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Abstract

Lesion-symptom mapping is often employed to define brain structures that are crucial for human behavior. Even
though poststroke deficits result from gray matter damage as well as secondary white matter loss, the impact of
structural disconnection is overlooked by conventional lesion-symptom mapping because it does not measure
loss of connectivity beyond the stroke lesion. This study describes how traditional lesion mapping can be
combined with structural connectome lesion symptom mapping (CLSM) and connectome dynamics lesion symptom
mapping (CDLSM) to relate residual white matter networks to behavior. Using data from a large cohort of stroke
survivors with aphasia, we observed improved prediction of aphasia severity when traditional lesion symptom
mapping was combined with CLSM and CDLSM. Moreover, only CLSM and CDLSM disclosed the importance of
temporal-parietal junction connections in aphasia severity. In summary, connectome measures can uniquely reveal
brain networks that are necessary for function, improving the traditional lesion symptom mapping approach.
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In this article, we present a description of how the individualized structural connectome can be measured
from individuals with large brain lesions, leveraging recently described approaches to calculate network
dynamics. We then tested whether structural and dynamic connectome measures could be combined with
conventional lesion-symptom mapping to better predict and elucidate the neuroanatomy of poststroke
aphasia. Using machine learning applied to a large dataset of stroke survivors, we not only observed that
adding connectome measures to lesion mapping improves the prediction of aphasia severity, but connec-
tome measures disclose crucial language networks, notably within the temporal parietal regions, that are
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Introduction
Aphasia is a disorder of language processing that com-
monly results from acquired brain damage (Damasio,
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degree of language problems (Pedersen et al., 1995;
Forkel et al., 2014). Likewise, the cumulative amount of
damage to language related cortical structures is another
important determinant of severity, but it is still limited in its
ability to define long-term impairments (Plowman et al.,
2012). Some persons with aphasia with relatively intact
language-related cortical structures may exhibit profound
language deficits (Fridriksson et al., 2007), whereas others
with more extensive damage display mild deficits (Epstein-
Peterson et al., 2012).

This discrepancy may arise from white matter damage
beyond the stroke lesion. Extensive damage to white
matter has been well-documented after ischemic strokes
(Matute et al., 2013): the white matter receives relative
less cerebrovascular perfusion compared to gray matter
(Fisher, 2011), and its anaerobic resistance declines with
aging (Hamner et al., 2011). Furthermore, Wallerian de-
generation from the cortical site of injury can lead to
remote loss of structural connectivity (Kuhn et al., 1989;
Thomalla et al., 2005; Wang et al., 2012; Jones et al.,
2013). Interestingly, poststroke white matter disconnec-
tion of seemingly spared cortical structures can lead to
dysfunction of the disconnected cortex that is tantamount
to cortical necrosis (Bonilha et al., 2014). Several other
studies have indicated an important role of white matter
connections in shaping cognitive and language perfor-
mance (Catani and ffytche, 2005; Catani and Mesulam,
2008; Kimmerer et al., 2013; Forkel et al., 2014; Duffau,
2015; Stockert and Saur, 2017). For this reason, to better
understand the nature and magnitude of brain damage
after strokes, it is important to take into account not only
gray matter lesions, but also white matter pathways.

The structural human brain connectome is a novel
methodological approach in clinical neurosciences. It en-
tails mapping the entireness of medium to large-scale
white matter connections in the brain, typically using dif-
fusion tensor imaging (DTI) MRI, combined with high res-
olution anatomic images (volumetric T1- and T2-weighted
scans). Our group has recently demonstrated that struc-
tural connectomes can be measured in brains with stroke
lesions, and, more importantly, used to assess the rela-
tionship between regional network damage and language
impairments in persons with aphasia (i.e., connectome
lesion symptom mapping, CLSM). CLSM provides addi-
tional anatomic information regarding the neuronal net-
works whose lesions are statistically associated with
impairments in behavior, evaluating damage more broadly
defined as necrosis and disconnection.
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Despite its advantages, CLSM based on connection
weight does not provide information about network archi-
tecture beyond pair-wise connections. CLSM can identify
which connections are crucial for behavior, but it is not
sensitive to detecting the integrity of indirect connections.
One possible method of addressing the problem of indi-
rect pathways is the approach recently described by
Sporns and colleagues (MiSi¢ et al., 2015) to measure
connectome dynamics. Their method leverages the struc-
ture of the connectome and evaluates the relative lag of
transfer of information between different brain regions
taking into account the presence and weight of direct and
indirect connections. A faster spread on information is
observed between regions that are linked by shorter path
lengths, or by alternative nearly-shortest paths (the prin-
cipal advantage of this approach over traditional path
length).

This study had three aims. The first was to determine
how much of the variance in aphasia severity can be
explained by connectome dynamics lesion symptom map-
ping (CDLSM), CLSM or gray matter necrosis (regional
based voxel-lesion symptom mapping). We tested the hy-
pothesis that regional gray matter damage and network
dysfunction are both crucial determinants of global apha-
sia and fluency impairments, using out of sample statis-
tical predictions across a large cohort of chronic stroke
survivors. The second aim was to test the hypothesis that
combining connectome-based modalities (CLSM and
CDLSM) with lesion damage improves prediction of apha-
sia severity. Finally, we aimed to disclose the cortical and
subcortical networks related to aphasia severity and
speech fluency.

Materials and Methods

Subjects

Ninety-two left hemisphere chronic stroke survivors (55
male, 37 female, mean age = 60.5 years, SD = 11.18
years), at least six months since the stroke, were included
in this study. All participants were recruited through local
advertisements and none had a premorbid history of other
neurologic disorders affecting the brain or psychiatric
disorders. All participants signed informed consent and
the Institutional Review Boards at our institutions ap-
proved this study.

