of membranes, ionic imbalances, and neurotransmitter 

release, resulting in initiation of the secondary injury cascade, a process which occurs hours 

to weeks following injury (Maas et al., 2008; McAllister, 2011), and is heavily influenced by 

alterations in calcium homeostasis (Weber, 2012).

3.2.1 Intracellular Calcium Overload, Oxidative Damage and Mitochondrial 
Dysfunction—Activation of calcium channels by high levels of extracellular glutamate 

following injury, along with activation of voltage-gated calcium channels and membrane 

leakage lead to large increases in intracellular calcium (Weber, 2012). As essential regulators 

or calcium homeostasis (Rizzuto et al., 2000; Rizzuto et al., 1999) mitochondria buffer the 

increases in intracellular calcium following TBI (Lifshitz et al., 2003; Xiong et al., 1997). 

Increases in mitochondrial calcium lead to decreased respiration and increased generation of 

reactive oxygen and nitrogen species (ROS/RNS) (Fiskum, 2000; Sullivan et al., 2005). 

Following TBI, as the electron transport chain becomes impaired, single electrons leak from 

complex I, generating superoxide radicals (O2
•-), which rapidly react the nitric oxide (NO•) 

generated by calcium activated mitochondrial nitric oxide synthase (mtNOS), forming 

peroxynitrite (PN) anion (ONOO-) (Bringold et al., 2000; Radi et al., 2002). Protonation of 

ONOO- results in peroxynitrious acid (ONOOH) which decomposes into nitrogen dioxide 

(NO•
2) and hydroxyl (OH•) radicals. Alternatively, ONOO- can react with carbon dioxide to 

form nitrosoperoxocarbonate (ONOOCO2
-) which decomposes into the radicals NO•

2 and 

(CO•-
3) (Bains and Hall, 2012; Hall et al., 2010). PN is demonstratively increased following 

TBI (Deng et al., 2007; Hall et al., 2004; Hall et al., 2012; Singh et al., 2007) and because of 

its unique diffusion radius, mitochondrial derived PN is capable of damaging multiple 

cellular structures (Hall et al., 2010).

The highly reactive PN-derived radicals, NO•
2, OH•, CO•-

3, initiate lipid peroxidation (LP) 

of polyunsaturated fatty acids, such as arachidonic acid, which are highly enriched in 
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neurons and cellular and organelle membranes, forming lipid peroxyl radicals (Bains and 

Hall, 2012; Hall et al., 2010). LP propagates throughout the membrane as lipid peroxyl 

radicals react with adjacent polyunsaturated acids, and although lipid peroxidation is 

considered to be a self-propagating process, it is also catalyzed by the presence of iron, 

particularly in the acidic tissues of TBI (Hall et al., 2010). Following TBI, decreases in pH 

cause iron to be released from the iron storage proteins, ferritin and transferritin, and 

additional iron is released from the hemoglobin deposited during hemorrhages and 

microbleeds (Hall et al., 2010). Therefore, similar to tau deposition in CTE, iron-catalyzed 

LP may be enhanced near the vasculature following TBI. LP terminates with formation of 

neurotoxic aldehydes, such as 4-hydroxynonenal (4-HNE) and 2-propenal (acrolein). Both 

LP and its derivatives, 4-HNE and acrolein, are well known to be increased following TBI 

(Bayir et al., 2007; Hall et al., 2004; Mustafa et al., 2010; Mustafa et al., 2011; Singh et al., 
2013) (Cebak et al., 2016; Hill et al., Submitted).

The neurotoxic aldehydes, 4-HNE and acrolein, covalently bind proteins via the amino acids 

lysine, histidine, or cysteine, resulting in enzyme inhibition and protein dysfunction (Hall et 
al., 2010; Petersen and Doorn, 2004; Stevens and Maier, 2008). In addition to protein 

dysfunction, neurotoxic aldehydes, ROS/RNS and lipid peroxyl radicals are capable of 

inducing DNA damage to both nuclear and mitochondrial DNA (Dalleau et al., 2013; Hall et 
al., 2010). As a major site of PN formation, mitochondria are particularly susceptible to 

attack by LP-derived neurotoxic aldehydes. Binding of 4-HNE and acrolein to mitochondria 

results in extensive mitochondrial dysfunction through impairment of mitochondrial 

respiration and enhanced generation of ROS/RNS (Singh et al., 2013; Vaishnav et al., 2010) 

(Cebak et al., 2016; Hill et al., Submitted; Miller et al., 2013; Picklo et al., 1999; Picklo and 

Montine, 2001). Following TBI, the mitochondrial dysfunction induced by LP-derived 

neurotoxic aldehydes and increased intra-mitochondrial calcium concentrations leads to 

formation of the mitochondrial permeability transition pore (mPTP) (Bringold et al., 2000; 

Hansson et al., 2008; Sullivan et al., 2005). Opening of the mPTP results in collapse of the 

mitochondrial membrane potential, loss of ATP production, mitochondrial swelling, rupture 

of the outer mitochondrial membrane and release of calcium and cytochrome c into the 

cytosol (Galluzzi et al., 2009; Sullivan et al., 2005).

3.2.2 Calcium-Mediated Proteolytic Degradation—Extrusion of calcium back into 

the cytosol leads to neurodegeneration, necrosis, and activation of the calcium-dependent 

cysteine protease, calpain, which is capable of breaking down a variety of cytoskeletal 

proteins including MAP2, spectrin and tau (Galluzzi et al., 2009; Kampfl et al., 1997; 

Sullivan et al., 2005; Wang, 2000). In fact, calpain-cleaved αII-spectrin breakdown products 

are frequently used to assess post-TBI axonal damage and neuroprotection following TBI 

(Bains et al., 2013; Deng-Bryant et al., 2008; Deng et al., 2007; Mbye et al., 2009; Miller et 
al., 2014; Mustafa et al., 2011; Saatman et al., 1996). Similarly, mitochondrial release of 

cytochrome c leads to activation of the protease caspase-3 and induction of apoptosis 

(Galluzzi et al., 2009; Sullivan et al., 2005; Wang, 2000).

One effect of cytoskeletal degradation following TBI is impairment of axonal transport. 

Following injury, axonal transport of amyloid precursor protein (APP), the precursor to Aβ, 

a pathologic protein found in the tauopathy, AD, and some cases of CTE, is impaired and 

Kulbe and Hall Page 8

Prog Neurobiol. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results in accumulations of APP in axonal varicosities and bulbs of damaged neurons; as 

such, the accumulation of APP following TBI is often used as a marker for traumatic axonal 

injury (Chauhan, 2014). In addition to cytoskeletal degradation, protein accumulation 

following TBI can also occur due to proteasomal dysfunction (Yao et al., 2008). In 

particular, the proteasome is responsible for the degradation of oxidatively damaged 

proteins, however, it is also subject to oxidative stress-induced impairment itself (Bader and 

Grune, 2006; Weih et al., 2001; Yao et al., 2008). In addition to protein accumulation 

following injury, impairment of axonal transport also leads to somatodendritic accumulation 

of organelles, such as the mitochondria (Kilinc et al., 2008), although, impairment of 

mitochondrial dynamics following TBI is complex and includes additional processes such as 

alterations in fission and fusion (Fischer et al., 2016).

Following injury, the endoplasmic reticulum (ER) also functions to regulate calcium 

homeostasis (Weber, 2012). Increases in ER stress are reported to occur in both single 

(Begum et al., 2014; Krajewska et al., 2011; Larner et al., 2004; Logsdon et al., 2014) and 

repetitive TBI (Lucke-Wold et al., 2016). In fact, calcium release from the ER has been 

hypothesized to be toxic to neurons and white matter tracts (Weber, 2012). In addition to 

regulation of intracellular calcium stores, the ER is involved in protein folding and quality 

control of misfolded proteins and protein aggregates through a process termed, the unfolded 

protein response (UPR) (Hoozemans and Scheper, 2012). Therefore, in addition to calcium-

induced pathology, ER stress can also lead to several additional aspects of cellular 

dysfunction, including inhibition of protein synthesis (Doutheil et al., 1997), apoptosis 

(Nakagawa et al., 2000), accumulation of protein aggregates (Hoozemans and Scheper, 

2012), and activation of the tau kinase, GSK-3β (Song et al., 2002).

3.2.3 Neuroinflammation—Another important contributory factor to the pathology that 

occurs following TBI is inflammation. Inflammation has been observed acutely following 

TBI in both severe and mild injury, an effect which is amplified in mild TBI by repeated 

injury (Collins-Praino and Corrigan, 2016). Following injury, resident immune cells, such as 

astrocytes and microglia, are activated by damaged tissue and cellular debris (Collins-Praino 

and Corrigan, 2016; Karve et al., 2016), but can also be activated by other mechanisms such 

as ROS/RNS (Collins-Praino and Corrigan, 2016). Additionally, peripheral immune cells are 

recruited to the site of injury (Collins-Praino and Corrigan, 2016; Karve et al., 2016). 

Immune cells are capable of releasing both pro-inflammatory and pro-survival cytokines and 

chemokines; therefore, they are capable of serving both destructive and reparative roles 

following injury (Collins-Praino and Corrigan, 2016; Karve et al., 2016). For example, the 

microglial phenotype M1 is neurotoxic, while the microglial phenotype M2 is 

neuroprotective (Karve et al., 2016). Chronic microglial activation has been observed 

following both human and experimental TBI and has been linked to chronic 

neurodegeneration (Faden and Loane, 2015). In fact, the neurotoxic M1 phenotype has been 

shown to persist longer than the M2 phenotype following TBI (Collins-Praino and Corrigan, 

2016; Kumar et al., 2016; Wang et al., 2013a) Furthermore, some studies have demonstrated 

that persistent neuroinflammation can occur decades following severe TBI or repetitive 

concussion (Collins-Praino and Corrigan, 2016; Coughlin et al., 2015; Ramlackhansingh et 
al., 2011). Physiologically, one explanation for the persistence of neuroinflammation 
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following repetitive TBI focuses on microglial priming. Microglial priming is a process in 

which microglia develop exaggerated immune responses and decreased activation thresholds 

following an insult such as TBI; therefore, neuroinflammation can be chronically 

exacerbated upon additional TBIs or systemic inflammation (Collins-Praino and Corrigan, 

2016).

3.2.4 Tau Phosphorylation—In direct relation to CTE, TBI also results in increased 

levels of total and phosphorylated tau. In human TBI, injury severity is correlated with 

increased tau phosphorylation, increased activity of the tau kinase GSK-3β, and decreased 

activity of the tau phosphatase, PP2A, (Yang et al., 2016). Tau pathology has been reported 

following cases of single severe TBI (Ikonomovic et al., 2004; Johnson et al., 2012; Uryu et 
al., 2007), in patients whom have died within six months of sustaining a concussion (McKee 

et al., 2014), and in young military veterans with a history of blast exposure (McKee and 

Robinson, 2014). Therefore, there is not only increasing interest in investigating the 

development of CTE-like tau pathology in animal models of single and repetitive TBI, but 

also in the development of tau as a biomarker for TBI (Section 5. Tau – A Biomarker for 
TBI). Figure 1 hypothesizes the possible contribution of single, or perhaps multiple, 

pathophysiological mechanisms to the development of CTE.

4. The Role of Tau in Cellular Dysfunction

The process in which acute TBI pathology develops into the chronic tau pathology seen in 

the tauopathies CTE and AD remains to be established, however, the mechanisms that can 

initiate formation of pathologic tau as well as the mechanisms by which tau can induce 

cellular dysfunction parallel many of the secondary injury mechanisms of TBI, including 

damage by ROS/RNS and LP-derived neurotoxic aldehydes, mitochondrial dysfunction, ER 

stress, calpain and caspase activation, and inflammation.

4.1 Oxidative Stress

Oxidative stress is elevated in several tauopathies (Alavi Naini and Soussi-Yanicostas, 2015; 

Castellani et al., 1995; Litvan, 2004; Martinez et al., 2008a). It is well known that in the 

tauopathy AD, Aβ is capable of inducing oxidative stress, a process which is hypothesized 

to be upstream of the formation of pathologic tau (Giraldo et al., 2014). Several studies 

confirm both the ability of oxidative stress to induce tau pathology and the ability of 

pathologic tau to induce oxidative stress, suggesting the possibility that in tauopathies such 

as CTE a self-propagating cycle of pathologic tau formation and oxidative stress occurs and 

leads to cellular dysfunction and neurodegeneration.

In-vitro, oxidative stress can induce both increases in tau aggregation and phosphorylation. 

Exposing tau isolated from bovine brain to iron-catalyzed oxidation results in dimerization, 

polymerization and formation of tau filaments (Troncoso et al., 1993), and in primary rat 

cortical neurons, oxidative stress (Fe2+/H2O2) increases tau phosphorylation by increasing 

activity of the tau kinase, GSK-3β, an effect which is attenuated by the GSK-3β inhibitor, 

lithium (Lovell et al., 2004). Interestingly, lithium also has the ability to attenuate tau 

pathology in-vivo by decreasing GSK-3β dependent tau phosphorylation and aggregation in 

transgenic tau mice (Perez et al., 2003). Additional in-vitro studies indicate that tau 
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phosphorylation is also induced by chronic oxidative stress. Inhibiting glutathione synthase 

in neuroblastoma cells induces a mild, chronic oxidative stress, which increases the activity 

of the tau kinase, JNK, decreases the activity of the tau phosphatase, PP2A, and results in 

increases in tau phosphorylation and tau aggregation (Su et al., 2010). Although these 

studies indicate oxidative stress has the ability to induce tau phosphorylation in-vitro, 

oxidative stress induced tau dephosphorylation has also been reported (Davis et al., 1997; 

Galas et al., 2006; Olivieri et al., 2001; Zambrano et al., 2004). However, dephosphorylation 

of tau following oxidative stress exposure seems to be limited to acute administration of 

H2O2.

