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Abstract

The 5”-AMP-activated protein kinase (AMPK) is a master regulator of cellular homeostasis.
Despite AMPK’s known function in physiology, its role in pathological processes such as prostate
cancer is enigmatic. However, emerging evidence is now beginning to decode AMPK’s
paradoxical role in cancer and therefore inform clinicians if and how AMPK could be
therapeutically targeted. Here, we propose that it is the spatiotemporal regulation of AMPK
complexes that govern the kinase’s role in cancer. We hypothesize that different upstream stimuli
will activate select subcellular AMPK complexes. This is supported by the distinct subcellular
locations of the various AMPK subunits. Each of these unique AMPK complexes regulate discrete
downstream processes that can be tumor suppressive or oncogenic. It is the weighted net function
of these downstream signaling events, influenced by additional prostate-specific signaling, that
determines AMPK’s final biological output.
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Introduction

One of the most enigmatic signaling molecules in biology is the 5'-AMP-activated protein
kinase (AMPK). AMPK is an evolutionarily conserved serine/threonine protein kinase that
is a master regulator of cellular homeostasis®. Classically, AMPK has been defined by its
ability to help cells adapt to various energetic stresses. In this context, activation of AMPK
promotes ATP-generating catabolic processes while simultaneously inhibiting ATP-
depleting anabolic processest. As such, AMPK is absolutely required for embryonic growth
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and development?3. While AMPK’s function in basic physiology is established, its role in
pathological processes such as cancer is far more confusing.

Initially, AMPK was described as a tumor suppressor due to its link to one of its major
upstream regulators liver kinase B1 (LKB1), a bona fide tumor suppressor4-5.
Correspondingly, a number of /n vitroand in vivo studies have implicated an anti-cancer role
for AMPK7=20. Conversely, recent reports implicate an oncogenic role for AMPK?21-45,
While some of these discrepancies may be attributable to the use of non-selective
pharmacological modulators of AMPK, many of which have cellular effects independent of
AMPK34:45-55 ‘molecular and genetic studies do indicate AMPK can have context-
dependent roles810.17-19.21,22,24,32-34,56-58 Thjs paradoxical role for AMPK is no different
in prostate cancer.

As described in greater detail below, much of the initial interest in AMPK in prostate cancer
came from retrospective clinical studies of the use of the antidiabetic drug metformin®9-52,
These studies suggested that metformin decreased the risk of cancer. Accordingly, several
reports using pharmacological modulators of AMPK as well as genetic knockout of one of
the catalytic subunits of AMPK, PRKAAZ, support a tumor suppressive role for AMPK in
prostate cancer’-17:63-65 However, more recent retrospective studies did not find any link
between metformin use and decreased cancer risk86=77. In fact, some studies even suggested
that increased metformin use correlated with more aggressive prostate cancers6.71,
Importantly, the first prospective clinical trials directly testing the impact of metformin on
prostate cancer have recently been completed and found limited efficacy ("8 and
(NCT01433913)). Additional preclinical studies using pharmacological, molecular and
genetic approaches have now identified an oncogenic role for AMPK in prostate
cancer29-31.33-3537 Fyrther, levels of threonine-172 phosphorylated/activated AMPK
(discussed below) and serine-80 of acetyl-CoA carboxylase (ACC), a canonical target of
AMPK, were elevated in prostate cancer clinical samples compared to benign controls’:33:37,
Phosphorylated/activated AMPK levels were found to also correlate with progression to the
advanced/recurrent stages of the disease33 and higher Gleason scores’. Collectively, these
findings indicate a complicated role for AMPK that is likely context dependent. This
confusion has undoubtedly frustrated clinicians and researchers and thus precluded
subsequent drug development efforts.

Here, we propose a mechanistic explanation to assist in understanding how AMPK works in
prostate cancer and therefore determine when AMPK is functioning in an oncogenic versus
tumor suppressive capacity. Specifically, we hypothesize that there are different subcellular
populations of AMPK that enable compartmentalized signaling (Figure 1). The location of
these AMPK complexes is influenced by factors such as subunit composition (reviewed
below). Each of these subcellular populations of AMPK will be associated with unique
downstream cellular processes (Figure 2). Which AMPK populations are activated is
determined by the spatial and temporal regulation of diverse upstream stimuli. It is the
weighted net function of these downstream signaling events, influenced by additional
prostate-specific signaling, that determines AMPK’s final biological output. Below are
descriptions of the factors that regulate AMPK activity, AMPK’s known functions and
current/emerging approaches for targeting AMPK signaling. It is our goal that the proposed
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model can be leveraged to determine if, how and when AMPK could be therapeutically
targeted.