Language testing

The presence and severity of aphasia was assessed
using the Western Aphasia Battery-Revised (WAB-R;
Kertesz, 2007), which was administered to all participants.
Aphasia severity was determined using the WAB aphasia
quotient (WAB-AQ). The WAB-AQ ranges from 0 to 100,
with the cutoff for aphasia being set at as 93.8, and lower
values indicate more severe aphasia. We also assessed
speech fluency, as rated by clinicians using the WAB-R
speech fluency rating scale, which ranges from 0 to 10
and lower values indicate less fluency.

Image acquisition and postprocessing
Volumetric T1- and T2-weighted MRI sequences, as
well as diffusion MRI, were obtained from all participants
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Figure 1. Voxel-wise lesion overlay, where each voxel is color coded in accordance with how many subjects had that voxel involved

in the lesion. The color bar represents the number of subjects.

using Siemens 3T Trio Systems with a 12-channel head-
coil. Scanning parameters were as follows: T1-weighted
images: MP-RAGE sequence with 1 mm? isotropic voxels,
FOV matrix of 256 X 256 mm, 9-degree flip angle, and
192 sagittal slice sequence with TR = 2250 ms, Tl = 925
ms, and TE = 4.15 ms, with parallel imaging (GRAPPA =
2, 80 reference lines); T2-weighted images: 3D SPACE,
voxel size of 1 mm?®, 256 X 256 mm FOV matrix, 160
sagittal slice sequence, variable flip angle, TR = 3200 ms,
TE = 352 ms, with no slice acceleration. Slice center and
angulation were similar to the T1 image sequence. Diffu-
sion MRI: EPI scan using 30 directions with b = 1000
s/mm? and b = 2000 s/mm?, TR = 6100 ms, TE = 101
ms, 82 X 82 matrix, 222 X 222 mm FOV, with parallel
imaging GRAPPA = 2, 80 45 contiguous 2.7-mm axial
slices, TA = 390 s. This diffusion sequences were ac-
quired twice, and we also acquired an identical sequence
with nine B = 0 volumes, yielding a total of 131 volumes
(11 B = 0, 60 B = 1000; 60 B = 2000).

Lesion masks were drawn on the T2-weighted images
by a neurologist who was unaware to the patient’s behav-
ioral data at the time of the lesion drawing. A map of the
lesion overlay is demonstrated in Figure 1. The T2 image
and the lesion mask were coregistered to the T1-weighted
image, which was normalized to standard space using
an enantiomorphic approach to minimize the distortions
caused by the brain lesion (Nachev et al., 2008) leveraging
SPM12’s  (RRID:SCR_007037) unified segmentation-
normalization, employing the lesion masks smoothed with
a 3-mm full-width half maximum Gaussian kernel. The
lesion masks were transformed into standard space and
parcellated using an in-house anatomic atlas (described
below) to determine the amount of damage to each cor-
tical region, computed as the percentage of lesioned
voxels. The inverse of the transformation matrix from
T2/T1 space to standard space was used to transform the
anatomic atlas into T2/T1 space, and subsequently into
diffusion space, as described below.

Anatomic atlas

To study the spread of information through the cortical
network, it was important to use an atlas with high spatial
resolution to define the nodes of the network with fine
granularity. For this purpose, we created a cortical par-
cellation based on the AICHA atlas'®. The AICHA atlas
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defines 384 gray-matter regions of interest (ROls); we
further subdivided these ROIls to obtain 1358 ROls of
approximately the same volume. The subdivision was
conducted using the procedure described by Fornito et al.
(2010), which allowed us to triple the number of ROls
while keeping the ROI size approximately constant, lever-
aging the fact that nodes with approximately the same
volume reduces biases in streamline tractography.

ROIs

To reduce the probability of Type Il statistical errors and
focus on language relevant areas, all analyses were re-
stricted to language-specific ROIs in the left hemisphere.
These ROlIs were derived from functional imaging studies
by Fedorenko et al. (2012) and adapted for our parcella-
tion. Specifically, eight ROIs were included: superior tem-
poral gyrus, superior temporal sulcus, middle temporal
gyrus, superior temporal pole, inferior frontal gyrus (IFG)
pars triangularis, IFG pars orbitalis, middle frontal gyrus,
angular gyrus (Fig. 2; Table 1).

As such, for each individual, the degree of ROl damage
corresponded to a 1 X 8 vector indicating the percentage
of damage to each of the 8 ROIs. Likewise, connectivity
analyses (explained below) were restricted to the subnet-
works involving these eight ROls.

Structural brain connectivity

The whole-brain brain connectome was obtained using
probabilistic DTI. Fiber tracking was performed in diffu-
sion space. As described above, an enantiomorphic nor-
malization was applied to transform the T1 into standard
space, taking into account the deformations caused by
the brain lesion. The inverse of this transformation matrix
was then used to transform the anatomic atlas into T1/T2
space. The T2-weighted image was then linearly normal-
ized into diffusion space (using the BO image as reference)
employing an affine registration with 12 parameters (Jen-
kinson et al., 2012). This registration matrix was used to
normalize the probabilistic maps of white and gray matter
(the latter divided into ROls), and the lesion mask, into
diffusion MRI space. Note that this last registration em-
ployed the same individual anatomy (from T2 to diffusion)
and only a linear transformation was necessary. Once the
anatomic atlas was transformed into diffusion space, pair-
wise ROI connectivity was performed using FSL FDT’s

eNeuro.org
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Figure 2. Language-specific ROls used in this study. AG, angular gyrus; MFG, middle frontal gyrus; IFGt, IFG pars triangularis; IFGo,
IFG pars opercularis; STP, superior temporal pole; STG, superior temporal gyrus; STS, superior temporal sulcus; MTG, middle

temporal gyrus.

probabilistic tractography method (RRID:SCR_002823;
Behrens et al., 2007). FDT’s Bedpost built default voxel-
wise distributions of diffusion parameters, based on the
diffusion weighted data, the nondiffusion image and the
gradient table. Bedpost was followed by probabilistic
tractography (FDT’s probtrackX, with parameters: 5000
individual pathways drawn through the probability distri-
butions on principle fiber direction, curvature threshold
set at 0.2, 200 maximum steps, step length 0.5 mm, using
distance correction built into probtrackx). The probabilis-
tic white-matter map excluding the stroke lesion was used
as a waypoint mask and the number of streamlines arriv-
ing in one ROI, when another ROl was seeded, was
computed, averaging the connections from ROI; to RO
and vice versa, and the number of streamlines was cor-
rected based on distance between ROIs (from prob-
trackX, as mentioned above) and by the sum of volume of
the ROIs (i.e., the resulting number from distance cor-
rected probtrackX was divided by the sum of the volumes
of the connected ROls).