In-vivo experiments also link tau phosphorylation to oxidative stress exposure. Transgenic 

mice deficient for the mitochondrial antioxidant enzyme, SOD2, have increases in 

mitochondrial-induced oxidative stress, which result in increased tau phosphorylation, an 

effect which is attenuated by antioxidant administration (Melov et al., 2007). Additionally, 

transgenic mice overexpressing the mutated form of human tau, P301S, show markers of 

oxidative stress such as, increased mitochondrial protein carbonyls and decreased SOD2, 

months prior to the appearance of tau hyperphosphorylation and tangle formation (Dumont 

et al., 2011).

While oxidative stress has a demonstrated ability to induce tau pathology, several studies 

show that tau itself has the ability to induce oxidative stress. In-vitro, overexpressing tau 

impairs trafficking of peroxisomes, organelles responsible for H2O2 detoxification and 

results in increased susceptibility to H2O2-induced oxidative stress (Alavi Naini and Soussi-

Yanicostas, 2015; Stamer et al., 2002). Tauopathy animal models also suggest the ability of 

tau to induce oxidative stress. Cultured neurons obtained from transgenic rats expressing a 

truncated form of human tau analogous to that found in AD have increased levels of ROS 

and are more susceptible to oxidative stress, effects which are likely the result of decreased 

numbers of mitochondria and abnormal mitochondrial distribution (Alavi Naini and Soussi-

Yanicostas, 2015; Cente et al., 2006). Furthermore, transgenic mice overexpressing mutant 

human tau, P301L, also show increased generation of ROS, another consequence of 

mitochondrial dysfunction (Alavi Naini and Soussi-Yanicostas, 2015; David et al., 2005).

In summary, oxidative stress is well-established to occur in neurodegenerative tauopathies, 

and there are several mechanisms by which oxidative stress can induce tau phosphorylation 

and aggregation and by which pathologic tau can induce oxidative stress (Figure 2). 

Therefore, a primary event capable of inducing either oxidative stress or tau dysfunction, 

such as TBI, could set off a chronic and self-propagating cyclical cascade of oxidative stress 

and pathologic tau formation.

4.2 Peroxynitrite

Oxidative stress is often used as a broad term which encompasses a multitude of reactive 

species, one specific reactive species being PN. The PN derived radical, NO•2, is capable of 

nitrating tyrosine at the 3 position, thus forming 3-NT, a specific marker of PN-induced 

cellular damage (Hall et al., 2010). 3-NT modified tau has been identified in a variety of 

tauopathies, including AD, frontotemporal dementia, and Pick's disease (Horiguchi et al., 
2003; Smith et al., 1997).
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Peroxynitrite is capable of inducing tau dysfunction through both oxidation and nitration 

mechanisms (Reynolds et al., 2005; Reynolds et al., 2006). In-vitro, cysteine oxidation of 

tau by PN results in formation of disulfide crosslinks, tau oligomerization, and decreased 

microtubule assembly (Landino et al., 2004). PN can also promote tau oligomerization 

through addition of tyrosyl radicals which results in formation of 3,3′-dityrosine irreversible 

crosslinks and stabilization of insoluble tau filament aggregates characteristic of late stage 

paired helical filaments (PHF) (Reynolds et al., 2005; Reynolds et al., 2006). Furthermore, 

although PN-derived NO•2 nitration of tau has been shown to inhibit tau polymerization 

(Reynolds et al., 2005), 3-NT modification of tau does result in disrupted binding of tau to 

microtubules and inhibition of tubulin assembly (Reynolds et al., 2006; Zhang et al., 2005).

Peroxynitrite has also been shown to modify tau in-vivo. Injection of the PN donor, SIN-1, 

into rat hippocampus results in both nitration and hyperphosphorylation of tau, and 

increased activation of the tau kinases, GSK-3β and p38 MAPK, processes are attenuated by 

pre-administration of the PN scavenger, uric acid (Zhang et al., 2006). SIN-1 administration 

increased levels of nitrated p85, a regulator of GSK-3β, suggesting that PN is capable of 

inducing tau hyperphosphorylation by nitration of upstream proteins in tau phosphorylation 

cascade (Zhang et al., 2006). Furthermore, SIN-1 also led to a decrease in proteasome 

activity, which combined with the fact that the nitrated form of tau is less susceptible to 

proteasomal degradation, resulted in an increase in tau aggregation (Zhang et al., 2006).

In summary, there are several mechanisms by which the reactive species, PN, can induce tau 

pathology, including oxidation, nitration, and induction of tau hyperphosphorylation, 

processes which lead to accumulation of toxic tau aggregates and/or destabilization of 

microtubules. PN is generated following TBI; therefore it is possible that the PN formed 

acutely following TBI initiates tau dysfunction, while other mechanisms of PN generation, 

such as continued mitochondrial dysfunction, contribute to chronic PN-induced tau 

dysfunction as suggested in Figure 3.

4.3 Lipid Peroxidation-Derived Neurotoxic Aldehydes

Lipid peroxidation-derived aldehydes have been found to be elevated in the brains of several 

tauopathies (Butterfield et al., 2010; Lovell et al., 2001; Markesbery and Lovell, 1998; 

Martinez et al., 2008a; Martinez et al., 2008b; Montine et al., 1997; Muntane et al., 2006; 

Odetti et al., 2000; Sayre et al., 1997). In fact, in PSP, a tauopathy with paired helical 

filament morphology distinct from AD, significant increases in 4-HNE are correlated with 

tau aggregation, suggesting that accumulation of 4-HNE may contribute to impairment of 

tau degradation (Odetti et al., 2000).

The LP-derived aldehydes 4-HNE and acrolein are both capable of inducing tau pathology. 

In-vitro, administration of 4-HNE to cultured rat hippocampal neurons results in direct 

binding of 4-HNE to tau, preventing dephosphorylation of tau by alkaline phosphatases 

(Mattson et al., 1997). Acrolein, a more potent neurotoxic aldehyde than HNE (Vaishnav et 
al., 2010), also induces hyperphosphorylation of tau, both in neuroblastoma cells and in 

cultured cortical mouse neurons, an effect which can be attenuated by inhibiting the tau 

kinases, GSK-3β and p38 MAPK (Gomez-Ramos et al., 2003).
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In addition to inducing tau hyperphosphorylation, 4-HNE and acrolein are also capable of 

promoting tau aggregation. In P19 neuroglial cultures, 4-HNE addition results in 

cytotoxicity and formation of high molecular weight tau species characteristic of 

neurofibrillary tangles (Montine et al., 1996). However, the effect of 4-HNE on tau 

aggregation is greatest for tau which has already been hyperphosphorylated. In-vitro, 
administration of 4-HNE promotes assembly of phosphorylated tau, but not native tau, into 

neurofibrillary tangle-like fibrillary polymers (Perez et al., 2000). Phosphorylation of tau is 

also required in order for 4-HNE to induce conformational changes to tau, such as the Alz50 

epitope conformational change characteristic of early AD (Liu et al., 2005; Takeda et al., 
2000). Therefore, 4-HNE may play a role in NFT formation by stabilizing pathologic tau 

confirmations (Liu et al., 2005). However, 4-HNE does not further enhance aldehydic 

modification of paired helical filaments, suggesting that paired helical filaments are either 

already extensively modified by aldehydes or that they are in a confirmation which prevents 

further aldehyde modifications (Liu et al., 2005). Acrolein also promotes tau aggregation in 

a concentration-dependent manner, with the fastest aggregation rates occurring in 

pseudophosphorylated tau, further suggesting that hyperphosphorylation of tau increases its 

susceptibility to aldehyde-induced aggregation (Kuhla et al., 2007).

While LP-derived aldehydes have a demonstrated ability to induce tau pathology, tau itself 

can enhance formation of LP-derived aldehydes. For example, in brain homogenates derived 

from transgenic mice overexpressing mutant human tau, P301L, ferric iron-induced LP 

results in increased formation of the LP-derived aldehyde, malondialdehyde, compared to 

wild-type mice (David et al., 2005).

In summary, LP-derived aldehydes are known to be present in human tauopathies, and LP-

derived aldehydes, such as 4-HNE and acrolein, are capable of inducing tau phosphorylation 

and promoting and stabilizing tau aggregation, in particular the aggregation of 

hyperphosphorylated tau. Therefore, it is possible that following TBI, increases in 4-HNE 

and acrolein and increases in hyperphosphorylated tau work synergistically to promote tau 

aggregation, while other mechanisms of 4-HNE and acrolein generation, such as continued 

mitochondrial dysfunction and tau-induced LP, contribute to a chronic, self-promoting and 

cyclic cascade of LP and pathologic tau formation (Figure 4).

4.4 Mitochondrial Dysfunction

Alterations in mitochondrial function are known to occur in the tauopathies, AD and FTD 

(Baloyannis, 2006; David et al., 2005), and in normal aging (Swerdlow, 2011). Several 

studies indicate that mitochondrial dysfunction is capable of inducing tau dysfunction, and 

that tau itself is capable of inducing mitochondrial dysfunction.

Impairment of oxidative phosphorylation can lead to tau dysfunction and pathologic tau 

formation both in-vitro and in-vivo. For example, in primary rat striatal rat neurons, 

inhibition of complex-I, inhibition of complex-II, or uncoupling of oxidative 

phosphorylation leads to decreased ATP production, cellular death and retrograde transport 

of tau and mitochondria from the axons to the soma (Escobar-Khondiker et al., 2007). In 

fact, complex-I inhibited neurons contain somal mitochondria which associate with tau at 

the outer mitochondrial membrane (Escobar-Khondiker et al., 2007). In-vivo, inhibition of 
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complex-I can also induce tau pathology. Chronically infusing the complex-I inhibitor, 

rotenone, into rats results in cell death, motor dysfunction, and increases in cytosolic tau, 

phosphorylated tau, and neuronal, glial, and oligodendrocytic tau fibrils (Hoglinger et al., 
2005). Furthermore, increased levels of the PN marker, 3-NT, and ubiquitin, a marker for 

defective protein degradation, are found within cells containing pathologic tau (Hoglinger et 
al., 2005). Mitochondrial dysfunction is known to lead to PN formation (Bringold et al., 
2000; Radi et al., 2002) and can indirectly reduce proteosomal activity (Hoglinger et al., 
2005). Therefore, it is possible that complex-I induced mitochondrial dysfunction can lead 

to formation of pathologic tau through a combination of mechanisms including 

mitochondrial and tau redistribution, generation of reactive nitrogen species, and impairment 

of proteosomal degradation pathways.

Pathologic tau has also been observed in transgenic mice lacking the mitochondrial 

antioxidant enzyme SOD2. Mitochondrial SOD2 catalyzes the dismutation of superoxide 

(O2•-), formed when single electrons leak from complex I of the electron transport chain 

(Brand et al., 2004), to the less reactive oxygen species, H2O2 (Flynn and Melov, 2013). 

Thus, SOD2 is an essential enzyme without which the undismutated O2•- wil react with 

mitochondrial NO• to form the reactive nitrogen species PN. . However, pharmacological 

administration of the catalytic antioxidant EUK-189 is able to attenuate tau phosphorylation 

in SOD2 deficient mice (Melov et al., 2007), confirming that mitochondrial generated O2•- 

or downstream PN (formed upon reaction of mitochondrial O2•- and NO•) is capable of 

driving tau phosphorylation (Melov et al., 2007). Additional evidence supports the theory 

that mitochondrial dysfunction can induce tau phosphorylation. In transgenic mice 

overexpressing the human tau mutation, P301S, mitochondrial abnormalities, including 

carbonyl modification of mitochondrial proteins and decreases in mitochondrial enzyme 

activities, precede tau hyperphosphorylation and tangle formation by at least three months 

(Dumont et al., 2011). However, while it is likely that the mitochondrial abnormalities 

contributed to pathologic tau development, it is also likely that the overexpression of 

mutated human tau itself induces mitochondrial abnormalities.

Multiple studies provide evidence that tau can induce mitochondrial dysfunction. 