Influence of AMPK’s structure and subcellular location on downstream

activity

The AMPK complex is a heterotrimer consisting of a catalytic a subunit and regulatory B
and -y subunits’989, The N-terminus of the a subunits contains the serine/threonine kinase
domain as well as an activation loop that requires phosphorylation at a specific threonine
residue, commonly referred to at Thr172 due to its position in the original rat sequence, by
upstream Kinases (described below) for full AMPK activation (activity increases > 100-
fold)8L. The C-terminus is needed for association with the @ subunit. In addition, there is a
central auto-inhibitory domain. The B subunit contains a central domain that allows it to
interact with glycogen and a C-terminal domain that is needed for the association with the a
and -y subunits. The -y subunit contains four tandem cystathionine p-synthase (CBS) motifs,
three of which can bind nucleotides (site two can not). Site four appears to constitutively
bind AMP, while sites one and three bind AMP, ADP or ATP in a competitive manner82,
Binding of AMP and/or ADP promotes the phosphorylation of Thr172 on the a subunit by
upstream kinases while also inhibiting the dephosphorylation of this same site by
phosphatases®3-85, These activating actions of AMP/ADP are antagonized by ATP. AMP,
but not ADP, also causes an allosteric activation (reported to be 2-5 fold but the exact fold
induction is still debated®6) of the phosphorylated kinase8®. In fact, this allosteric activation
appears to be antagonized by ATP and ADP.

In total, there are two genes (PRKAAI and PRKAAZ) that encode for the a1l and a2
catalytic subunits, two genes (PRKABI and PRKABZ2) encoding the B1 and 2 regulatory
subunits and three genes (PRKAG1, PRKAGZ and PRKAGS3) encoding the y1, y2 and y3
regulatory unitsZ. The subunits are expressed to varying degrees in a cell-, tissue- and
disease-specific manner?. In addition, splice variants of the subunits exist®”. Thus, between
the seven different subunits there are at a minimum 12 different AMPK complexes that can
be formed.

An important aspect of AMPK that is often overlooked is the compartmentalization of
AMPK signaling. Different isoforms of the various subunits can vary in their subcellular
localization88-91, For example, the a.1 subunit has a predominantly cytoplasmic localization
while the a2 subunit can readily shuttle to the nucleus. Additional AMPK subunits have also
been found to partly reside in the nucleus2:93, Further, the subcellular localization of
subunits can be altered in response to different stimuli®%-%4. That said, there is evidence that
under certain conditions a1 can also shuttle to the nucleus®. Whether this happens in the
prostate and how this would occur are currently not known. Importantly, it has been
demonstrated in yeast that the subcellular location of the  subunit directs the localization of
the catalytic a subunit®l. This effect has key functional consequences as it dictates which
subset of downstream targets AMPK can interact with and therefore phosphorylate.

Relatively little is known regarding AMPK’s role, if any, during the development of the
prostate. Since AMPKa 1/AMPKa.2 double knockout mice are embryonic lethal at day 10.5
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post conception, it is difficult to study prostate development in this context. To our
knowledge, no one has developed a prostate-specific conditional AMPKa1l/AMPKa.2
double knockout mouse. Both global AMPKa 1 and AMPKa.2 single knockout mice have
been created as well as knockouts of other AMPK subunits2. However, no prostate defects
have been reported in any of these animals, but this could also be because the prostate was
not examined. AMPKa1 global knockout mice are subfertile due to a decreased quality of
spermatozoa®. A subsequent study using AMPKa1 conditional knockout mice identified
defects in the Sertoli cells as the likely culprit®’. Whether there were any defects in the
prostate of the AMPKa1 global knockout mice and if these could then also contribute to the
decreased fertility is not known. Global knockout of Camkk2, the predominant AMPK
upstream Kinase in the prostate (see “Regulation of AMPK?” section), in mice did not lead to
any overt morphological abnormalities in the prostate (unpublished observations). Taken
together, it is not clear yet whether AMPK signaling is essential for normal prostate
development. Conversely, a number of recent studies point to context-dependent roles for
different AMPK complexes in prostate cancer.