For each participant, a structural connectome including
1358 X 1358 connections was constructed (i.e., a 1358 X
1358 symmetrical adjacency matrix), where each connec-
tion represented the connection weight between ROls
(number of streamlines corrected by distance between
ROIs and by the combined volume of connected ROls).
From this matrix, we extracted a subnetwork of 8 X 8
connections including only the language-specific ROls
described above (with 28 unique connections, since re-
ciprocal connections were identical). This reduction in the
number of connections was performed to focus on con-
nections more commonly associated with language and
reduce model overfitting.

For the visual display of the anatomic subnetwork used
in this study, we reconstructed the deterministic tractog-
raphy streamlines between each pair of ROls across 59

Table 1. Language specific ROls used in this study

healthy controls with a similar age distribution [45 female,
mean age 54.7 = 8.3 years; DTI parameters: twice-refocu-
sed echo-planar imaging b = 0, 1000, 30 diffusion encod-
ing directions, TR = 8500 ms, TE = 98 ms, FOV = 222 X
222 mm?, matrix = 74 X 74, 3-mm slice thickness, and 40
axial slices; DSl studio: fiber reconstruction using
Q-Space Diffeomorphic Reconstruction (Yeh and Tseng,
2011), 1.25 diffusion length sampling ratio, 2-mm output
resolution]. Each connection was transferred to stereo-
taxic space using 7, 9, and 7 transformation parameters
(Fourier basis) and then combined across subjects, with
the resulting bundle being interpolated into 100 segments
and the center of mass for each segment was calculated.
Streamlines whose segment-wise deviation from the cen-
ter of mass was within 0.5 SD were maintained, yielding
an anatomically representative connectome link. Like-
wise, the core pathway traversed by each connection was
also maintained and used for visual display. to define the
length of each pair-wise connection (i.e., the average
length of the fibers constituting each connection), the
distance between each 100 interpolated points was ac-
crued for each link. The language network used in this
study is illustrated in Figure 3.

Structural brain dynamics

Connectome dynamics were extracted using the
method described by Misi¢ et al. (2015). This method
measures the spread of information throughout the net-
work. It is performed by changing the state of one of the
network nodes (“seeding” the network). In the next time
step, the neighbors of the seed-node change their state,
and in following time step, their neighbors change their
state, and so on. While this approach is novel in the
context of neuroimaging, it has a long and distinguished
history in the social sciences (Granovetter, 1978; Watts,
2002). This process is illustrated in Figure 4. Unless the

ROI # Name

1 superior temporal gyrus
superior temporal sulcus
middle temporal gyrus
superior temporal pole
IFG triangularis

IFG orbitalis

middle frontal gyrus
angular gyrus

ONOO O WN

AICHA regions

[652 655:657 661:668 676:682]

[689:691 693:696 704:709 716:721 729:734]
[739:741 744:748 754:756 759:762]
[815:817 820:821]

[160:168]

[133:137 187 190:194 198:199]

[113:114 118:121 126:127]

[400:404 410:413 419:421]
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Figure 3. The connectivity weight analyses focused on a subnetwork of the whole brain connectome composed of all 28 unique
possible connections between the eight language-specific ROIs. Each connection was independently assessed and their anatomic
representations (in a cohort of healthy individuals; see Materials and Methods for details) are demonstrated in this figure. All
deterministic streamlines are represented in the first column (colored in accordance with their main direction of displacement, as per
tractography convention: red, lateral to lateral; blue, rostral to caudal; green, anterior to posterior). Each specific pair-wise connection
is represented by a different color in the second column. The third column demonstrates the centers of mass (centroids) of each
pair-wise connection (colored per tractography convention), and the fourth column demonstrates each connection centroid colored
similarly to the second column. Note the comprehensive and intricate pattern of structural connectivity assessed in the connectivity
weight analyses.

network contains unreachable nodes, all nodes eventually
change their state. If the threshold is set to 0, the number
of time steps that it takes to change the state of a node is
equal to the length of the shortest path to the seed node.

Lesion disrupts the connectome and creates unreach-
able nodes; for numerical convenience, we used the in-
verse of the lengths of propagation paths (equivalent to
the “speed” of propagation from the seed to the destina-
tion node). This way, the propagation speed between a
pair of mutually unreachable nodes is zero (corresponding
to the shortest path of infinite length). As a result, we
obtained 28 values of propagation speed between each
pairing of the eight language-network nodes.

Importantly, the pair-wise measures in the connectome
dynamics matrix are a reflection of the structure of the
whole network, thus providing information about the in-
tegrity of the topological organization of the network be-
yond the pair-wise connection. Conversely, the pair-wise
connection weight is related exclusively to the connection
between one pair of ROIs, respective of the other con-
nections in the connectome.