Mitochondria are synthesized in neuronal cell bodies and then transported throughout the 

neuron along microtubules by the anterograde motor protein, kinesin (Chang et al., 2006; 

Morris and Hollenbeck, 1995), while damaged mitochondria are transported toward the 

soma by the retrograde motor protein, dynein (Miller and Sheetz, 2004). Therefore, neuronal 

health relies extensively on proper axonal transport of mitochondria. In CTE, fast axonal 

transport along microtubules is impaired, with decreases being seen both in kinesin and 

dynein (Kokjohn et al., 2013). Tau is primarily found in axons, functioning to stabilize 

microtubules (Maccioni and Cambiazo, 1995); however, tau also serves to regulate the 

attachment and detachment of motor proteins (Trinczek et al., 1999). Therefore, it has been 

hypothesized that overexpression of tau or accumulation of pathologic tau can impair axonal 

transport of mitochondria to the synapse, resulting in decreased synaptic ATP, calcium 

dysregulation and neurodegeneration (Sheng and Cai, 2012). However, it should be noted 

that in addition to mitochondria, tau-induced impairment of axonal transport affects 

additional organelles, vesicles, and proteins, and that each likely contributes to their own 

downstream pathologies. For example, tau overexpression can inhibit trafficking of 
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peroxisomes, neurofilaments, Golgi-derived vesicles, the ER, and amyloid precursor protein 

(APP) (Darios et al., 2005; Ebneth et al., 1998; Stamer et al., 2002), the precursor to Aβ, a 

pathologic species found in the tauopathy AD and in a subset CTE cases.

In regard specifically to axonal transport of mitochondria, several mechanisms by which tau-

induced impairment of axonal transport have been reported. In-vitro, overexpression of tau 

in neuroblastoma cells leads to preferential impairment of anterograde mitochondrial 

transport, resulting in mitochondria that are clustered near nuclei but absent in neurites 

(Ebneth et al., 1998). The degree to which tau overexpression interferes with mitochondrial 

transport is influenced by the number of microtubule binding domain repeats. For instance, 

overexpression of either 3R or 4R tau leads to redistribution of mitochondria from axons to 

the soma (Stoothoff et al., 2009); however, 4R tau, the isoform expressed to a greater degree 

in AD and CTE (McKee et al., 2014; Schmidt et al., 2001) has the greatest effect on 

redistribution (Stoothoff et al., 2009). The N-terminus of tau has also been shown to be 

sufficient for inhibiting anterograde transport (LaPointe et al., 2009). In fact, filamentous 

tau, which contains an exposed N-terminus, inhibits kinesin-dependent fast axonal transport, 

whereas monomeric tau confirmations with unexposed N-terminal regions do not (LaPointe 

et al., 2009). Hyperphosphorylation of tau at AD-specific sites also results in decreased 

mitochondrial transport due to extension of the N-terminal projection domain and expansion 

of inter-microtubule distances (Shahpasand et al., 2012). Additional studies confirm the 

ability of phosphorylated tau impair anterograde transport. Inhibition of anterograde 

transport by filamentous tau is dependent upon on activation of the tau kinase, GSK-3β 
(LaPointe et al., 2009). In PC12 cells, ceramide-induced CDK5-dependent tau 

phosphorylation results in dissociation of phosphorylated tau from the microtubules, 

clustering of mitochondria and ER near the centrosome, and cell death, effects which are 

attenuated by preventing tau phosphorylation (Darios et al., 2005).

Tau-induced impairment of mitochondrial transport likely has pathologic implications 

beyond decreased delivery of mitochondria to the synapse. For example, the clustering of 

mitochondria and ER near the centrosome in PC12 cells results in an increase in 

mitochondria-ER associations, neurotoxic transfer of Ca2+ from the ER to the mitochondria, 

and induction of apoptosis (Darios et al., 2005). Pathologic mitochondria-ER associations 

have also been observed in the soma of spinal motor neurons in transgenic mice 

overexpressing the human tau mutation, P301L (Perreault et al., 2009), and correlate with 

accumulation of hyperphosphorylated tau at the surface of the rough ER (rER) (Perreault et 
al., 2009). In fact, hyperphosphorylated tau is found on the surface of rER in the tauopathy, 

AD (Perreault et al., 2009). Because mitochondria-ER associations require the ER to be 

absent ribosomes, it is possible that tau is capable of inducing mitochondria-ER associations 

by displacing ribosomes from the ER surface (Perreault et al., 2009).

In addition to impairment of mitochondrial transport and alterations in mitochondrial-ER 

dynamics, other tau-induced mitochondrial impairments have been reported such as 

abnormal morphology. For example, neurons from transgenic mice overexpressing the 

human tau mutation, P301L, have decreased numbers of mitochondria and mitochondria 

which have abnormally swollen morphology (Yoshiyama et al., 2007).
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Tau-induced decreases in oxidative phosphorylation capacity have also been reported. The 

mitochondria from P301L mice have reductions in complex I (David et al., 2005; Rhein et 
al., 2009) and complex V (ATP synthase) protein and activity levels (David et al., 2005). 

Additionally, aged P301L mice have decreases in ATP production and increases in ROS due 

to decreases in complex-I driven respiration (David et al., 2005). Importantly, reductions in 

complex V (ATP synthase) have also been seen in the human tauopathy, FTD (David et al., 
2005).

Although many studies that investigate the effect of tau on mitochondrial function rely on 

mutated forms of human tau, the mutant tau constructs, such as P301, do induce tau 

hyperphosphorylation. Therefore, the mutant tau constructs are representative of non-

genetic, hyperphosphorylated tau disease states. However, the possibility exists that mutated 

tau isoforms cause greater mitochondrial dysfunction than wild type tau. For example, stable 

overexpression of human mutant tau, P301L, into SY5Y cells results in complex I 

impairment, decreased ATP production, increased susceptibility to oxidative stress, 

abnormal morphology, and fission-fusion dysfunction (Schulz et al., 2012); however, 

overexpression of wild-type 4R human tau results in increases in complex I activity, normal 

morphology and normal fission-fusion dynamics (Schulz et al., 2012).

Tau oligomers, which have been implicated as the species responsible for tau-induced 

neurotoxicity (Spires-Jones et al., 2011), are also capable of inducing mitochondrial 

dysfunction. Injections of full-length human tau oligomers, but not tau fibrils or monomers, 

into mouse hippocampi induce memory impairment, neurodegeneration, loss of synaptic 

proteins, and mitochondrial dysfunction (Lasagna-Reeves et al., 2011). Specifically, the tau 

oligomers co-localized with mitochondria, decreasing complex I protein levels, and 

activating the intrinsic apoptotic protease, caspase-9 (Lasagna-Reeves et al., 2011). 

However, complex V protein levels were not altered, suggesting that complex I dysfunction 

occurs prior to tau-induced complex V dysfunction and ATP depletion (Lasagna-Reeves et 
al., 2011).

Truncated tau fragments are also capable of inducing mitochondrial dysfunction. In 

immortalized cortical neurons, Asp421 tau, a mutant mimicking C-terminus caspase-3 

cleavage of tau at Asp421, induces mitochondrial fragmentation, decreases mitochondrial 

calcium buffering capacity, and increases production of mitochondrial ROS (Quintanilla et 
al., 2009), effects which are attenuated by administration of the calcineurin inhibitors 

cyclosporine A (CsA) or FK506, suggesting that the calcium-dependent phosphatase, 

calcineurin, plays a role in caspase-cleaved tau induction of mitochondrial dysfunction 

(Quintanilla et al., 2009). Tau is a known calcineurin substrate; therefore, it is possible that 

caspase-cleaved tau interacts differentially with calcineurin, increasing its activity level 

toward substrates which effect mitochondrial fragmentation (Quintanilla et al., 2009). 

Interestingly, both CsA and FK506 are neuroprotective in experimental TBI (Kilbaugh et al., 
2011; Kulbe et al., 2016; Marmarou and Povlishock, 2006; Mbye et al., 2009; Mbye et al., 
2008; Reeves et al., 2007; Sullivan et al., 2011), and CsA has been shown to attenuate levels 

of cleaved tau in the hippocampus of rats following severe controlled cortical impact injury 

(CCI) (Gabbita et al., 2005).
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In addition to C-terminal cleavage, truncated tau fragments can also be generated by N-

terminal processing. Although this process is not well understood, caspases, such as 

caspase-6 have the ability to cleave tau at the N-terminus (Horowitz et al., 2004), and N-

terminal tau fragments have been reported to induce mitochondrial dysfunction. For 

example, addition of the NH2-26-44 tau fragment to cerebellar granule neuron homogenates 

results in decreases in cytochrome oxidase (COX) activity, adenine nucleotide translocator 

(ANT) activity, and ANT-dependent impairment of oxidative phosphorylation (Atlante et al., 
2008). Importantly, N-terminal tau fragments have been identified in AD and other 

tauopathies (Amadoro et al., 2010). In fact, in AD, a 20-22kD NH2-tau fragment is highly 

enriched in synaptosomes, localizing with synaptic mitochondria, and correlating with 

synaptic and mitochondrial dysfunction (Amadoro et al., 2010). Synapses have high 

metabolic demands, met by enrichment of synaptic mitochondria (Khatri and Man, 2013; 

MacAskill et al., 2010). Not only are synaptic mitochondria essential for proper 

neurotransmission (Sheng and Cai, 2012) and synaptic plasticity (Cheng et al., 2010; 

MacAskill et al., 2010; Sheng and Cai, 2012), but their dysfunction is implicated in 

neurodegeneration (Cheng et al., 2010; Sheng and Cai, 2012). Therefore, localization of the 

20-22kD NH2-tau with synaptic mitochondria has important implications for synaptic 

health, especially considering the fact that 20-22kD NH2-tau is capable of inducing 

mitochondrial dysfunction. In vitro, the 20-22kD NH2-tau fragment induces abnormal 

mitochondrial morphology, increases mitochondrial fragmentation, decreases mitochondrial 

fusion, enhances redistribution of mitochondria to the soma, decreases mitochondrial protein 

and mtDNA copy number, and enhances mitophagy, effects which correlate with in-vitro 
synaptic pathology and oxidative stress (Amadoro et al., 2014).

In addition to truncated tau species, phosphorylated tau has also been implicated in 

alteration of mitochondrial fission-fusion dynamics. Specifically, in the tauopathy AD, 

phosphorylated tau interacts with Drp1, a mitochondrial fission GTPase, and is associated 

with increases in GTPase activity indicative of mitochondrial fission, suggesting that 

phosphorylated tau may enhance mitochondrial fragmentation through interaction with Drp1 

(Manczak and Reddy, 2012).

In summary, mitochondrial dysfunction is known to occur in human tauopathies, and there 

are several mechanisms by which mitochondrial dysfunction can induce tau pathology and 

by which pathologic tau species can induce mitochondrial dysfunction. Therefore, a primary 

event capable of inducing mitochondrial dysfunction or formation of pathologic tau species, 

such as TBI, could set off a self-propagating, cyclical cascade of mitochondrial dysfunction 

and pathologic tau formation, which work synergistically to induce cellular damage. In fact, 

in transgenic mice expressing mutations which induce both mitochondrial dysfunction and 

tau pathology, neurodegeneration and oxidative stress are increased over either mutation 

alone (Kulic et al., 2011). Furthermore, in addition to a self-propagating, cyclical cascade of 

mitochondrial-tau dysfunction, because mitochondrial impairment results in production of 

species capable of inducing damage to mitochondrial DNA (mtDNA), which encodes for 

electron transport chain proteins (Dalleau et al., 2013; Hall et al., 2010), mitochondrial 

dysfunction is capable of enhancing and perpetuating its own chronic damage. In fact, 

accumulations in mtDNA damage have been hypothesized to contribute to both aging and 

neurodegenerative disease (Keogh and Chinnery, 2015).
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4.5 Endoplasmic Reticulum Stress

ER stress has been documented in several tauopathies, including AD, FTD, and CTE, and 

correlates with tau hyperphosphorylation (Hoozemans and Scheper, 2012; Hoozemans et al., 
2009; Lucke-Wold et al., 2016; Nijholt et al., 2012). ER dysfunction has been reported to 

occur both upstream and downstream of pathologic tau formation (Ho et al., 2012). 

Upstream of tau, pharmacological induction of ER stress increases tau phosphorylation both 

in-vitro and in-vivo (Fu et al., 2010; Ho et al., 2012; Lin et al., 2014). One mechanism by 

which ER stress can increase tau phosphorylation is through activation of the tau kinase, 

GSK-3β (Fu et al., 2010; Lin et al., 2014). However, pathologic tau species can also induce 

ER dysfunction. The ER is responsible for protein folding and degradation; therefore, ER 

stress results in the build-up of misfolded and unfolded proteins, inhibition of ER-associated 

degradation (ERAD), initiation of the Unfolded Protein Response (UPR), and decreased 

protein synthesis (Abisambra et al., 2013; Radford et al., 2015).

Tau is capable of activating the UPR in-vitro. Pharmacologic induction of tau 

phosphorylation in primary rat cortical neurons results in UPR activation (Ho et al., 2012). 

Similarly, stable expression of tau in HEK cells activates the UPR and is accompanied by 

increased ubiquitin levels suggestive of ERAD impairment (Abisambra et al., 2013). In-vivo, 
the UPR is known to be increased in both transgenic tau animal models and human 

tauopathies (Abisambra et al., 2013; Hoozemans and Scheper, 2012; Hoozemans et al., 
2009; Nijholt et al., 2012; Radford et al., 2015). It has been hypothesized that the increased 

UPR seen in tauopathies is the result of tau-induced ERAD impairment (Abisambra et al., 
2013). For example, transgenic mice overexpressing human mutant tau, P301L, show ERAD 

impairment concomitant with associations between tau and the ERAD hetereocomplex 

(Abisambra et al., 2013). However, activation of UPR in tauopathies may also be due to the 

buildup of misfolded tau proteins (Radford et al., 2015). UPR activation has also been 

suggested to play a direct role in neurotoxicity. In fact, pharmacologic inhibition of the UPR 

in P301L mice decreases tau phosphorylation, neurodegeneration, and behavioral 

impairment (Radford et al., 2015).