Unlike LKB1, the genes encoding AMPK are rarely mutated in cancer®. In contrast, the
various subunits are more commonly elevated by amplifications and/or overexpression in
human cancers. For example, the a1 subunit is the predominantly expressed catalytic
subunit in prostate cancer33:34:99, While double catalytic subunit knockout mice (a17/~ and
a27/") are embryonic lethal?, interestingly, mouse embryonic fibroblast (MEF) cells
generated from these double knockout mice are resistant to oncogenic transformation?2. In
addition, spontaneous tumor formation has never been observed in al- or a2-deficient mice,
indicating that loss of AMPK itself is not sufficient to cause tumorigenesis®. However,
deletion of a2 alone increased the growth of RAS-transformed MEFs®. In contrast, deletion
of a1 alone decreased growth in the same cells8. While genetic deletion of the minor
isoform, a2, slightly increased the incidence of prostatic intraepithelial neoplasia (PIN) in a
fatty acid synthase (FAS)-transgenic model of mouse prostate hyperplasial’, knockdown of
either the predominant a1 alone or double knockdown of a1 and a2 decreased prostate
cancer cell growth and migration33:34. Further, increased PRKAA1 and decreased PRKAAZ
expression independently predict poor prognosis in prostate cancer patients33:190, Taken
together, these results suggest that the two a catalytic subunits may have opposing actions in
prostate cancer, with the a1 subunit acting more oncogenic while the a2 subunit appears to
have tumor suppressive properties.

Like AMPKal, AMPKp1 may also have oncogenic roles. The gene encoding AMPKp1,
PRKABI1, was overexpressed in metastatic prostate cancers compared to primary tumors in
four separate clinical cohorts'91, Correspondingly, low PRKABI expression predicts
favourable clinical prognosis190102.103 |n addition, AMPKp1 was identified in an unbiased
RNAI screen as an essential component for prostate cancer cell survivall0l, These data are
supported by work demonstrating increased PRKABI expression in colorectal cancer lesions
compared to matched benign tissues194.

Genetic studies have revealed that the subunits are not necessarily redundant and therefore
different AMPK complexes likely have unique activities?. Further, different stimuli can lead
to changes in the heterotrimer composition105-197_ L ittle is known regarding which

Nat Rev Urol. Author manuscript; available in PMC 2017 November 06.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Khan and Frigo

Page 5

heterotrimer complexes are preferred in cancers and if their composition changes in response
to oncogenic or tumor suppressive signals. The combined effect of elevated levels of the al
and B1 subunits with their predominantly cytoplasmic subcellular localizations suggest
extranuclear AMPK complexes may play a significant role in prostate cancer. Thus, the
cytoplasmic kinases (described below) that rapidly activate these AMPK complexes likely
would also have important roles in prostate cancer. To that end, multiple groups have
developed new molecular tools to assess AMPK activity at different subcellular
locations198.109, These key studies demonstrate that diverse upstream cues can activate
unique subcellular AMPK populations. We hypothesize that each one of these unique
subcellular AMPK complexes will be associated with, and can therefore regulate, a specific
set of downstream signalling targets. As a result, depending on the duration and type of
upstream signal, very different AMPK-mediated events would be elicited. Thus, the
common oversimplification of general AMPK activity could lead to numerous
misunderstandings and incorrect conclusions.

Regulation of AMPK

AMPK can be activated by both allosteric modulation and posttranslational modifications
(Figure 3). While still a hotly debated area, the allosteric effects may pale in comparison to
the regulatory effects of posttranslational modifications such as Thr172
phosphorylation110-112 Regardless, the most well-studied mechanism of AMPK activation
is activation by AMP/ADP:ATP ratio. When the AMP/ADP:ATP ratio increases in the cell,
AMP/ADP binds to the vy subunit of AMPK3, This causes a conformational change in the y
subunit that, in conjunction with a B-subunit myristoylation event®4, exposes the Thr172 site
located on AMPK’s a-catalytic subunit. Phosphorylation of this site then activates AMPK
~100-fold®1.113, Thus, the phosphorylation of Thr172 is tightly regulated by upstream
kinases and phosphatases.