Statistical analyses and out-of-sample prediction
From the methods described above, five sets of vari-

ables were obtained from each participant: two behavioral

measures, WAB-AQ and WAB fluency subscore; and

Figure 4. This figure illustrates the procedural steps used to assess connectome dynamics. The upper left subplot demonstrates a
rendering of the cortical surface with the large cortical and subcortical poststroke lesion overlaid in blue. Next (second subplot on the
first row), the superior temporal gyrus is seeded. Thereafter, based on the weight of structural connectivity between the superior
temporal gyrus and the remaining whole brain connectome, the number of steps taken to reach each other language-specific ROl is
calculated. The sequence of subplots demonstrated which ROIs are reached, in sequence. This process results in a vector denoting
the inverse of the number of steps taken to reach each other ROI, when one ROI is seeded (illustrated in the bottom right, with the
color bar illustrating the inverse of the number of steps). For each participant, this is repeated by seeding each ROI in turn, and 28
unique pair-wise connectome dynamics are calculated.
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Individual Measures (ROl damage or connectivity weights or connectivity dynamics)

1) 5-fold split  [] Training Data (4 folds)
[l Testing Data (1 fold)
A
I | I I R
B
I [ I N 2
C
I - | RS I |
[ T [ [ |
E
EETE [ [ I I

s

Model is built on Training Data

Tested on Testing Data (correlation
coefficient R between predicted vs
real dependent variables, e.g. WAB
AQ or WAB fluency)

!

2) For each 5 fold split, 5 values of R (groupings A to E) are obtained and averaged.
3) This process is repeated 1000 times (each time with a random assignment of individuals to

each fold)

Ensemble Measures (all possible 2 or 3 combinations between ROl damage, connectivity weights and
connectivity dynamics). For illustration, 3 measures are used.

1) 5-fold split  [] Training Data (4 folds)
[l Testing Data (1 fold)
A
I [ [ [ |
B
I [ [ N 2
C

B [ [ |
[ [ | |
oeoe | [ | | |

2) For each 5 fold split, 5 values of R (groupings A to

E) are obtained and averaged.

3) This process is repeated 1000 times (each time
with a random assignment of individuals to each
fold)

A model is built on Training Data for each
individual measure
Measure 1

I I |
Ordinary Least Squares (OLS)

I multiple linear regression used to
assign weights to each measure
based on how well the predicted
value matched the real dependent
variable. This step is performed with
Training Data only. An ensemble
model with each measure weighted
by OLS is built.

Weighted Measure 1

Weighted Measure 2
I I |

Tested on Testing Data (correlation
coefficient R between predicted vs

_ real dependent variables)

Measure 2

Measure 3

Weighted Measure 3

Figure 5. This diagram explains how the statistical analyses and out of sample SVR predictions were performed for models using

individual measures or their combinations.

three neuroimaging measures, ROl damage (1 X 8 vector of
proportional damage to the eight language-specific ROIs),
CLSM = connectivity weights (1 X 28 vector of the anatomic
connection weights between each pairing of the eight
language-specific ROIs), and CDLSM = connectivity dy-
namics (1 X 28 vector representing the connectivity dynam-
ics within the language networks, i.e., the inverse of the
shortest path length between each pairing of nodes).

We used linear-kernel support vector regression (SVR)
to predict the behavioral measures (WAB-AQ and, sepa-

September/October 2017, 4(5) e0204-17.2017

rately, WAB fluency) from the neuroimaging measures
(ROl damage, connectivity weight, connectivity dynamics)
and an ensemble method that combined the three neuro-
imaging measures.

Individual measures

The pipeline that predicted a behavioral measure from a
neuroimaging measure consisted of SVR, followed by a
third-order polynomial regression to match the range of
the SVR predictions to the actual observed range. We

eNeuro.org
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used the LIBSVM implementation of SVR (Chang and Lin,
2011). The pipeline was trained and tested using 5-fold
cross-validation. The four folds that composed the train-
ing set were also used to find the optimum regularization
parameter for the SVR model (the term that defines the
trade-off between margin width and training-set accu-
racy, known as the C value in the support-vector litera-
ture). This parameter was optimized using a grid search
with values (.1, .5, 1, 10, 50, 100, 500). We have observed
that SVR prediction tends to underestimate the highest
scores and to overestimate the lowest scores; to correct
for this, a third-order polynomial function was applied to
the SVR-predicted scores. To compute the parameters of
the polynomial, we predicted the scores of the patients in
the training set (after the estimation of the SVR regular-
ization parameter), and applied the least-squares regres-
sion to find the relationship between actual and predicted
training scores (this is similar to the procedure described
by Yourganov et al., 2016, except here we use a polyno-
mial rather than a linear function). The pipeline predicted
on the left-out fold and a correlation score was calculated
between the predictions and truths. After all five folds
served as the left-out fold, the five resultant correlations
were averaged to form a single value. This was repeated
multiple times to assess prediction distributions. K-fold
cross-validation is known to have high variance (Ojala and
Garriga, 2010), with results varying for the same dataset
depending on the combinations of observations allocated
among the folds. To correct for this instability, we per-
formed 1000 iterations of 5-fold cross-validation (i.e.,
1000 times the average from each 5-fold cross-validation
described above), giving us 1000 values of correlation
between actual and predicted scores. Of note, we did not
perform classical mass univariate statistical analyses of
lesions or connections. We employed these values to
build the SVR model instead. For this reason, the SVR
approach is not corrected by multiple comparisons in the
classical sense of mass univariate statistics, but takes into
account the multiple values in a multivariate approach and
type 1 and 2 errors are reflected in reduced accuracy of
the resulting model.

To statistically compare measures, we calculated the
ratio of iterations that a particular measure had a higher
mean correlation than another measure. This was possi-
ble because each measure was allocated the same folds
at each of the 1000 iterations, although the allocation
changed across iterations.

We also performed permutation tests to address the
well-known issue that it is possible to obtain results that
appear better than chance with small datasets that are
randomly generated (Combrisson and Jerbi, 2015). For
each measure, we calculated a permuted distribution by
performing the same pipeline over 1000 iterations. How-
ever, the truth values used to train and test the model (i.e.,
the dependent variables WAB-AQ and WAB fluency) were
shuffled at the beginning of each iteration. This resulted in
a length 1000 permutation distribution for each measure.
For each measure, each of the 1000 real correlations was
compared with the permuted distribution, and had a p
value calculated from its rank on the distribution. These
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1000 p values were then averaged (Ojala and Garriga,
2010).