An additional mechanism by which tau induced ER dysfunction can contribute to cellular 

dysfunction is inhibition of protein synthesis. Microsomes are vesicle-like fragments which 

contain ER and ribsosomes. In brain microsomes isolated from the tauopathy, AD, 

oligomeric tau associates more strongly with ribosomes than in control brains, suggesting 

that pathologic tau may have an effect on RNA translation (Meier et al., 2016). In fact, in-
vitro, wild type, mutant, and oligomeric tau are all able to reduce RNA translation (Meier et 
al., 2016), and in primary neurons cultured from transgenic mice overexpressing human 

mutant tau, P301L, there are both decreases in RNA translation and protein levels (Meier et 
al., 2016). Specifically, there are marked decreases in the protein PSD-95, a post-synaptic 

protein important in learning and memory (Meier et al., 2016).

Soluble tau oligomers and truncated tau forms have been specifically implicated in tau 

induced ER dysfunction. Depleting soluble tau both in cell culture and in P301L mice 

reduces UPR activation and inhibition of ERAD, suggesting soluble tau oligomers rather 

than insoluble tau aggregates are responsible for tau-induced ER dysfunction (Abisambra et 
al., 2013). In regards to truncated tau isoforms, inducing ER stress in immortalized cortical 
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neurons expressing Asp-421 truncated tau, which mimics caspase-3 cleavage, results in 

increased cellular toxicity and caspase-3 activation compared to cells expressing full length 

tau (Matthews-Roberson et al., 2008). In fact, ER stress itself has the capability of inducing 

the caspase-3 activation (Morishima et al., 2002; Song et al., 2002) which leads to tau 

truncation.

In summary, ER stress is known to occur in several tauopathies, including CTE, and there 

are several mechanisms by which ER stress can induce tau pathology and by which 

pathologic tau species can induce ER dysfunction. Therefore, as summarized in Figure 5, a 

primary event capable inducing ER stress or tau pathology, such as TBI, could set off a 

chronic and self-propagating cascade of ER dysfunction and pathologic tau formation, 

which results in protein accumulation, decreased protein synthesis, and cellular dysfunction.

4.6 Calpain Activated Proteolysis

Tau is a known substrate of the calcium-dependent cysteine protease, calpain (Johnson et al., 
1989; Litersky et al., 1993; Yang and Ksiezak-Reding, 1995). Calpain cleavage of tau results 

in the formation of a 35kD tau fragment (Liu et al., 2011) and a 17kD tau fragment, 

purported to be between 10-17kD (Garg et al., 2011; Park and Ferreira, 2005). Increased 

calpain activity and depletion of the endogenous calpain inhibitor, calpastatin, have been 

found in the tauopathy, AD, (Grynspan et al., 1997; Rao et al., 2008; Saito et al., 1993; Tsuji 

et al., 1998) and the presence of the 17kD tau fragment correlates with increases in calpain 

activity in a variety of tauophathies, including AD, FTD and dementia pugilistic (i.e. CTE) 

(Ferreira and Bigio, 2011).

The 17kD tau fragment has a decreased association with the microtubules and accumulates 

in the perikarya (Canu et al., 1998). In-vitro, glutamate and thapsigargin induced increases 

in calcium have been shown to induce formation of calpain-cleaved 17kD tau (Garg et al., 
2011). The 17kD tau fragment has been reported for form prior to increases in tau 

phosphorylation (Park and Ferreira, 2005), and is suspected of being neurotoxic (Park and 

Ferreira, 2005; Park et al., 2007; Sinjoanu et al., 2008). For example, in-vitro, Aβ induces 

calpain activation in cultured hippocampal neurons, leading to formation of 17kD tau and 

neurodegeneration, affects which are attenuated by inhibiting calpain activation (Park and 

Ferreira, 2005; Park et al., 2007; Sinjoanu et al., 2008). However, other studies have shown 

that 17kD tau does not induce toxicity in-vitro and is equally expressed in the brains of AD 

and healthy controls, suggesting that 17kD tau is a marker for calpain activation but does not 

have a direct role in neurotoxicity (Garg et al., 2011).

In addition to cleaving tau, calpain has also been identified as an upstream activator of 

extracellular-regulated kinase (ERK) (Veeranna et al., 2004), which is capable of 

phosphorylating tau (Fang et al., 2010; Qi et al., 2016), In fact, increases in active ERK 

expression are associated with early tau deposition in neurons and glia in several tauopathies 

(Ferrer et al., 2001).

Despite controversy surrounding the role of the calpain generated 17kD tau fragment in 

neurotoxicity, both increases in calpain and 17kD tau have been identified in human 

tauopathies. Due to increases in intracellular calcium levels, calpain is highly activated 
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following TBI (Deng et al., 2007; Thompson et al., 2006); therefore it is possible that TBI 

initiates formation of calpain-cleaved 17kD tau, whereas chronic generation of 17kD tau 

could be the result of calpain activation by calcium derived from chronically dysfunctional 

calcium buffering organelles suspected of having self-propagating, cyclic interactions with 

pathologic tau, such as the mitochondria and ER (Figure 6).

4.7 Caspase Activated Proteolysis

Tau is a known substrate of the caspase proteases (Fasulo et al., 2000; Park et al., 2007), 

which are well known for their role in apoptosis. The most well characterized caspase 

cleavage site on tau is Asp421, located on the c-terminus end. Multiple caspases, including 

caspase 3, can cleave tau at Asp421 (Gamblin et al., 2003), which results in a tau fragment 

of 50kD (Chung et al., 2001; Park et al., 2007). However, tau can also undergo n-terminal 

processing by caspases, such as caspase-6 (Horowitz et al., 2004). Caspase cleaved tau is 

found in several tauopathies (Guillozet-Bongaarts et al., 2007; Newman et al., 2005), and is 

inversely correlated with cognitive function in the tauopathy, AD (Rissman et al., 2004), 

with formation of Asp421 truncated tau considered to occur relatively early in the disease 

process (Guillozet-Bongaarts et al., 2005; Rissman et al., 2004). It is hypothesized that 

accumulation of Asp421 truncated is the result of dysregulation of autophagy, a process 

known to occur in the tauopathy, AD (Nixon, 2006). In fact, in immortalized cortical 

neurons, stably expressed Asp421 truncated tau is preferentially degraded by autophagy, 

while full length tau is dependent on proteasomal degradation (Dolan and Johnson, 2010).

Several lines of evidence suggest that Asp421 truncated tau is pathologic. In-vitro, the c-

terminus of tau is responsible for inhibiting polymerization of tau, suggesting that Asp421 

truncated tau has enhanced polymerization properties (Berry et al., 2003). In fact, Asp421 

truncated tau assembles into filaments at a faster rate and to a higher degree than full length 

tau (Gamblin et al., 2003; Rissman et al., 2004). Furthermore, full length tau undergoes 

enhanced filament formation in the presence of Asp421 truncated tau, suggesting that 

Asp421 truncated tau may be able to seed filament formation of other tau species (Rissman 

et al., 2004). In-vitro, overexpression of Asp421 truncated tau, representative of caspase-3 

cleaved tau, results in increased apoptosis (Chung et al., 2001; Fasulo et al., 2000). 

Caspase-3 is an executioner caspase in the apoptotic cascade; therefore, the fact that 

caspase-3 cleaved tau is capable of enhancing apoptosis suggests that caspase-3 and Asp421 

truncated tau may be involved in a chronic, self-propagating apoptotic cascade (Fasulo et al., 
2000). Additionally, as previously discussed, caspase cleaved tau fragments are also capable 

of inducing mitochondrial dysfunction (Quintanilla et al., 2009) and ER stress (Matthews-

Roberson et al., 2008).

Evidence suggests that non-truncated tau forms can also initiate caspase activation and tau 

truncation. For example, overexpressing human mutant tau P301L in mice results in 

apoptosis, caspase-3 activation, and appearance of caspase truncated tau (de Calignon et al., 
2010; Ramalho et al., 2008). Similarly, overexpression of human 4R tau results in caspase 

activation, although total numbers of caspase bearing neurons are low (de Calignon et al., 
2010). Therefore, it is possible that, in-vivo, full-length pathologic tau, particularly soluble 

pre-tangle tau species, are capable of activating caspase-3, which results in formation of 
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distinct truncated tau species. In fact, suppression of tau in P301L mice decreases caspase 

activation despite the continued presence of neurofibrillary tangles (de Calignon et al., 
2010).

Although formation of caspase truncated tau is considered to occur early in the disease 

process (Guillozet-Bongaarts et al., 2005; Rissman et al., 2004), Asp421 truncated tau is still 

capable of inducing tau phosphorylation and conformational change (de Calignon et al., 
2010) and can be the subject of phosphorylation and conformation change itself (Rissman et 
al., 2004). However, similar to human studies, transgenic animal models of tauopathy 

suggest that formation of caspase truncated tau occurs prior to tau aggregation and correlates 

with cognitive decline. In fact, in P301L mice, caspase cleavage of tau proceeds 

neurofibrillary tangle formation (de Calignon et al., 2010; Ramalho et al., 2008), and is 

coincident with the beginnings of cognitive impairment (Ramalho et al., 2008). Furthermore, 

animal models confirm in-vitro findings that caspase truncated tau can seed filament 

formation of full length tau (Gamblin et al., 2003; Rissman et al., 2004). For example, 

virally overexpressing Asp421 tau in wild type mice results in formation of tau aggregates 

which contain both Asp421 truncated and full length tau (de Calignon et al., 2010).

As illustrated in Figure 7, tau is a substrate for the apoptotic caspase proteases and caspase 

truncated tau is present in human tauopathies. Additionally, caspase cleaved can induce 

cellular dysfunction. Apoptosis and caspase activation occurs following TBI; therefore, it is 

possible that TBI-induced caspase activation can initiate formation of caspase cleaved tau, 

whereas long-term generation of caspase truncated tau could be the result of chronic caspase 

activation due to chronic mitochondrial dysfunction or ER stress, organelles suspected of 

having self-propagating, cyclic interactions with pathologic tau. In fact, in P301L mice, 

activated executioner caspases can be found in neurons containing late stage neurofibrillary 

tangles, despite the absence of apoptosis (Spires-Jones et al., 2008). Furthermore, because 

caspase truncated tau is capable of activating caspase-3, impairing mitochondrial function, 

and enhancing ER stress, it is possible that caspase truncated tau itself can self-propagate its 

formation.

4.8 Neuroinflammation

Neuroinflammation occurs in multiple tauopathies including CTE, AD, PSP, Pick's disease, 

and corticobasal degeneration (Daneshvar et al., 2015; Ishizawa and Dickson, 2001; Sasaki 

et al., 2008; Zilka et al., 2009a). Astrocytes and microglia make up two of the most 

important cells of the CNS innate immune system. Astrocytes containing pathologic tau 

have been identified in several tauopathies, including CTE (Kahlson and Colodner, 2015; 

McKee et al., 2016). Similarly, microglia are activated in CTE and other tauopathies (Cherry 

et al., 2016; Faden and Loane, 2015; Ishizawa and Dickson, 2001; Saing et al., 2012; Sasaki 

et al., 2008; Zilka et al., 2009a). Evidence suggests that neuroinflammation can both induce 

tau pathology and be induced by pathologic tau species.

Under physiologic conditions astrocytes contain limited amounts of tau protein, and tau is 

not considered to be a major component of the astrocyte cytoskeleton (Kahlson and 

Colodner, 2015). However, in CTE and other tauopathies, hyperphosphorylated tau is 

present in astrocytes (Kahlson and Colodner, 2015; McKee et al., 2016). Although astrocytic 
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tau pathology is not well defined in CTE, supporting neuropathological criteria for the 

diagnosis of CTE includes p-tau positive thorned astrocytes located at the glial limitans in 

the subpial and periventricular regions (McKee et al., 2016). Additionally, the astrocytic tau 

of CTE is known to be composed mainly of the 4R subtype (McKee and Robinson, 2014).

Although the phenotypes of the astrocytes containing hyperphosphorylated tau vary between 

tauopathies, thorned astrocytes, such as those characteristic of CTE, morphologically 

resemble reactive astrocytes and therefore may be indicative of a neuroinflammatory 

response similar to gliosis (Kahlson and Colodner, 2015), a process known to occur 

following TBI (Burda et al., 2016). The presence of hyperphosphorylated tau within 

astrocytes is hypothesized to have several consequences for astrocytic function (Kahlson and 

Colodner, 2015). Astrocytes assist in maintenance of the blood-brain barrier; therefore, it is 

possible that astrocytic tau pathology can lead to blood-brain barrier dysfunction (Kahlson 

and Colodner, 2015). For example, overexpressing human tau in the astrocytes of mice 

results in mild blood-brain barrier disruption in areas of extensive astrocytic tau pathology 

(Forman et al., 2005). In addition to maintenance of the blood-brain barrier, astrocytes 

remove excessive extracellular glutamate; therefore, it is possible that astrocytic tau 

pathology can lead to impairment of extracellular glutamate removal, resulting in neuronal 

excitotoxicity and synaptic dysfunction (Kahlson and Colodner, 2015). In fact, 

overexpressing either human wild-type or mutant P301L tau in the astrocytes of mice results 

in a decrease in astrocyte glutamate transporter expression and activity which correlates with 

behavioral impairment (Dabir et al., 2006). Furthermore, overexpressing tau in astrocytes 

leads to astrocyte degeneration both in-vitro and in-vivo (Higuchi et al., 2002; Yoshiyama et 
al., 2003), and overexpressing human tau in the astrocytes of mice results in neuronal 

degeneration in regions associated with astrocytic tau pathology (Forman et al., 2005), 

indicating astrocytic tau pathology may play a direct role in both astrocytic and neuronal cell 

death (Kahlson and Colodner, 2015).