The known Thr172-targeting kinases of AMPK are LKB1, TGF-p activated kinase-1
(TAK1) and calcium/calmodulin-dependent protein kinase kinase-2 (CaMKK2 or
CaMKKQp). LKB1, which activates AMPK in response to energetic stress (ex. high AMP/
ADP), is a tumor suppressor that is thought to be the dominant AMPK kinase in the body.
However, several lines of evidence indicate that LKBL1 is not the predominant AMPK kinase
in the prostate. First, while LKB1 is a known tumor suppressor for many types of cancer,
prostate cancer is not one of them!14. In support of this, when LKB1 was deleted in
PTEN*/~ mice, there was an increase in tumor incidence for many cancer types but not
prostate cancer!1%. Second, androgens were reported to decrease L KB1 expression and
subsequent AMPK phosphorylation in mouse 3T3-L1 cells!16. This effect is in direct
contrast to the increase in AMPK phosphorylation observed following androgen treatment in
prostate cancer cells34:35, Third, LKBI is not highly expressed or regulated by AR in
prostate cancer cell models'’. Forth, in a study that did suggest LkbZ deficiency caused
prostatic neoplasia in mice, the authors 1) deleted LAbZ using a mainly gastrointestinal
track-specific driven Cre rather than a prostate-specific driven Cre and more importantly 2)
observed continued high levels of Thr172-phosphorylated AMPK in LkbI-deficient
prostates?18. This latter data led the authors to conclude that LKB1 was not an AMPK
kinase in the prostate. To that end, LKB1 phosphorylates a number of other proteins and
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hence, if LKB1 were to have antiproliferative effects, this could be due to AMPK-
independent effects!19. For example, LKB1 is known to phosphorylate and stabilize the
tumor suppressor PTEN, one of the most commonly mutated/deleted tumor suppressors in
prostate cancerl20,

TAK1 is thought to be another activator of AMPK; however, more in depth studies are
needed to understand whether this occurs /in vivoand requires LKB1121.122 A1AP3K7, the
gene for TAK1, is often lost during development of prostate cancer!23-125 But these
findings appear at odds with the increased Thr172-phosphorylated AMPK levels observed
during the development of prostate cancer’:33123-125_ Alternatively, functional data indicate
that TAK1’s tumor suppressive effects are mediated through other stress kinases, namely
p38 and c-Jun N-terminal kinasel26. Taken together, these data suggest that TAK1 is not a
major AMPK Kinase in the prostate.

Roughly a decade ago, CaMKK2 was identified by three separate groups to be a Thr172-
targeting AMPK kinasel27-129 |n 2011, we demonstrated that androgens, via AR, directly
increased the expression of CAMKKZ4. CaMKK2 phosphorylated and activated AMPK,
leading to increased prostate cancer cell migration and invasion. The androgen response
element which we identified and showed was responsible for AR-mediated expression of
CAMKKZ24 is one of the most robust AR binding sites in castration-resistant prostate cancer
(CRPC) tissuel30. Interestingly, CaMKK2 can augment AMPK activity under starvation or
nutrient-rich conditions, suggesting AR-CaMKK2 may potentiate AMPK activity
independent of the environmental state. Later, two independent groups confirmed our
findings and also demonstrated that CaMKK?2 levels were elevated in clinical samples and
track with disease progression32:36, These findings correspond with the clinical data
demonstrating that levels of the Thr172 phosphorylated form of AMPK are increased in
prostate cancer and further increased in the advanced stages of the disease’+33:123-125 | ast
year, Hu et al demonstrated that the tumor suppressive microRNA, miR-224, suppressed
prostate cancer cell proliferation through decreasing CAMKKZ expression!3L. Clinically,
combined low miR-224 and high CAMKKZ expression correlated with advanced disease
and shortened survival. Remarkably, in this study the authors showed a proliferative role for
CaMKK?2 even in AR-negative DU145 cells, indicating that in some of the most aggressive
subtypes of prostate cancer CAMKK2 may be expressed and driving oncogenic processes
independent of AR. Collectively, these studies suggest that CaMKK?2 is the dominant
AMPK kinase in prostate cancer. In addition, new oncogenic roles for CaMKK2 in other
cancer types such as stomach, liver and brain have been observed132-134 \While a promising
target, additional work is needed to assess CaMKK2’s i) functional role at different disease
stages, ii) regulation, and iii) complete mechanism(s) of action (to understand potential side
effects).

AMPK can also be allosterically activated in two ways. First, AMPK can be allosterically
activated by the binding of AMP, but not ADP, to the -y subunit. This direct allosteric
activation by AMP does not require the B subunit myristoylation®. Second, AMPK can be
pharmacologically activated by the binding of drugs such as A-769662 to the B subunit133,
Though drugs like A-769662 function in part by inhibiting the dephosphorylation of Thrl172,
they also allosterically activate AMPK. As such, this type of activation does not necessarily
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require Thr172 phosphorylation of the a subunit but does typically involve the
autophosphorylation of Ser108 in the B subunit, which is often required for full AMPK
activity92. It is not known whether AMPK can be activated in the absence of Thr172
phosphorylation in response to endogenous signaling.