The coefficients of the linear SVR models were saved
for each of the five folds and averaged. Each coefficient
represents the relative predictive power of an individual
feature. For the three types of input, the features were:
damage to an ROI; strength of the anatomic connection
between a pair of ROls; the inverse of the shortest path
between a pair of ROIs. By repeating the predictive pro-
cess 100 times, we estimated the distribution of each
coefficient.

Combined measures

We created an ensemble pipeline that calculated a
prediction for each subject by performing a weighted
average on the subject’s corresponding predictions from
ROI damage, connectivity weight, and connectivity dy-
namics.

The coefficients of the weighted average were found
by fitting an ordinary least squares (OLS) multiple linear
regression model. The OLS model consisted of three
predictor (explanatory) variables corresponding to the be-
havior score predictions of the three neuroimaging-based
models, and the prediction (response) variable was the
behavior score. In other words, the model predicted a
behavior score by combining behavior score predictions.
OLS regression assigns larger weights for predictor vari-
ables that are more correlated with the prediction variable.
Therefore, the neuroimaging-based models that more
closely predicted the data had higher coefficients.

The four folds of the training set were used to fit the
OLS model. To control for overfitting, we used a leave-
one-out procedure (within the training set) to predict the
scores using the three types of neuroimaging inputs and
to combine them into a regression model. For computa-
tional reasons, the regularization parameters associated
with the each of the neuroimaging models already found
earlier for the training set were used to fit the models.

This pipeline was executed on 1000 iterations of 5-fold
cross-validation, where the data allocation was the same as
for the other measures. Just as the case of the individual
measure-generated distributions, the resultant distribution
was compared with the other measure’s distributions and
with chance. A visual diagram of the statistical and machine
learning steps used here is demonstrated in Figure 5.

Software tools

The connectome dynamics were computed using the
Matlab (RRID:SCR_001622) code developed by R. Betzel
and B. Misic (MiSi¢ et al., 2015). The predictive analysis
was largely developed in the Julia and Python program-
ming languages (RRID:SCR_008394; http://julialang.org).
The Python library Scikit-learn (RRID:SCR_002577; Pe-
dregosa et al., 2011) provided the SVR models, and the
linear regression models used for the ensemble method
and the third-order polynomial regression. The SVR mod-
els provided by Scikit-learn are based in LIBSVM (RRID:
SCR_010243; Chang and Lin, 2011). The Julia code base
communicated with Scikit-learn through the PyCall package.
The visualizations were rendered with Matlab, Surfice, and
MRIcroGL (RRID:SCR_008264, RRID:SCR_002403).
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Figure 6. Statistical analyses comparing the distribution of Pearson correlation coefficients between real and predicted dependent
measures for each model. Each subplot demonstrates the distribution of the subtraction of the correlation coefficient from one
method minus another. This is possible since the training and testing split samples were identical for each model at every iteration,
providing a direct comparison between models. If 95% of the subtractions felt above 0, the first test in the subtraction was considered

statistically superior than the other at p < 0.05.

Results

Individual measures

Both WAB-AQ and fluency were predicted with an ac-
curacy significantly higher than chance (p < 0.05). The
mean correlation coefficients between the predicted and
actual WAB-AQ values were: 0.760 = 0.026 (combined
methods), 0.723 + 0.025 (ROl damage), 0.719 + 0.025
(connectivity dynamics), and 0.534 = 0.035 (connectivity
weights).

With regards to WAB fluency, the correlation coeffi-
cients were: 0.728 = 0.023 (combined methods), 0.705 =
0.026 (ROI damage), 0.697 =+ 0.025 (connectivity dynam-
ics), and 0.543 = 0.030 (connectivity weights). ROl dam-
age and connectivity dynamics were not significantly
different from each other for predicting either WAB-AQ or
WAB Fluency. However, both outperformed connectivity
weights alone (Figure 6). Based on these results, connec-
tome dynamics are as important as lesion location in
predicting impairment. However, as explained below,
Combined measures, the improved accuracy of the model
based on their combination suggests that they provide
additional and complementary information.

September/October 2017, 4(5) e0204-17.2017

The ROIs with the highest influence on the predictive
model based on ROl damage were, in descending order
of importance: for WAB-AQ, superior temporal gyrus,
superior temporal pole, angular gyrus, IFG triangularis,
middle frontal gyrus, IFG orbitalis, middle temporal gyrus
and superior temporal sulcus; for WAB fluency, superior
temporal gyrus, angular gyrus, middle temporal gyrus,
superior temporal pole, middle frontal gyrus, IFG triangu-
laris, IFG orbitalis, superior temporal sulcus. These results
are demonstrated in Figure 8.

The connections with the highest influence on the pre-
dictive model built with connectivity weights were: for
WAB-AQ, superior temporal gyrus to superior temporal
sulcus, superior temporal sulcus to middle temporal gyrus
and superior temporal gyrus to superior temporal pole; for
WAB fluency, middle temporal gyrus to superior temporal
sulcus, superior temporal gyrus to superior temporal sul-
cus and superior temporal sulcus to angular gyrus (Fig. 7).

On the model built based on connectivity dynamics, the
connections with the highest influence toward WAB-AQ
were superior temporal gyrus to angular gyrus, superior
temporal sulcus to IFG triangularis, and superior temporal
pole to angular gyrus. Toward WAB fluency: the superior
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Figure 7. The individual coefficients are shown in color to illustrate which ROIs were more influential on the ROl model (left column)
and which connections were more influential on the connectivity weights model (right most columns) for predicting WAB-AQ (first row)
and WAB fluency (second row). The color bars indicate SVR coefficients.

temporal sulcus to IFG triangularis, middle temporal gyrus
to superior temporal pole, and the superior temporal
gyrus to IFG triangularis. The coefficients for the connec-

tivity models are listed in Table 2.