Although several tauopathies contain astrocytic tau pathology, evidence suggests that 

astrocytes do not phagocytise pathologic tau species. In the tauopathies, AD and FTD, tau 

oligomers are found to be surrounded by active astrocytes, but are not co-localized with 

astrocytes, suggesting the occurrence of an inflammatory response, but that astrocytes do not 

internalize tau oligomers (Nilson et al., 2016). Conversely, in AD, FTD, and transgenic mice 

overexpressing human tau (hTau), tau oligomers are found co-localized with active 

microglia, suggesting active phagocytosis of tau oligomers by microglia (Nilson et al., 
2016). In fact, microglia themselves have been implicated in the anatomic spread of tau 

pathology (Nilson et al., 2016). As shown in Figure 8, microglia are capable of both 

phagocytosis and exocytosis; therefore, microglial-dependent propagation of tau through 

phagocytosis and exocytosis may explain non-synaptic spread of tau throughout the brain 

(Asai et al., 2015). The depletion of microglia has been shown to reduce the propagation of 

tau in-vivo, both in an adenovirus model of rapid tau propagation and in transgenic mice 

overexpressing human mutant tau, P301S (Asai et al., 2015). Furthermore, transplanting 

microglia obtained from the brains of transgenic mice overexpressing human tau (hTau) and 

null for the microglial receptor, CX3R1, to the brains of wild-type mice results in increases 

in phosphorylated tau within the wild-type brains (Maphis et al., 2015b).
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The neuronal-microglial chemokine-chemokine receptor signaling pathway, CX3CL1-

CX3CR1 has been implicated in both neurodegeneration and neuroprotection following 

CNS injury (Bhaskar et al., 2010). CX3CL1-CX3CR1 signaling is known to be altered 

following TBI (Poniatowski et al., 2016), and may play a role in the development of tau 

pathology. In fact, tau overexpression is capable of increasing CX3CL1 levels, whereas 

CXCR1 depletion is capable of enhancing microglial activation and tau pathology. 

Transgenic mice overexpressing human tau (hTau) show increased levels of the neuronally-

derived ligand, CX3CL1 (Bhaskar et al., 2010). Knocking out the microglial receptor, 

CXC3R1, in hTau mice results in increases in microglial activation which are correlated with 

cognitive impairment (Bhaskar et al., 2010; Maphis et al., 2015b) In fact, hTau/CX3R1-/- 

mice show earlier tau pathology than hTau/CX3R1+/+ mice (Maphis et al., 2015b).

Alteration in the CX3CLI-CX3CR1 signaling pathway has been shown to enhance tau 

phosphorylation upon systemic administration of lipopolysaccharide (LPS), a compound 

capable of activating microglia through the TLR4 receptor (Bhaskar et al., 2010). LPS-

induced activation of microglia increases tau phosphorylation in wild-type and hTau mice 

(Bhaskar et al., 2010). However, the effect is enhanced in CX3R1-/- mice, further enhanced 

in hTau/CX3R1-/- mice, and is dependent on neuronal activation of the tau kinase, p38 

MAPK, and release of the microglial derived cytokine, IL-1β (Bhaskar et al., 2010).

In hTau/CX3R1-/- mice, microglial activation occurs prior to the appearance of tau 

pathology and correlates with its anatomic spread (Maphis et al., 2015b), suggesting that 

microglia activation enhances formation of pathologic tau. Additionally, studies suggest that 

microglial-induced neural toxicity is dependent on the presence of tau. Culturing neurons 

with LPS-activated CX3R1-/- microglia results in increased neurodegeneration; however this 

effect is attenuated in tau-/- neurons (Maphis et al., 2015a). Similarly, LPS activation of 

microglia in CX3R1-/- mice results in caspase-3 activation which is localized to p-tau 

positive neurons of the dentate gyrus, an effect which is attenuated in tau-/- mice (Maphis et 
al., 2015a). In non LPS-stimulated CX3R1-/- mice, a reduction in microglial activation and 

neuronal caspase-3 is also seen in tau-/- mice compared to tau+/+ mice (Maphis et al., 
2015a), an effect which correlates with attenuation of behavioral impairment (Maphis et al., 
2015a).

In addition to the CX3CLI-CX3CR1 signaling studies, several additional lines of evidence 

suggest that activation of microglia, as well as secretion of pro-inflammatory cytokines 

contribute to tau pathology. In fact, in the tauopathy AD, microglial expression of IL-1β is 

correlated with neuronal tau hyperphosphorylation (Sheng et al., 2001). In-vitro, activation 

of microglia with LPS results in microglial secretion of IL-β, neuronal activation of the tau 

kinase, p38 MAPK, increases in neuronal tau phosphorylation, and decreases in the synaptic 

protein, synaptophysin (Li et al., 2003). In primary hippocampal neurons, the pro-

inflammatory cytokine IL-6 has been shown to increase tau phosphorylation, an effect which 

is attenuated by inhibiting the tau kinase, cdk5 (Quintanilla et al., 2004). Additionally, 

exposing SY5Y or N-tera2 cells to media conditioned by LPS and IFNγ-activated human 

microglia results in increased production and release of tau (Lee et al., 2015). In fact, direct 

treatment of SY5Y or N-tera2 cells with the inflammatory cytokines, IL-1β or IL-6 was 

sufficient to increase levels of tau mRNA and protein expression (Lee et al., 2015).
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In-vivo, systemic administration of the microglial activator, LPS, results in increased tau 

phosphorylation acutely in the hippocampus of mice though activators of cdk5 and GSK-3β 
activation (Roe et al., 2011). In regards to cytokine expression, implantation of IL-1β beads 

into rat cerebral cortex, in simulation of chronic IL-1β exposure, results in increased mRNA 

expression of tau and p38 MAPK and increased tau phosphorylation (Sheng et al., 2001; 

Sheng et al., 2000). Similarly, adenovirus expression of the cytokine IFN-γ, a master 

regulator of inflammation, in two different mouse models of P301L tau overexpression 

results in increased phosphorylation of soluble tau through activation of the tau kinase, 

GSK-3β, however, INF-γ induction of tau phosphorylation did not result in increased tangle 

pathology or behavioral deficits (Li et al., 2015).

Although activation of microglia has been shown to increase tau phosphorylation, the ability 

of activated microglia to induce tau aggregation or tangle formation is less clear. For 

example, in rTg4510 mice overexpressing human mutant tau P301L, injection of LPS 

directly into the anterior cortex and hippocampus, results in ipsilateral and contralateral 

microglia activation and increases in tau phosphorylation one week following injection; 

however, pre-tangle and mature tangle formation was not increased (Lee et al., 2010). 

Interestingly, in this model activated microglia also did not co-localize with p-tau positive 

neurons (Lee et al., 2010). Conversely, in-vitro, activated microglia are capable of inducing 

tau aggregation through a mechanism involving production of ROS and the cytokine, TNF. 

Co-culturing primary hippocampal neurons with microglia pre-activated with LPS and IFN-

γ results in aggregation of tau in neurites as determined by FRET imaging, whereas tau 

aggregation is not seen in neurons cultured in the absence of activated microglia (Gorlovoy 

et al., 2009). Similarly, direct administration of the cytokine, TNF, to neuronal cultures 

results in formation of tau aggregates and increases in neuronal ROS production (Gorlovoy 

et al., 2009). In fact, TNF-induced tau aggregation is attenuated by the scavenging of ROS, 

suggesting that microglial-induced tau aggregation may be due to microglial secretion of 

TNF and activation of ROS generating neuronal NADPH oxidase (Gorlovoy et al., 2009).

In addition to activated microglia being shown to induce tau pathology, tau has been shown 

to activate microglia. In-vitro, transfection of microglia with Tau40, the longest isoform of 

human tau, results in increases in microglia activation, migration, phagocytosis, and 

cytokine secretion (Wang et al., 2013b). Additionally, in pure microglial cultures, Tau40 

induces accumulation of endogenous phosphorylated tau at the cell membrane, enhances 

secretion of non-phosphorylated tau, and alters expression of tau phosphatases and kinases 

(Wang et al., 2013b). In-vivo, overexpression of human mutant tau, P301L, results in 

increased expression of chemokines and innate immune system components (Li et al., 2015) 

and activated microglia accumulate near p-tau positive neurons (Sasaki et al., 2008). 

Similarly, in transgenic rats expressing truncated human tau, reactive microglia are 

associated with neurofibrillary tangles and axonal degeneration (Zilka et al., 2009b).

Upon further examination, many of the transgenic tau animal models suggest a cyclic 

relationship between microglial activation and formation of tau pathology. For example, the 

overexpression of human mutant tau, P301S, in mice is sufficient to increase microglial 

activation; however, microglial activation, synapse loss and impaired synaptic function all 

precede filamentous tau formation (Yoshiyama et al., 2007).
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It is currently unclear whether neuroinflammation in CTE and other tauopathies is 

detrimental or protective. In P301S mice, the immunosuppressant, FK506, is able to 

attenuate neuroinflammation, neurodegeneration and tau pathology (Yoshiyama et al., 2007). 

Similarly, minocycline, a tetracycline class antibiotic with neuroinflammatory properties, is 

able to reduce astrocyte activation, the production of inflammatory cytokines, and decrease 

tau phosphorylation in the cortex of transgenic mice overexpressing human tau (hTau) 

(Garwood et al., 2010). Importantly, both FK506 and minocycline have been shown to be 

neuroprotective in TBI (Miyauchi et al., 2013; Singleton et al., 2001; Vink and Nimmo, 

2009).

An additional pathway implicated in inflammation, the cholinergic pathway, is known to be 

impaired in TBI and neurodegenerative disease. In TBI there are deficits in cholinergic 

transmission and chronic loss of cholinergic neurons (Shin and Dixon, 2015), and recent 

evidence has demonstrated the occurrence of tau pathology in the cholinergic neurons of the 

nucleus basalis of Meynert in CTE brains (Mufson et al., 2016). The neurotransmitter, 

acetylcholine (Ach), is purported to have anti-inflammatory properties and the cholinergic 

pathway has been implicated in regulation of the immune system (Yoshiyama et al., 2012). 

In fact, chronic administration of a centrally acting anti-cholinergic to mice overexpressing 

human mutant tau, P301S, results in increases in tau phosphorylation and insolubility, 

activation of tau kinases, neurodegeneration, and microglial activation (Yoshiyama et al., 
2012). Furthermore, anti-cholinergic administration enhances the effects of LPS-induced 

microglial activation in P301S mice (Yoshiyama et al., 2012).

Therefore, if neuroinflammation is a detrimental process, acetylcholine esterase inhibitors 

(AChEI), which have long been used for symptomatic treatment of cognitive impairment in 

neurodegenerative tauopathies but are also purported to have anti-inflammatory properties 

due to their ability to upregulate cholinergic pathways (Yoshiyama et al., 2010), should be 

neuroprotective in animal models of tauopathy. If fact, in transgenic mice overexpressing 

human mutant tau, P301S, chronic treatment with the AChEI, donepezil, results in decreased 

astrocyte and microglial activation, decreased tau phosphorylation and insolubility, and 

decreased synaptic and neuronal loss (Yoshiyama et al., 2010). Furthermore, in P301S mice, 

donepezil is able to attenuate LPS-induced microglial activation and reduce brain levels of 

IL-1β and COX-2, suggesting that the neuroprotective effects of AChEI are due to 

attenuation of neuroinflammation. (Yoshiyama et al., 2010).

Although inhibition of neuroinflammation has been shown to be protective in some 

tauopathy models, neuroinflammation may also serve a protective role against the 

development of tau pathology and cognitive dysfunction through promotion of cellular and 

debris clearance mechanisms. For example, in transgenic mice overexpressing human 

mutant tau, P301S, LPS-induced activation of microglial also been shown to decrease 

phosphorylated tau and improve cognitive function through the promotion of authophagy 

(Qin et al., 2016).