There are other ways in which AMPK could be regulated in prostate cancer. For example,
DNA damaging agents like ionizing radiation and some chemotherapies activate AMPK via
ataxia telangiectasia mutated (ATM), an initiator of the DNA damage response136-141,
While there is still debate regarding whether LKB1 is required for this genotoxic response,
this will likely have consequences for therapeutic resistancel37:138.140-142  Additionally,
reactive oxygen species (ROS) can increase AMPK activity38.143.144 This is significant
because oxidative stress is one of the hallmarks of aggressive prostate cancersl4®, Although
the exact mechanisms through which this occurs are still being elucidated (ex. could also
include ATM142.146) "this may function as a survival signal for cancer cells coping with the
harsh tumor microenvironment38. Conversely, it has been reported that protein kinase B
(Akt) can phosphorylate AMPK and reduce AMPK’s activation by LKB1147. This would
seemingly be an important feedback mechanism in prostate cancer where most advanced
stages exhibit elevated phosphoinositide 3-kinase (P13K)-Akt signaling®. However, it is
unclear if this type of regulation occurs in prostate cancer where a) levels of activated
AMPK remain high even in the presence of increased Akt’:3337 and b) LKB1 does not
appear to be the major AMPK kinase (described above).

AMPK-regulated processes

One of the most pressing questions regarding AMPK signaling is “Which downstream
proteins does AMPK target in cancer?” Presumably not all AMPK-modulated processes are
oncogenic and/or tumor suppressive. ldentification of the specific cascades that are
modulated by AMPK would facilitate our understanding of whether AMPK was having
oncogenic or tumor suppressive effects and therefore if AMPK should be modulated
therapeutically. Further, parsing out the exact downstream processes that are true oncogenic
drivers would highlight potential new therapeutic targets. Listed in Tables 1 and 2 are
previously described direct!8.24.26.93.95,148-203 g indirect?/198.204-211 AMPK targets,
respectively. A number of the targets have been described in greater detail in several
excellent reviews1.98:117,119.212.213 ' At this time it is not known whether many of these are
regulated in prostate cancer or if they have a pathogenic role in the disease. Certainly more
work is needed to elucidate their regulation and role. An important point to remember is that
rarely does the regulation of signaling pathways, such as those modulated by AMPK, occur
in isolation. Most cancer signaling networks are influenced by additional oncogenic
cascades such as PI3K-Akt or, as is typically the case in prostate cancer, AR. Below is a
description of some of the known AMPK targets that likely play a role in many prostate
cancers and how they could be influenced by other events such as AR signaling.

AMPK has been classically defined as a master regulator of cellular metabolism in which
the activation of AMPK by energetic stress leads to an overall increase in catabolic
processes. These catabolic reactions serve to breakdown nutrients for the generation of ATP.
Simultaneously, AMPK shuts down a diverse range of anabolic processes to conserve ATP
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levels. Hence, many of AMPK’s direct actions lead to an inhibition of proliferation as a way
to deal with the energetic stress. This would be consistent with a role for AMPK as an initial
tumor suppressor. For example, AMPK can phosphorylate wild-type p53 on serine-15 to
potentiate its activity as a tumor suppressor, increasing p21 levels and causing a G1/S cell
cycle arrest193.194 Byt while sustained AMPK causes wild-type p53-mediated cellular
senescence, transient AMPK activation promotes cell survival following glucose starvation,
consistent with a context-dependent, oncogenic role for AMPK194, Likewise, AMPK has
been shown to phosphorylate and potentiate the transcriptional activity of FOX03179.180,
FOXO3 is a transcription factor that often functions as a tumor suppressor, but can also help
manage metabolic stress?14-216, Further, increased AMPK activity led to the
phosphorylation of threonine-198 of the cell cycle inhibitor p2728. While phosphorylation
caused a stabilization of p27, it enabled survival during starvation and/or metabolic stress
through the induction of autophagy. However, it is not clear whether this signaling cascade
would be present in prostate cancer since it required LKB1 and, as described above, LKB1
does not appear to be the dominant AMPK kinase in the prostate. In addition, the existence
of mutations and/or deletions in several of these tumor suppressors such as p53, suggest that
many of these tumor suppressive signals may not even exist in advanced prostate cancer.