As expected, since WAB-AQ is a composite score that
includes WAB fluency, there were strong correlations be-
tween WAB-AQ and WAB fluency (R = 0.92, p = 1.45E-
39), and in the connection-wise coefficients related to

Weights + ROl Dam (R = 0.717 + 0.024)

Dyn + ROI Dam (R = 0.758 + 0.020)

Dyn + Weights (R = 0.711 £ 0.028)

Dyn + Weights + ROl Dam (R = 0.761 £ 0.025)

Weights + ROl Dam (R = 0.706 + 0.025)

Dyn + ROI Dam (R = 0.734 + 0.020)

Dyn + Weights (R = 0.686 + 0.025)

Fluency | Fluency | Fluency | Fluency | WAB AQ | WAB AQ | WAB AQ |WAB AQ

Dyn + Weights + ROI Dam (R = 0.727 + 0.022)

‘ H® Dynamics
Weights

M ROI Damage

-0.5

-0.3

-0.1

T t 1

0.1 03 0.5 0.7 0.9 11 13 15

Figure 8. This graph illustrates the OLS weights assigned to each measure when models using combined measures were constructed
(x-axis). For each possible combination, the correlation coefficients obtained with out of sample testing (i.e., when applied to the test
data) are listed and the OLS weights are stacked to demonstrate their relative values.
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Table 2. SVR Link-wise coefficients
Connection between WAB AQ Fluency

Weight Dynamics Weight Dynamics
ROI ROI coefficients coefficients coefficients coefficients
IFG_orbitalis angular_gyrus 0.12 2.99 0.01 -0.19
IFG_orbitalis middle_frontal_gyrus 0.83 -1.01 0.46 0.26
IFG_triangularis angular_gyrus 0.72 4.93 0.05 0.53
IFG_triangularis IFG_orbitalis 5.93 2.06 0.86 0.19
IFG_triangularis middle_frontal_gyrus -0.55 0.92 0.32 0.59
middle_frontal_gyrus angular_gyrus 1.47 6.25 0.12 0.92
middle_temporal_gyrus angular_gyrus 5.89 8.76 0.97 0.27
middle_temporal_gyrus IFG_orbitalis 0.40 2.05 0.04 0.66
middle_temporal_gyrus IFG_triangularis 1.89 7.96 0.23 1.67
middle_temporal_gyrus middle_frontal_gyrus 1.54 8.71 0.18 1.33
middle_temporal_gyrus superior_temporal_pole 2.06 11.05 0.55 2.26
superior_temporal_gyrus angular_gyrus 3.76 18.22 0.28 1.73
superior_temporal_gyrus IFG_orbitalis 0.63 7.71 0.07 0.93
superior_temporal_gyrus IFG_triangularis 6.02 12.44 0.81 2.07
superior_temporal_gyrus middle_frontal_gyrus 1.02 6.20 0.11 0.83
superior_temporal_gyrus middle_temporal_gyrus 1.48 10.72 0.22 0.48
superior_temporal_gyrus superior_temporal_pole 9.13 -1.91 1.18 -1.14
superior_temporal_gyrus superior_temporal_sulcus 13.11 8.32 1.59 0.09
superior_temporal_pole angular_gyrus 1.15 12.59 0.08 1.83
superior_temporal_pole IFG_orbitalis -0.06 1.07 0.18 0.32
superior_temporal_pole IFG_triangularis 1.89 4.48 0.68 0.52
superior_temporal_pole middle_frontal_gyrus 0.23 6.14 0.02 1.15
superior_temporal_sulcus angular_gyrus 517 -0.76 1.22 -0.25
superior_temporal_sulcus IFG_orbitalis 0.31 1.18 0.05 -0.15
superior_temporal_sulcus IFG_triangularis 2.35 13.80 0.40 2.53
superior_temporal_sulcus middle_frontal_gyrus 2.45 6.13 0.30 0.91
superior_temporal_sulcus middle_temporal_gyrus 11.34 8.69 1.84 0.66
superior_temporal_sulcus superior_temporal_pole 1.45 3.43 0.89 -0.06

WAB-AQ and WAB fluency (connectivity weights: r = 0.9,
p = 3.54E-34; connectivity dynamics: r = 0.79, p =
5.06E-21), indicating that connections that were predic-
tive of WAB-AQ were also likely to be predictive of WAB
fluency. Nonetheless, there were no correlations be-
tween the connection-wise coefficients between con-
nectivity weights and connectivity dynamics (WAB-AQ:
r=20.12, p = 0.61; WAB fluency: r = -0.3, p = 0.19),
suggesting that links that were strongly influential in the
predictive model built using connectivity weights were
not necessarily influential in the model using connec-
tivity dynamics.

It is important to emphasize that the model weights
should be interpreted in the context of the SVR models
(Haufe et al., 2014), and they have not been tested in a
mass univariate approach to define the statistical signifi-
cance of each feature. They are instead being reported in
an ordinal order of importance with regards to how much
each feature contributed to the model.

Interestingly, we observed an inverse linear relationship
between connectome weight coefficients and the dis-
tance traveled by the fibers connecting ROIs (based on
the normative data from control subjects; WAB-AQ: R =
-0.46, p = 0.039; WAB fluency: R = -0.64, p = 0.001).
However, there was not a relationship between dynamics
coefficients and fiber distance (WAB-AQ: R = 0.23, p =
0.34; WAB fluency: R = 0.36, p = 0.11). Long connections
had lower influence in the predictive model using connec-
tivity weights, but not in the model built with connectivity

September/October 2017, 4(5) e0204-17.2017

dynamics. Of note, as expected, the distance traveled by
the fibers connecting the ROIs was strongly but not per-
fectly correlated with the Euclidean distance between
ROIs (R = 0.74, p = 7.27E-05) due to anatomic con-
straints on fiber trajectory, and the resulting fiber curva-
ture.