Microglia themselves are also responsible for the clearance of damaged neurons, aberrant 

synapses and demyelinated axons (Sanchez-Mejias et al., 2016). Therefore, degeneration of 

microglia leads to neuronal degeneration in areas absent immune surveillance (Sanchez-
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Mejias et al., 2016). In the temporal cortex of the tauopathy, AD, dystrophic (degenerating, 

fragmented, senescent, etc.) microglia are co-localized with degenerating neurons positive 

for tau (Streit et al., 2009). Similarly, degenerating microglia are found in the hippocampus 

of AD, a region in which phosphorylated tau preferentially accumulates over Aβ plaques 

(Sanchez-Mejias et al., 2016). Although the appearance of dystrophic microglia, a 

phenomenon known to increase with aging, precedes the spreading of tau pathology in AD, 

suggesting that loss of microglial neuroprotection as one ages can lead to neurodegeneration 

(Streit et al., 2009), additional evidence suggests that soluble phosphorylated tau is capable 

of inducing microglial degeneration. For example, in-vitro, both phagocytosis of 

extracellular soluble p-tau and phagocytosis of apoptotic SY5Y cells containing intracellular 

soluble p-tau induces microglial toxicity, an effect which can be attenuated by immuno-

depletion of p-tau (Sanchez-Mejias et al., 2016).

In summary, CTE and TBI share common neuroinflammatory processes such as astrogliosis 

and activation of microglia. In fact, chronic neuroinflammation occurs in tauopathies and 

TBI. In CTE, tau positive astrocytes have been hypothesized to have several detrimental 

consequences, including blood-brain barrier dysfunction, extracellular glutamate 

dysregulation, and induction of neurodegeneration. In addition to astrocytes, the activation 

of microglia and the release of inflammatory cytokines have been implicated in induction of 

tau pathology and neurodegeneration. However, pathologic tau, itself, is capable of inducing 

both activation and degeneration of microglia, with degeneration of microglia capable of 

inducing neurodegeneration. Therefore, it is possible that following an initial insult capable 

of activating microglia and inducing pathologic tau formation, such as TBI, that microglia 

and tau interact to induce a feedforward cycle of neuroinflammation, pathologic tau 

formation, and neurodegeneration (Figure 8). In fact, chronic neuroinflammation is found 

both in tauopathies and decades following TBI.

5. Tau - A Biomarker for TBI

Stretching, shearing and degeneration of axons following TBI causes tau to be released from 

microtubules, increasing the levels of tau in biofluids. For this reason, there is growing 

interest in using cerebral spinal fluid (CSF), plasma, or serum tau as a biomarker for TBI, 

including mild TBI and sports-related head injury (Kulbe and Geddes, 2015). Furthermore, 

CSF tau already holds diagnostic potential in the tauopathy, AD (Blennow et al., 2010).

Increased levels of serum tau have been found in various models of animal TBI. For 

example, on the severe end of the spectrum, the cleaved form of tau (c-tau) is acutely 

elevated 6h post-injury in the serum of rats receiving a severe CCI. However, tissue levels of 

c-tau remained elevated beyond 6h and were significantly increased for at least 7 days post-

injury, both in the hippocampus and the cortex (Gabbita et al., 2005).

More diffuse models of injury, such as mild blast TBI, mild rotational TBI and repetitive 

closed head injury have shown post-injury increases in serum tau to be sustained for longer 

periods of time. Following a single, low-intensity blast TBI in mice, serum tau is 

significantly elevated two hours and one day following injury (Ahmed et al., 2015). 

However, non-significant elevations in serum tau were sustained for at least one month 
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following injury (Ahmed et al., 2015); a time course which parallels findings in mice 

receiving a mild blast-injury in which phosphorylated and cleaved forms of neuronal tau 

were increased 24h and one month post-injury (Huber et al., 2013). Therefore, increases in 

serum tau following blast TBI are likely to be representative of pathophysiological changes 

to tau in the brain tissue. Additionally, in rats receiving a mild TBI produced by rotational 

acceleration forces, serum tau is significantly elevated for at least 14d post-injury (Rostami 

et al., 2012), and in mice receiving repetitive closed head injuries, serum levels of total tau 

and phosphorylated tau are significantly elevated one day to one month post-injury, findings 

which again parallel increases in cortical phosphorylated tau (Yang et al., 2015).

In human TBI, increases in serum tau correlate with injury severity (Wang et al., 2016) and 

peak two days post-injury (Wang et al., 2016). However, in severe TBI, levels of CSF tau 

continue to rise beyond two days, peaking between five and 15 days post-injury (Franz et al., 
2003). In addition to full-length tau, cleaved tau isoforms have also been found in CSF 

following severe TBI (Zemlan et al., 2002; Zemlan et al., 1999). Importantly, several studies 

show that following severe TBI, levels of tau in the serum, cerebrospinal fluid, and brain 

extracellular fluid correlate with outcomes up to one year post-injury (Liliang et al., 2010; 

Magnoni et al., 2012; Ost et al., 2006; Wang et al., 2016; Zemlan et al., 2002), suggesting 

that in severe TBI, acute increases in peripheral tau may be related to pathologic processes 

that contribute to mortality and morbidity.

The ability of tau to serve as a biomarker for mild TBI in human patients is less clear. 

Although serum tau is known to be elevated following pediatric mild TBI (Guzel et al., 
2010), the clinical utility of serum tau as a biomarker for mild TBI has been questioned. For 

example, serum tau is unable to distinguish between mild TBI with or without intracranial 

lesion (Guzel et al., 2010; Kavalci et al., 2007), and serum levels of c-tau are unable to 

predict the development of post-concussive symptoms following mild TBI (Bazarian et al., 
2006; Ma et al., 2008).

Despite the less than promising results in regard to the value of peripheral tau as a biomarker 

for mild TBI, various tau isoforms have been found to be elevated in the plasma, serum, or 

CSF of groups at risk for sustaining multiple head injuries, such as athletes and military 

personnel. In fact, in male athletes, participation in collision sports is associated with 

elevated levels of plasma tau (Di Battista et al., 2016). In boxing, total tau levels are 

increased in the CSF for up to ten days and in the plasma for up to six days following a 

match, with significantly increased levels being seen in the CSF of players sustaining more 

hits to the head (Neselius et al., 2012; Neselius et al., 2013; Zetterberg et al., 2006). In 

hockey, total tau is elevated in the serum of concussed players for up to six days following 

injury and correlates with duration of post-concussive symptoms (Shahim et al., 2014). 

Similarly, caspase cleaved tau (c-tau), a fragment itself capable of perpetuating tau 

pathology, is elevated in the serum of hockey players post-concussion, and the tau fragment, 

Tau-A, correlates with the number of days it takes concussed players to return to play 

(Shahim et al., 2016). Tau-A is generated by cleavage of tau by ADAM-10 (Shahim et al., 
2016), a metalloproteinase which has been shown to be elevated in animal models of TBI 

(Warren et al., 2012).
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In addition to acute and sub-chronic time points, increases in peripheral tau have been shown 

to be sustained chronically in both athletes and military personnel. Compared to controls, the 

serum of symptomatic retired NFL players contains a significantly increased number of tau 

positive exosomes, which correlate with cognitive impairment (Stern et al., 2016). Exosomes 

are stable cell exocytosed nanovesicles, the content of which is representative of the cell of 

origin (Stern et al., 2016). Furthermore, plasma levels of total tau are significantly increased 

in military personnel sustaining three or more TBIs and levels correlate with post-concussive 

symptoms, despite the majority of participants having sustained TBIs at least 18 months 

prior (Olivera et al., 2015).

Therefore, these studies suggest that in addition to severe TBI, concussions, sub-concussive 

hits, and repetitive mild head injuries are sufficient enough to cause acute dissociations of 

tau from the microtubules, and that repeat injuries can lead to sustained increases in 

peripheral tau. Furthermore, the correlation that tau positive exosomes and sustained plasma 

tau levels have with chronic symptoms suggests that increases in peripheral tau may indeed 

be representative of brain pathology.

6. TBI, Tau, and CTE - The Animal Models

6.1 Experimental TBI-induced Tau pathology

Animal models have been used extensively to model TBI and are able to recapitulate several 

aspects of human TBI neuropathology and behavioral impairment (Xiong et al., 2013). 

Currently, animal models are being used to elucidate the effects of single or repetitive TBI 

on acute and chronic tau pathology. Ojo et al. (Ojo et al., 2016) has extensively covered 

methodologies, pathologies, and the benefits and challenges of using animals to study 

repetitive TBI and CTE. A multitude of factors are purported to influence CTE development 

including injury type, injury severity, impact number, impact frequency, age at injury, time 

elapsed since injury, genetics, gender, and environment (Ojo et al., 2016). Therefore, 

examining the relationship between TBI and CTE in animals is challenging; a difficulty 

which is evidenced throughout the literature. For example, while some animal models of 

repetitive TBI induce significant increases in tau phosphorylation, others have either found 

no significant tau pathology or tau pathology in only single animals (Ojo et al., 2016). 

Furthermore, despite increases in phosphorylated and total tau following injury, most studies 

fail to recapitulate other pathologic characteristic of CTE such as tangle formation, glial tau, 

perivascular tau deposition, and deposition of tau at the depths of sulci, a characteristic 

which would be practically impossible to model in the lissencephalic rodent brain (Ojo et 
al., 2016).

The anatomic and physiologic differences between humans and rodents (mice being the 

most common animal used in studies of tau) further complicate matters. Anatomically, 

human brains contain higher ratios of white to grey matter, higher ratios of glia to neurons, 

sulci, gyri, longer myelinated axons, and a denser vascular supply (Ojo et al., 2016). The 

ratio of 3R to 4R tau also differs in rodents and in humans. Healthy adult brains express 

equal ratios of 3R and 4R tau (Goedert and Jakes, 1990; Ojo et al., 2016), whereas rats and 

mice express 4R tau, an isoform which is preferentially phosphorylated and prone to 

aggregation, to a much higher degree than 3R tau (Hanes et al., 2009; McMillan et al., 2008; 

Kulbe and Hall Page 28

Prog Neurobiol. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ojo et al., 2016). Additionally, animal models of CTE often depend on the use of transgenic 

mice. For example, many of the transgenic mice used to study pathologic tau utilize FTD-17 

mutations, such as P301L, which preferentially favor 4R splicing (Ojo et al., 2013; Ojo et 
al., 2016). Transgenic tau mice also overexpress tau compared to wild type mice, and are 

predisposed to the development of tau pathology (Ojo et al., 2016). In fact, in some CTE 

studies, transgenic tau mice are aged and already display tau pathology prior to injury (Ojo 

et al., 2013; Ojo et al., 2016).

Despite the difficulty in using animals to investigate the relationship between TBI, tau and 

CTE, important observations have been made. Several pathologic tau isoforms have been 

observed in experimental animal models of TBI, including increases in total tau, 

phosphorylated tau, cleaved tau, tau oligomers, tau aggregates and other pathologic tau 

confirmations. However, animal models of TBI are diverse, ranging from mild to severe, 

focal to diffuse, and single to repetitive, which can affect the time course and type of tau 

pathology seen following injury.

Several different models of TBI, including controlled cortical impact injury (CCI), fluid 

percussion injury (FPI), and blast injury have shown tau to be increased acutely following 

injury. CCI, a focal model of injury which includes aspects of contusion, hemorrhage and 

diffuse injury (Hall et al., 2005), results in severity-dependent increases in cleaved tau (c-

tau), with severe injury inducing significant increases in c-tau beginning at 6h in the cortex 

and 48h in the hippocampus, increases which are sustained for at least seven days following 

injury and which are attenuated by the neuroprotective drug CsA (Gabbita et al., 2005). 

Similarly, following a moderate FPI, a mixed model of focal and diffuse injury (Thompson 

et al., 2005), oligomeric and phosphorylated tau are increased acutely: 4h, 24h and 2 weeks 

post-injury (Gerson et al., 2016; Hawkins et al., 2013). Mild blast TBI, which encompasses 

both the blast wave and rotational acceleration-deceleration forces and results in diffuse 

injury, transient axonal injury, and vascular pathology (Courtney and Courtney, 2015; 

Kovacs et al., 2014), has also been shown to increase tau acutely following injury. For 

example, mild blast TBI increases phosphorylated tau in rat hippocampus 6h post-injury 

(Perez-Polo et al., 2015), and a repetitive blast injury consisting of three closely spaced 

blasts results in total tau levels being increased 24h post-injury in mouse cerebellum (Arun 

et al., 2013).

Chronic tau pathology has also been observed following blast injury. Tau phosphorylation 

and pathologic tau conformations are increased in rat hippocampus and cortex one month 

following either a single blast or six blasts spaced 48h apart (Turner et al., 2015). 

Furthermore, rats exposed to repeat injury showed evidence of perivascular tau pathology, a 

defining feature of human CTE (Turner et al., 2015). Seventy days following a single blast 

injury in rats, total tau protein is also increased in several brain regions including the 

amygdala, prefrontal cortex and hippocampus; an affect which can be attenuated by 

environmental enrichment (Kovesdi et al., 2011). Tau oligomers have also been observed to 

develop one month following a single blast TBI (Gerson et al., 2016). In fact, tau oligomers 

extracted from rat brains one month following a single blast TBI have prion-like 

characteristics, increasing the spread of tau pathology and accelerating the rate of cognitive 

decline when injected into brains of transgenic mice overexpressing human tau (Gerson et 
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al., 2016). Tau aggregation also occurs following blast TBI, although in a delayed manner. 

For example, three months following a single blast injury, rats develop tau aggregates in the 

prefrontal cortex and hippocampus that were not yet present one-month following injury 

(Sajja et al., 2015).