One of the first described activities of AMPK is its ability to regulate lipid
metabolism164.217.218 Thjs occurred by the phosphorylation and inhibition of several
proteins such as acetyl Co-A carboxylase 1 (ACC1), ACC2, 3-hydroxy-3-methyl-glutaryl-
CoA (HMGCR), and the lipogenic transcription factors sterol regulatory element binding
proteins-1 and -2 (SREBP-1 and 2) and hepatocyte nuclear factor 4A (HNF4A)164.217-220
The exact biological effect is determined by which specific proteins are targeted. For
example, phosphorylation/inhibition of ACC1 blocks de novo fatty acid synthesis, while
inhibition of the related isoform ACC2 increases fatty oxidation. Recently, AMPK was
demonstrated to promote cancer under conditions of matrix detachment or glucose
deprivation by inhibiting ACC1 and ACC2, resulting in the maintenance and production of
pro-tumorigenic NAPDH levels, respectively32. Regardless, it is not clear how AMPK
signaling through any of these downstream targets such as ACC1 will impact prostate
cancer. This is because many of the inhibitory effects of AMPK, such as AMPK-mediated
phosphorylation and inhibition of ACCL1, are overridden by AR signaling. Increased
lipogenesis is one of the hallmarks of prostate cancer??l. AR increases the expression of
several enzymes involved in de novo lipogenesis including fatty acid synthase, ATP-citrate
lyase, HMGCR, ACC and farnesyl diphosphate synthase through the increased expression of
the SREBF1 (encodes SREBP-1), SREBFZ2 (encodes SREBP-2) and SCAP, which further
activates the SREBPs?21222 Thus, when AR signaling is present, as is the case in most
prostate cancers, cells can simultaneously maintain AMPK signaling and pro-tumorigenic
lipogenesis.

Prostate cancer is metabolically unique compared to many other cancer types. Relative to
benign prostate, prostate cancer exhibits increased fatty acid and glucose oxidation223-225,
This enhanced TCA cycle flux paradoxically occurs despite the above-described
accumulation of intracellular lipid levels. Increased TCA cycle flux is now know to be in
part caused by decreased levels of zinc in the transformed prostate cell223.226-228 The
decreased zinc leads to a derepression of the enzyme aconitase, facilitating the forward
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metabolism of substrates through the cycle. In prostate cancer, this process can also be
augmented by the AMPK-mediated induction of peroxisome-proliferator-activated receptor
v coactivator 1a. (PGC-1a.), a master regulator of mitochondrial biogenesis33:172,
Importantly, this entire cascade can be activated by AR33. The precise mechanism of
AMPK’s induction of PGC-1a expression is not known and may involve both direct and
indirect effects33:172.204 There may also be other mechanisms by which AR-mediated
AMPK signaling increases fatty acid oxidation in prostate cancer8:32.178.192_Cyriously,
there are additional AMPK targets that are known to regulate mitochondrial turnover (ex.
mitophagy) and function (ex. fragmentation), suggesting that AMPK signaling may
simultaneously promote the breakdown of old mitochondria and the synthesis of new
mitochondria, perhaps improving cellular function189.201.213 To what degree this occurs in
prostate cancer is currently not known.

In addition to alterations in mitochondrial metabolism, AMPK can modulate other aspects of
sugar metabolism. For example, AMPK can directly phosphorylate two of the four
isoenzymes of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 2-phosphatase (PFKFB),
an enzyme that represents the rate-limiting step of glycolysis#0:173.174,229,230 These
phosphorylation events on PFKFB2 and PFKFB3 increase their kinase activity and thus
promote forward flux through glycolysis. In prostate cancer, there is likely an additional
level of regulation because AR signaling increases the expression of PFKFB231, PFKFB2
has also been demonstrated to be phosphorylated and activated at the same AMPK-target
site in response to oncogenic PI3K-Akt signaling190:232, While AR-AMPK-PFKFB
signaling is thought to occur in prostate cancer3®, the extent each isoform is stimulated by
AR and/or AMPK, how the isoforms are regulated, and their functional roles are
incompletely defined.