Combined measures

The highest predictive ability for WAB-AQ was observed
with an ensemble model combining all three measures (ROI
damage, connectivity weights, and connectivity dynamics;
R = 0.761 = 0.025) followed by the model combining
connectivity dynamics and ROI damage. Regarding WAB
fluency, the model with highest accuracy was composed
of connectivity dynamics and ROl damage, followed by
the model combining all three measures (R = 0.734 =+
0.02). The comparison between models is shown in Figure
9. Statistically, the model with three measures was signif-
icantly better at predicting language measures compared
with the models based on ROl damage or connectivity
dynamics alone: it outperformed ROl damage and con-
nectivity dynamics when predicting WAB-AQ to a p value
of 0.04 and 0.02, respectively. The ensemble performed
better for predicting WAB fluency, but only to a p value of
0.08 (i.e., not statistically significant) but significantly bet-
ter (o = 0.04) compared to ROl damage and connectivity
dynamics, respectively (noting that p = 0.04 is weakly
indicative of a rejection of the null hypothesis).

eNeuro.org



eMeuro

Wab AQ
Ens minus Conn. Weights
T T T

50 ii : 4

20+ ”
10F [ 8
. . . milIAl 'hﬂ!‘mft,m

-0.1 0 0.1 0.2 0.3 0.4 0.5
ensemble score greater in 100% of runs

# of runs

Ens minus ROl Damage
T T

120 T T
100 I 1
o il _
@
2
2 60 J
5
*
40 - -
20 - i ‘ 5
\ L
0 _--l llhn L L L
-0.1 0 0.1 0.2 0.3 0.4 0.5
ensemble score greater in 97% of runs
Ens minus Conn. D
120 T T T T T
100 3
80 T
@
2 |
H
« 60 4
5
® L
40 1
20 H R
. ol b ; . i
0

-0.1 0.1 0.2 0.3 0.4 0.5

ensemble score greater in 98% of runs

Methods/New Tools 11 of 14
Wab Fluency
Ens minus Conn. Weights

80 T — T
70t | J
60 [ q
50 - 1
qf ‘ ; 1
it |
20 - 5 =
il |
5 ; e a il e .. . .

-0.1 0 0.1 0.2 0.3 0.4 0.5

ensemble score greater in 100% of runs

Ens minus ROl Damage
T T

140
120 - .
100 1
80 1
60| l ‘ <

40

iy U

-0.1 0 0.1 0.2 0.3 0.4 0.5
ensemble score greater in 90% of runs

Ens minus Conn. D!
140 T T

ﬂ ]
o} [ ]
“f | |
ZZ» . .1” \Hh - : , , ]

-0.1 0 0.1 0.2 0.3 0.4 0.5
ensemble score greater in 97% of runs

Figure 9. This figure illustrates the statistical comparisons between the model using all three measures (Ens, ensemble) versus each
individual measure. Similar to Figure 5, the histograms demonstrate the distribution of the subtractions of the correlation coefficients
from one method minus another for every possible run. If 95% of the subtractions fell above 0, the first test in the subtraction was

considered statistically superior than the other at p < 0.05.

Discussion

In this study, we evaluated the ability of neuroimaging
methods to explain personalized severity of language
problems across individuals with poststroke aphasia. We
tested two specific hypotheses: (1) that connectome dy-
namics (CDLSM) could increase the correlation between
residual connectome integrity and aphasia severity, i.e.,
provide a more comprehensive assessment of brain net-
work integrity compared with CLSM; and (2) that combin-
ing connectome modalities with lesion damage would
optimize the understanding of brain structures that are
crucial for language and thus improve prediction. While
testing these hypotheses, we also identified the crucial
cortical and subcortical networks related to aphasia se-
verity and speech fluency.

We observed that CLSM was statistically inferior to
cortical ROl damage in predicting individual language
deficits; however, CDLSM was comparable to cortical
ROI damage and thus superior to CLSM. We also ob-
served that the combination of measures was statistically
better than each measure alone, supporting the hypoth-
esis that each neuroimaging assessment may provide
additional information about brain integrity and the crucial
structures supporting language and fluency.

September/October 2017, 4(5) e0204-17.2017

These results have broad implications for studies as-
sessing crucial brain systems supporting cognitive func-
tion. First: how does CLSM complement classical lesion-
symptom mapping using cortical damage? The results
presented here suggest that CLSM has a lower person-
alized explanatory value toward aphasia severity com-
pared with ROl damage. Therefore, is CLSM less well
suited for behavioral mapping? It is important to consider
that CLSM typically uses an exponentially larger number
of predictive features compared with cortical ROl dam-
age, since there are multiple possible combinations of
ROls. Thus, for the same number of individuals, the higher
number of features in CLSM compared with ROl damage
can lead to overfitting and reduce out of sample predictive
performance. Likewise, CLSM is highly interrelated to
cortical damage since damaged connections are likely
those connecting lesioned ROls. despite these caveats,
we suggest that there are crucial features of CLSM that
justify its use. CLSM can identify which connections are
crucial within a set of all possible connections involving
lesioned ROls. As such, CLSM is a subset of conventional
cortical lesion symptom mapping and refines the crucial
network involving lesioned ROIls. Moreover, CLSM can
also reveal the importance of connections involving le-
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Figure 10. This diagram exemplifies the features evaluated by each modality. Considering a network of cortical structures (A), if one
of the cortical regions is lesioned after a stroke, its connections are also affected (B; shaded gray node and gray lines). If all
connections had a similar importance toward behavior (aphasia), CLSM would not distinguish between them. However, CLSM can
identify which connections are more important (C; blue line). As such, CLSM is a subset of cortical lesion mapping. CDLSM, in turn,
provides information about the direct and indirect connections that may be crucial for behavior (D; blue lines).

sioned ROIs and nonlesioned ROls, thus elucidating the
network extending beyond the cortical areas commonly
injured due to vascular anatomy. If specific corticocortical
connections did not influence behavior, all connections
from a lesioned ROI would be equally predictors of out-
come. Instead, there are crucial links that can be identified
with CLSM, and the identification of which connections
are crucial can improve the understanding of the systems
underlying language production. A diagram representing
this concept it presented in Figure 10.