Chronic tau pathology has also been detected following closed head injury, another animal 

model of diffuse TBI. Similar to blast injury, increases in tau phosphorylation and 

pathologic tau conformations have been found one month following a single closed head 

injury (Turner et al., 2015). However, other studies have shown a requirement for repeat 

injuries in order to induce tau pathology following closed head injury. For example, in aged, 

transgenic mice overexpressing human tau and who already showed signs of tau pathology 

prior to injury, repeat injury (five injuries space 48h apart) but not single injury, resulted in 

increases in cortical and hippocampal tau phosphorylation three weeks post-injury (Ojo et 
al., 2013); however, other characteristic CTE pathologies, such as perivascular tau, neuritic 

threads and astrocytic tangles, were not seen (Ojo et al., 2013). Similar increases in tau 

phosphorylation following repetitive closed head injury occur in wild-type mice. For 

example, exposing mice to four closed head injuries spaced three days apart results in 

increased tau phosphorylation in the hippocampus and cortex, effects which are sustained 

for at least seven days and 30 days, respectively (Yang et al., 2015). Additionally, chronic 

increases in tau phosphorylation following repetitive closed head injury have been observed 

to occur beyond 30 days. For example, exposing mice to three closed head injuries spaced 

24h apart, results in increases in tau phosphorylation in the corpus callosum, cortex, 

hippocampus and amygdala six months following injury (Luo et al., 2014). Furthermore, 

evidence suggests that the presence of tau following repetitive closed head injury is linked to 

the development of pathology following injury. In fact, in a two-hit frontal impact model of 

closed head injury, knocking out tau attenuates chronic axonal degeneration and learning 

and memory deficits (Cheng et al., 2014).

Newer models of closed head injury, which also incorporate rotational acceleration-

deceleration forces in an attempt to more closely model human concussion, also have 

demonstrated increases in tau pathology following injury. In a model termed CHIMERA, 

which stands for Closed-Head Impact Model of Engineered Rotational Acceleration, an 

impact device is used to deliver a closed head injury to mice while allowing for free rotation 

of the head upon impact (Namjoshi et al., 2014). In CHIMERA, two impacts spaced 24h 

apart results in increases in tau phosphorylation over the first 48h following injury 

(Namjoshi et al., 2014). Chronic increases in tau phosphorylation have also been seen in 

similar models. For example, in another combined model of closed head injury and 

rotational acceleration, exposing mice to five injuries spaced 24h apart results in increases in 

tau phosphorylation for at least 30 days following injury (Kane et al., 2012). Similarly, in a 

closed head injury model which allows for head mobility and the use of non-anaesthetized 

mice, tau phosphorylation is increased in the cortex, hippocampus, amygdala and dentate 

gyrus seven days and one month following single or repetitive (42 injuries) injury (Petraglia 

et al., 2014). Furthermore, increases in tau phosphorylation were sustained out to six months 

in repetitive injury mice (Petraglia et al., 2014).
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Although less studied in isolation, evidence suggests that rotational acceleration-deceleration 

forces themselves are capable of inducing tau pathology. In fact, head restraint during blast 

injury is able to attenuate increases in tau phosphorylation, neuroinflammation, 

microvascular pathology, neurodegeneration, and learning and memory impairment 

(Goldstein et al., 2012). In swine models of rotational head injury, PHF-tau is reported to 

accumulate in neuronal perikarya following injury (Smith et al., 1999). Similarly, a model 

using air pressure to induce a rotational head injury in mice absent a blast wave, results in 

increases in tau phosphorylation two and eight weeks post-injury; however, similar to other 

models, additional aspects of tau pathology such as tau aggregation were not seen (Sabbagh 

et al., 2016).

6.1.1 Select Mechanisms of Experimental TBI-induced Tau Pathology—Multiple 

animal models of TBI, including diffuse injury, blast injury, closed head injury and 

rotational acceleration-deceleration injury, have all demonstrated increases in pathologic tau 

following injury. These models of injury also result in widespread damage to axons and 

white matter tracts, suggesting the possibility that diffuse axonal damage and pathologic tau 

formation are related. In fact, in transgenic mice expressing either human mutant tau, P301S, 

or the six isoforms of wild type human tau, a mild repetitive impact-acceleration injury 

induces dose-dependent advanced tau hyperphosphorylation and tangle formation ten weeks 

following injury (Xu et al., 2015). However, tau pathology only develops in regions of the 

brain associated with transient axonal injury; specifically, tau pathology develops in the 

retinal ganglion cells as this model induces transient axonal injury to the optic nerve (Xu et 
al., 2015). In addition to diffuse axonal injury being capable of inducing tau pathology, 

dendritic damage has also been implicated in increased tau phosphorylation. For example, in 

rats, epidural cortical compression rapidly results in mechanical disruption of the dendritic 

cytoskeleton, resulting in increases in phosphorylated tau, alterations in tau kinase and 

phosphatase activity levels, and dendritic remodeling, implying rapid changes to cortical 

circuitry that could have long lasting effects on brain function (Chen et al., 2010a).

Several experimental TBI studies have identified additional mechanisms which also may 

contribute to pathologic tau formation. Several studies have observed that increases in tau 

phosphorylation following injury are accompanied by alterations in phosphatase or kinase 

activity. In FPI, increases in tau phosphorylation twelve weeks post-injury are accompanied 

by decreases in expression and activity of the tau phosphatase, PP2A, neurodegeneration and 

cognitive impairment, effects which are attenuated by the administration of the PP2A 

activator, sodium selenite (Shultz et al., 2015). Similarly, in blast and weight-drop models of 

TBI, acute increases in tau phosphorylation coincide with decreases in activity of tissue non-

specific alkaline phosphatase (TNAP), a phosphatase with greater activity towards 

phosphorylated tau than PP2A (Arun et al., 2015). Additionally, following CCI in mice, 

increases in tau phosphorylation, cognitive impairment and hippocampal degeneration are all 

attenuated by administration of lithium, an inhibitor of the tau kinase, GSK-3β (Yu et al., 
2012).

In addition to alterations in tau phosphatase and kinase activity, oxidative stress also has 

been observed to coincide with tau pathology following experimental TBI. Exposing mice to 

a single blast results in increases in phosphorylated and cleaved tau 24h post-injury in the 
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cortex, hippocampus, and cerebellum, increases which are sustained in the hippocampus 30 

days post-injury, and which are accompanied acutely by increases in oxidative stress defense 

mechanisms in the hippocampus and cerebellum, namely increases in the mitochondrial 

anti-oxidant, SOD2 (Huber et al., 2013). Oxidative stress has also been seen to accompany 

tau pathology in repetitive models of TBI. In a repetitive blast injury model, exposing mice 

to six blasts spaced 48h apart results in increases in pathologic tau, apoptosis, and 

impulsivity, effects which are attenuated by administration of the antioxidant, lipoic acid 

(Lucke-Wold et al., 2015). Lipoic acid inhibits NOX4, an enzyme increased in CTE brains 

which is capable of inducing oxidative stress (Lucke-Wold et al., 2015). Additionally, in a 

repetitive mild closed head injury model, exposing mice to three impacts spaced 24h apart, 

results in increases in phosphorylated tau, inflammation, and synaptic and cognitive 

impairment 30 days post-injury, effects which are attenuated by inhibition of 

monoacylglycerol lipase (MAGL) (Zhang et al., 2015). MAGL metabolizes 

endocannabinoid 2-arachidonoylgylcerol (2-AG) to prostaglandins and arachidonic acid 

(Zhang et al., 2015). Therefore, inhibiting MAGL acts to increase 2-AG, a compound known 

for having anti-inflammatory and neuroprotective properties (Zhang et al., 2015), while also 

decreasing the 2-AG metabolite, arachidonic acid, which is itself capable of initiating LP 

(Bains and Hall, 2012; Hall et al., 2010).

Experimental TBI has also been shown to increase toxic forms of tau by impairing the 

function of the proline isomerase, Pin1. Pin1, converts tau phosphorylated at Thr231 from 

the cis isomer to the less toxic trans configuration (Kondo et al., 2015). Phosphorylation of 

Pin1 increases following experimental TBI, leading to decreased Pin1 activation and, 

therefore, increased levels of the cis isomer (Kondo et al., 2015). Pin1 can also be inhibited 

through cysteine oxidation (Chen et al., 2015), an event likely to occur under TBI-induced 

oxidative stress conditions. Formation of the cis isomer of phosphorylated tau (cis p-tau) is 

reported to be an early pathogenic event in the tauopathy, AD, (Nakamura et al., 2012), and 

increases in cis p-tau have been identified in CTE (Kondo et al., 2015), and in experimental 

models of severe TBI, repetitive mild TBI (rmTBI) and blast TBI (Kondo et al., 2015). In 

fact, six months following rmTBI cis p-tau which developed acutely at the site of injury has 

spread to additional brain regions (Kondo et al., 2015). Cis p-tau is suspected of being 

neurotoxic. In fact, in an experimental model of severe TBI, administration of a cis p-tau 

antibody prevents development and spread of cis p-tau, attenuates disruptions in microtubule 

and mitochondrial transport, and improves functional and behavioral outcomes (Kondo et 
al., 2015).

In addition to dysfunction of enzymes and oxidative stress pathways, dysfunctional tau 

clearance mechanisms have been observed following experimental TBI. A moderate-severe 

closed head injury in mice results in impairment to the glymphatic pathway for at least one 

month following injury and correlates with increases in tau phosphorylation (Iliff et al., 
2014). The glymphatic pathway is a perivascular network responsible for CSF recirculation 

and clearance of interstitial proteins such as tau and Aβ (Iliff et al., 2014; Iliff et al., 2012). 

The glympathic pathway is highly dependent on the protein, perivascular glial aquaporin-4 

(AQP4), which is also chronically impaired following experimental TBI (Iliff et al., 2014; 

Ren et al., 2013). In fact, knock-out of aquaporin-4 results in increases in tau 

phosphorylation, axonal degeneration, neuroinflammation, and behavioral deficits following 
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experimental TBI suggesting that chronic glymphatic dysfunction following TBI may 

contribute to the development of neurodegenerative tauopathies through impairment of tau 

clearance (Iliff et al., 2014).

6.2 Experimental TBI without Tau Pathology

Although multiple animal models have demonstrated that pathologic tau is increased 

following acute TBI, pathologic tau can be sustained chronically following TBI, and several 

possible mechanisms that could lead to tau dysfunction following injury, there have been 

other animal models which have failed to demonstrate any tau pathology following injury. In 

fact, even the use of transgenic mice does not always ensure formation of tau pathology 

following experimental TBI. For example, in a repetitive mild closed head injury in which 

aged transgenic mice expressing the shortest form of human tau (T44) received a total of 16 

injuries over the course of four weeks, only 1 in 9 mice developed neurofibrillary tangles 

and cerebral atrophy (Yoshiyama et al., 2005). However, except for the individual mouse 

displaying tau pathology, this model was also unable to induce any cognitive deficits six 

months post-injury (Yoshiyama et al., 2005).

Several additional examples demonstrate the difficulty of modeling CTE in rodents. In a 

mouse study that paralleled several clinical and pathological aspects of human TBI, a single 

mild closed head injury resulted in pathology and behavioral deficits that remained static 

over time, whereas repeat injury (five injuries spaced 48h apart) resulted in progressive 

neuroinflammation, white matter degradation, and behavioral impairment over 6-18 months 

following injury despite no increases in tau phosphorylation (Mouzon et al., 2014). 

Similarly, in a mouse model combining impact and rotational acceleration, repeating injuries 

on a daily or weekly basis resulted in increases in astrogliosis and cognitive impairment up 

to one year following injury, but no increases in tau phosphorylation (Mannix et al., 2013).

A lack of tau pathology following rmTBI has also been seen at more acute time points. For 

example, in a mouse model of repetitive mild closed head injury, five impacts spaced 24h or 

48h apart results in motor and cognitive deficits, axonal degeneration and astrogliosis, 

particularly in the visual system, ten weeks following injury; however, increases in 

hyperphosphorylated tau were not seen (Bolton Hall et al., 2016). Similarly, although 

exposing mice to five injuries spaced 24h apart results in increased hemorrhagic lesions, 

diffuse axonal injury, neurodegeneration, and astrogliosis 24h post-injury compared to 

intervals spaced 48h apart, neither injury paradigm results in increased tau phosphorylation 

(Bolton and Saatman, 2014).

In summary, use of animal models to study CTE and the development of chronic tau 

pathology following experimental TBI is complicated by a multitude of factors including 

heterogeneity of human injury, heterogeneity of individuals, and anatomic and physiologic 

differences between humans and rodents. Although individual studies have failed to 

recapitulate all aspects of CTE pathology, numerous studies have confirmed the ability of 

experimental TBI to induce acute and chronic tau pathology, and the ability of repetitive 

injury to exacerbate that pathology. Furthermore, animal models have confirmed 

mechanisms suspected of contributing to tau pathology following injury such as tau kinase 

and phosphatase dysfunction and induction of oxidative stress pathways, and identified 
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additional mechanisms that possibly contribute to tau dysfunction following injury such as 

Pin1 inhibition and dysfunction of the glympathic pathway.

7. Conclusions and Possible Neuroprotective Strategies to Prevent or 

Interrupt the Progression of CTE

Traumatic brain injury results in a secondary injury cascade that includes processes such as 

calpain and caspase activation, mitochondrial and ER dysfunction, increases in oxidative 

stress including generation of peroxynitrite which trigger, lipid peroxidation and LP-derived 

breakdown products, most notably the neurotoxic aldehydes 4-HNE and acrolein, and 

neuroinflammation. While these post-TBI biochemical and cellular pathophysiological 

events begin within the first minutes, days and hours post-TBI, there is evidence that some 

of these events may persist into the chronic injury phase exerting negative effects on 

recovery months and perhaps years after the single of repetitive TBI episodes and 

contributing to age-related neurodegenerative diseases. Similar processes occur in 

neurodegenerative tauopathies and many have been shown to occur upstream, downstream, 

and in a circular cascade with tau dysfunction (Figure 9). A history of TBI, particularly 

repetitive, is a risk factor for both CTE and AD; therefore, it is possible that several of the 

above mentioned pathologies, which occur acutely following TBI, lead to chronic 

neurodegeneration and tau dysfunction. However, the apparent complexities of the 

mechanistic link between acute post-traumatic secondary injury processes and their 

contribution to chronic outcomes is yet to be un-raveled. Nevertheless, since CTE has only 

been documented in individuals with histories of repetitive, and perhaps even single, TBIs, it 

is entirely possible that early initiation of neuroprotective treatments that will effectively 

inhibit the acute, subacute and early chronic secondary injury phases will lessen the 

development of the tauopathy that is the key neuropathology seen in CTE. While a single 

neuroprotective approach might be able to significantly attenuate the progressive brain 

damage in CTE, since a variety of cellular dysfunctions can lead to tau dysfunction, which 

can in turn lead to several cellular dysfunctions, it is likely that a multi-mechanistic 

neuroprotective combinational approach to CTE prevention and interruption will be needed.
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Definitions

2-AG 2-arachidonoylglycerol

3-NT 3-nitrotyrosine

4-HNE 4-hydroxynonenal

Ach acetylcholine

AChEI acetylcholine esterase inhibitor

AD Alzheimer's disease

ADAM-10 A disintegrin and metalloproteinase domain-containing protein 10

ANT adenine nucleotide translocator

APP amyloid precursor protein

AQP4 aquaporin-4

CCI controlled cortical impact injury

CDK5 cyclin-dependent kinase 5

CHIMERA closed-head impact model of engineered rotational acceleration

COX cytochrome oxidase

CsA cyclosporine A

c-tau cleaved tau

CTE chronic traumatic encephalopathy

CX3CL1 C-X3-C motif ligand 1 / fractalkine

CX3CR1 CX3C chemokine receptor / fractalkine receptor

DRP1 dynamin-related protein

ERAD ER-associated degradation

ERK extracellular-regulated kinase

FPI fluid percussion injury

FRET fluorescence resonance energy transfer

FTD frontotemporal dementia

GSK-3β glycogen synthase kinase-3β
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hTau human tau

IFN interferon

IL interleukin

JNK c-Jun-terminal kinase

LP lipid peroxidation

LPS lipopolysaccharide

MAGL monoacylglycerol lipase

MAP microtubule-associated protein

MAPK mitogen-activated protein kinase

MAPT microtubule-associated protein tau

mPTP mitochondrial permeability transition pore

mtNOS mitochondrial nitric oxide synthase

NADPH nicotinamide adenine dinucleotide phosphate

NFT neurofibrillary tangle

NOX4 NADPH oxidase 4 gene

PHF paired helical filament

PIN1 peptidyl-prolyl cis-trans isomerase NIMA-interacting 1

PN peroxynitrite

PP2A protein phosphatase 2

PSD-95 postsynaptic density 95

PSP progressive supranuclear palsy

p-tau phosphorylated tau

rmTBI repetitive mild TBI

RNS reactive nitrogen species

ROS reactive oxygen species

SOD2 mitochondrial superoxide dismutase 2, manganese-dependent superoxide 

dismutase

TNAP tissue non-specific alkaline phosphatase

TBI traumatic brain injury
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TDP-43 transactive response DNA-binding protein

TLR4 toll-like receptor 4

UPR unfolded protein response
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Highlights

• Chronic traumatic encephalopathy (CTE) is a recently described 

neurodegenerative tauopathy that is a chronic sequela of traumatic brain 

injury (TBI).

• CTE occurs predominantly after repeated episodes of mild TBI in athletes 

involved in contact sports or in military combatants exposed to single or 

repetitive explosive blast-injuries.

• This review discusses the possible involvement of the well characterized post-

TBI pathophysiological mechanisms in the pathogenesis of tau protein 

deposition that is distinctly characteristic of CTE.

• The analysis of the possible interactions of TBI secondary injury with CTE 

tauopathy has suggested several neuroprotective approaches that might serve, 

either singly or in combination, to limit the development of CTE.
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Figure 1. Interplay between TBI pathophysiology and mechanisms of pathologic tau formation 
demonstrating several cyclic relationships between the two
TBI induces traumatic axonal injury (TAI), neuroinflammation, increases in intracellular 

Ca++, shearing of blood vessels, and tau hyperphosphorylation. TAI causes microtubule 

detachment of tau and tau mislocalization. Ca++ uptake by the endoplasmic reticulum (ER) 

and mitochondria leads to organelle dysfunction, including increases in ROS, RNS, and 

peroxynitrite (PN), initiation of lipid peroxidation (LP), and 4-HNE and acrolein formation. 

Hemorrhage-derived Fe++ catalyzes formation of reactive species and LP. 4-HNE and 

acrolein bind mitochondrial proteins, exacerbating dysfunction and generation of reactive 

species. Dysfunctional mitochondria enhance ER dysfunction, release cytochrome c, which 

activates caspases, and extrude Ca++ into the cytosol, which activates calpain. Calpain 

cleaves cytoskeletal proteins (e.g. spectrin) resulting in cytoskeletal degradation. 

Neuroinflammation, ER dysfunction, ROS/RNS/PN, mitochondrial dysfunction, caspase/

calpain activation, and cytoskeletal degradation contribute to formation of pathologic tau 

(e.g. post-translational modification, conformational change, aggregation, etc.). In return, 

pathologic tau contributes to neuroinflammation, ER dysfunction, generation of 

ROS/RNS/PN, mitochondrial dysfunction, caspase activation and cytoskeletal degeneration.
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Figure 2. Select pathways demonstrating the role of oxidative stress in formation of tau 
pathology
TBI induces mitochondrial dysfunction, resulting in increased oxidative stress, which in 

turn, exacerbates mitochondrial dysfunction. Proteases downstream of mitochondrial 

dysfunction cleave tau, forming truncated tau (t-tau), which in turn, exacerbates 

mitochondrial dysfunction. Experimental tau overexpression induces mitochondrial and 

peroxisome dysfunction. Peroxisome dysfunction exacerbates oxidative stress and is 

enhanced by oxidative stress. Oxidative stress increases tau kinases activity (GSK-3β, JNK) 

and decreases tau phosphatase activity (PP2A), resulting in hyperphosphorylation of tau, 

which decreases tau binding of microtubules (red X), leading to tau aggregation, which is 

enhanced by oxidative stress itself.
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Figure 3. Mechanisms by which peroxynitrite leads to formation of tau pathology
TBI-induced mitochondrial dysfunction generates peroxynitrite (PN), which in turn, 

exacerbates mitochondrial dysfunction. PN nitrates or oxidizes tau forming 3,3′-dityrosine 

or disulfide crosslinks, respectively. Crosslinked tau induces tau oligomerization, 

aggregation and filament formation. Disulfide crosslinked tau also decreases microtubule 

assembly. PN increases the tau kinase, p38 MAPK. PN-derived NO•2 increases the tau 

kinase, GSK-3β, through nitration of the GSK-3β upstream regulator, p85. Increased tau 

kinase activity results tau hyperphosphorylation which decreases binding of tau to 

microtubules (red X). NO•2 directly nitrates tau at the 3 position of tyrosine, generating 

tau-3NT. Tau-NT has decreased microtubule binding properties (red X) and inhibits tubulin 

assembly. Tau-3NT is preferentially degraded by the proteasome, an organelle that's function 

is inhibited by PN, resulting in build-up and aggregation of tau-NT.
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Figure 4. The role of 4-hydroxynonenal (4-HNE) and acrolein (ACR) in formation of tau 
pathology
TBI induces lipid peroxidation (LP). Overexpression of P301L mutant also increases LP as 

measured by the LP-derived, malondialdeyde (MDA). LP results in the formation of the 

neurotoxic aldehydes, 4-HNE and ACR, which covalently bind proteins, including tau, 

causing protein dysfunction. ACR increases activity of the tau kinases, GSK-3β and p38 

MAPK, and 4-HNE-modified tau inhibits alkaline phosphatase, resulting in 

hyperphosphorylation of tau, 4-HNE modified-tau, and ACR modified-tau, which decreases 

binding of tau to the microtubules (red X), leading to conformational changes, aggregation, 

and filament formation. Paired helical tau filaments are extensively modified by 4-HNE and 

ACR.
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Figure 5. Mechanisms by which endoplasmic reticulum (ER) stress and dysfunction can lead to 
formation of tau pathology
Following TBI increases in intracellular Ca++, derived extracellularly or from dysfunctional 

mitochondria, induce ER stress. ER stress increases activity of the tau kinase, GSK-3β, 

resulting in tau hyperphosphorylation, which decreases binding of tau to microtubules (red 

X). ER stress results in the buildup of misfolded and unfolded proteins, including tau, both 

directly and through inhibition of ER-associated degradation (ERAD). Tau itself inhibits 

ERAD through associations with the ERAD heterocomplex. ERAD and buildup of 

misfolded and unfolded proteins activate the unfolded protein response (UPR), which in 

turn, activates ERAD. The UPR results in increases in tau phosphorylation, which in turn, 

activate the UPR. UPR activation increases neurotoxicity and behavioral impairment and 

decreases synthesis of proteins, including synaptic proteins. ER stress activates the protease, 

caspase-3, resulting in tau truncation (t-tau) and increased neurotoxicity. Alzheimer's 

disease-derived microsomes contain ER fragments and ribosomes which strongly associate 

with oligomeric tau, resulting in decreased RNA translation and decreased protein 

concentrations.
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Figure 6. The role of calpain in the formation of pathologic tau
TBI-induced increases in intracellular Ca++ derived extracellularly or from dysfunctional 

mitochondria and ER, activate the protease calpain. The endogenous calpain inhibitor, 

calpastatin, is decreased in tauopathies such as Alzheimer's disease. Calpain cleaves tau into 

35kD and 17kD fragments. The 17kD tau fragment forms prior to increases in tau 

phosphorylation and may directly enhance tau phosphorylation (dotted arrow). Calpain 

induces activation of the tau kinase, ERK, resulting in hyperphosphorylation of tau, which 

decreases binding of tau to microtubules. 17kD has a decreased affinity for microtubule 

binding (red X) and may be neurotoxic.
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Figure 7. Mechanisms in which caspases play a central role in the formation of pathologic tau
Following TBI, caspases are activated downstream of ER dysfunction and mitochondrial 

release of cytochrome c. Overexpression of P301L tau or 4R also induce caspases activation. 

Caspases, including caspase-3, cleave tau at Asp421, but N-terminal caspase-cleavage also 

occurs (NH-tau). Caspases-cleaved tau can further exacerbate mitochondrial and ER 

dysfunction. Asp421 is preferentially degraded by autophagy, therefore, impairment to 

autophagy results in accumulation of Asp421 tau. Asp 421 tau leads to enhanced tau 

polymerization and phosphorylation, resulting in decreased binding of tau to microtubules 

(red X) and increased aggregation and filament formation. Caspase activation and Asp421 

expression lead to apoptosis. Asp421 precedes cognitive impairment.
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Figure 8. Proposed role for microglia in the formation of pathologic tau
TBI and experimental tau overexpression activate microglia. Microglia can be activated 

through decreases in the microglia receptor, CX3CR1, and increases in the neuronally-

derived ligand, CX3CL1, which is elevated following TBI and experimental tau 

overexpression. Microglial secretion of IL-6 increases tau mRNA and protein expression. 

Microglial secretion of IL-1β and IL-6 increases tau kinase activity (p38 MAPK and cdk5), 

as does the presence of the cytokine IFN-γ (GSK-3β), resulting in tau hyperphosphorylation, 

which decreases binding of tau to microtubules (red X), and microglial phagocytosis of 

hyperphosphorylated tau. Microglia spread tau in a prion-like manner through phagocytosis 

and exocytosis. Hyperphosphorylated tau induces microglia degeneration, resulting in 

decreased immunosurveillance and increased neurodegeneration. The microglia-derived 

cytokine, TNF, activates NADPH Oxidase, increasing ROS and formation of tau aggregates. 

The presence of phosphorylated tau enhances the effect of activated microglia on 

neurodegeneration, caspase-3 activation, and behavioral impairment. Activated microglia 

induce autophagy, resulting in autophagic degradation of tau.
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Figure 9. Simplified schematic demonstrating proposed pathological mechanisms that can 
contribute to CTE development and pathologic mechanisms that can be exacerbated by CTE
Examples of pathologic tau include hyperphosphorylation, nitration, oxidation, aggregation, 

filament formation, etc. For simplicity, relationships between pathologic mechanisms are not 

included in this figure, but are detailed elsewhere (Fig 1– 8).
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