Second, what does assessment of connectivity dynam-
ics (CDLSM) add to ROI damage or connectivity weights?
CDLSM is an expansion of CLSM; i.e., it requires the
individual connectome, from which dynamic features can
be extracted. CDLSM is unique because it can identify
crucial corticocortical interactions that may occur indi-
rectly even if their anatomic link is damaged. If the short-
est path between nodes A and B is not through direct
connections between A and B (because there is no struc-
tural connectivity remaining after the stroke), but rather
through other nodes, CDLSM can measure this connec-
tivity, while CLSM cannot. For this reason, it expands on
CLSM, and provides a more comprehensive view of net-
work integrity. CDLSM evaluates corticocortical interac-
tions by taking into account shortest paths, even if the
shortest path involves remote unaffected areas, such as
the contralateral hemisphere or subcortical gray matter
such as basal nuclei. Therefore, each link in CDLSM is a
reflection of the topological organization of the entire
network. This characteristic of CDLSM is particularly rel-
evant in cases on neurologic recovery, where not only
what was damaged during the lesion, but what was left
after it, is crucial to the severity of chronic deficits. As
demonstrated here, CDLSM is equivalent to cortical ROI
damage with regards to out of sample personalized apha-
sia severity prediction. Importantly, our results also sug-
gest that the combination of modalities yields the best
personalized explanatory features, confirming that CLSM
and CDLSM add additional information to mapping based
on cortical damage and thus provide additional informa-
tion about brain integrity that this crucial for aphasia. It
should be mentioned that the connectivity dynamics ap-
proach used in this study, described by Misi¢ et al. (2015),
is not the only approach to assess dynamics or commu-
nication within networks. Other alternatives include com-
municability (Crofts et al., 2011), search information (Goii
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et al., 2014) and K-shortest paths (Avena-Koenigsberger
et al., 2017), and these were not tested in this present
study. Furthermore, it is important to emphasize that
CLSM utilizes more basic edge-level information, and it
does not take into account other topological features of
network organization that can be obtained, for example,
with graph theory. Likewise, CLSM used here employs
number of streamlines, which is a measure that can vary
due to signal-to-noise and method of tractography. A
recent review article by Aerts et al. (2016) has provided a
comprehensive overview of several studies that have in-
vestigated topological network changes associated with
brain injury and strokes, with some few studies using DTI
data. Our group also demonstrated in previous studies
that temporal lobe betweenness centrality (Bonilha et al.,
2016), cortical hub (“rich-club”), status (Gleichgerrcht
et al., 2015), and global network small-worldness (Bonilha
et al.,, 2016) are associated with aphasia severity and
recovery. Given the plethora of possible measures, there
are several possible combinations that have not yet been
systematically assessed, and compose an interesting
pathway for future studies. Furthermore, these methods
could also be expanded to combined with connectomes
obtained from functional MRI data (task based or resting
state), with the caveat related to potential changes in
hemodynamic properties and their effect on BOLD signal
in stroke survivors with multiple cardiovascular risk fac-
tors and atherosclerosis (D’Esposito et al., 2003). Special
attention should be paid to inferences about functional
imaging (and neuroimaging in general) in the context of
pathologically altered cerebral perfusion patterns (Siegel
et al., 2017). In a recent and elegant study, Pustina et al.
(2017) demonstrated that combining functional connec-
tivity with structural connectivity increases the ability to
explain and predict specific language deficits in chronic
poststroke aphasia. They concluded that predictions
based on multimodal data were more accurate than pre-
dictions using only one modality. It is reassuring that our
results, i.e., improved prediction when combining CLSM
and CDLSM with lesion based mapping, are similar to
their conclusions, even if we used a different approach
based only on structural integrity. Overall, their and our
findings suggest that there is additional information from
each modality that can leveraged to better understand the
neurobiology of poststroke impairments and aphasia. Im-
portantly, our findings suggest that CDLSM is particularly
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useful in improving predictions, indicating that connec-
tome based studies, which are instrumental in expanding
the understanding of the relationship between brain struc-
tural integrity and behavior (Yourganov et al., 2016;
Gleichgerrcht et al., 2017; Marebwa et al., 2017), can be
even further improved by including connectome dynam-
ics. To our knowledge, this is one of the first studies to
assess structural connectome dynamics related to stroke
recovery.

Third, how did the results shown here, using additional
modalities (CLSM and CDLSM) expand on the knowledge
about aphasia severity and fluency impairment in apha-
sia? As expected, they revealed corticocortical interac-
tions within the typical lesion bed are strongly predictive
of chronic deficits. Notably, they demonstrated the crucial
importance of ventral stream (Fig. 7). Moreover, they also
demonstrated that connectivity structure and dynamics
involving the angular gyrus had a strong influence in the
model predicting WAB-AQ and QAB fluency, suggesting
that the integrity of posterior temporal-parietal network
plays a crucial role in aphasia severity. The posterior
temporal-parietal is a watershed zone for the middle ce-
rebral artery and the degree of cortical damage in this
region may be unrelated to the degree of white matter
damage, particularly given the decreased resilience of
white matter to ischemia (Fisher, 2011; Hamner et al.,
2011). As such, by elucidating this crucial component of
the language networks, CDLSM can complement ROI
damage and thus improve personalized prediction of se-
verity. We propose that this approach should now be
used to also evaluate the personalized mechanisms sup-
porting spontaneous or treatment-related aphasia recov-
ery.

One limitation of this study is that the measures of
aphasia and fluency severity are imperfect. Not only is the
WAB-AQ a multidimensional measure, but the fluency
score also reflects multiple, distinct aspects of speech
“fluency,” including grammaticality, articulation, hesi-
tancy, among others. Furthermore, the inter-rater reliabil-
ity in scoring is not high, because it is both subjective and
multidimensional (Trupe, 1984). However, a more reliable
and unidimensional score would likely have a higher,
rather than lower, correlation with specific lesions and
connections. Moreover, the specific measures of severity
are not especially important for achieving our goal of
evaluating the contribution of CDSLM to cortical necrosis
and CLSM in predicting severity of language impairment.
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