Beyond its role in glycolysis, AMPK may also have a maore general function in glucose
uptake. While not yet shown, it is possible that AMPK-mediated processes identified in
other tissues may have relevance in prostate cancer. For example, AMPK is known to induce
the translocation of the glucose transporter, GLUT4, in muscle and fat193:156.233.234 Thjs
occurs through the direct phosphorylation and regulation of TBC1D1 and TBC1D4/AS160,
molecules that control vesicle trafficking. Additionally, AMPK has been reported to increase
GLUT1 levels through a variety of mechanisms29%-211, But like with the regulation of
PFKFB2, other oncogenic cues can influence glucose uptake, and as such need to be
considered. To that end, PI3K-Akt signaling can increase glucose transporter translocation
and function in other cancers235. Similarly, GLUT1 levels can be stimulated by MYC,
another commonly amplified oncogene in prostate cancer00:235 |n addition, both PI3K-Akt
and Myc can increase the expression of HK2, the first step of glycolysis and hence may
further augment glucose uptake and metabolism?236:237,

Autophagy is a cellular recycling process that is increased following AMPK activation.
Similar to AMPK, initial research first defined autophagy as a tumor suppressive
process?38:239 Also like AMPK, a number of recent studies have identified an oncogenic
role for autophagy, particularly in the late stages of the disease?40:241, These findings extend
to prostate cancer where autophagy has been implicated in disease progression30:242-244,
Despite initial indications of a functional role for autophagy in prostate cancer, it is still not
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clear how this process is used during the different stages of the disease or how it is regulated.
For example, there are discrepancies regarding AR’s regulation of autophagy30:242.243.245,
This is somewhat surprising given AR’s robust induction of AMPK in prostate
cancer33-36.130 The discrepancies may be due to variations in the stimuli duration (ex.
sustained versus transient), use of indirect or non-selective modulators of AMPK and
autophagy such as 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), metformin,
chloroquine, etc.) and treatment conditions. Regarding the last point, most experiments that
are performed to examine the effects of hormones are done using media that contains
charcoal-stripped serum, a condition commonly referred to as “androgen-starved”. While the
charcoal-stripping of serum indeed removes most androgens, it also removes many other
steroid hormones and peptide growth factors that could affect AMPK and autophagy. To that
end, it is worth noting that switching AR-negative PC-3 prostate cancer cells from regular
serum-containing media to the “androgen-starved”, charcoal-stripped serum containing
media activates AMPK and autophagy in an AR-independent manner (unpublished data).
Clearly, additional studies are needed using more sophisticated molecular and genetic
approaches to help resolve these discrepancies.

AMPK can directly increase autophagy through the phosphorylation of ULK1 and possibly
ULK?2188.189.246 Recently, AMPK was also shown to increase autophagy via the direct
phosphorylation of VPS34 and Beclin-1169, Moreover, AMPK can indirectly increase
autophagy through decreasing mTOR signaling, an inhibitor of autophagy. This inhibition of
mTOR, and thus derepression of autophagy, is thought to occur predominantly through two
mechanisms. First, AMPK can directly phosphorylate the mTOR adaptor protein raptor,
inducing the binding of 14-3-3 to raptor and inhibiting the mTORC1 complex71. Second,
AMPK can directly phosphorylate TSC2 to potentiate its repressive effects on mTORC1170,
AMPK may also regulate mTOR signaling through the phosphorylation and inhibition of
upstream components of the PI3K-Akt-mTOR pathway such as insulin receptor
substrate-1177. However, as described above, this later regulation may not be prevalent in
prostate cancer given the propensity of high PI3K/Akt signaling in advanced prostate
cancers. In addition, it may be difficult to predict AMPK’s effects on mTOR signaling in
prostate cancer given the unusual crosstalk between the two pathways.

In contrast to what has been described in conventional physiology, AMPK and mTOR
signaling can simultaneously occur in prostate cancer33:34247.248 Thys, caution should be
used when extrapolating results from basic biology, or even other cancer types, regarding
AMPK and mTOR in prostate cancer. Why some crosstalk that occurs in other tissues does
not occur in prostate cancer is not entirely clear but recent evidence is beginning to address
how this may mechanistically occur. In prostate cancer, AR signaling increases the
expression of a splice variant of TSC2, termed TSC2A, that cannot block mTOR
signaling?49. This results in a unique situation in which the cancer cell can concurrently
activate two normally opposing signaling pathways. Hence, it may be possible that prostate
cells can enjoy the pro-cancer benefits of both pathways.

While AMPK is defined as a master regulator of cellular metabolism, new findings indicate
AMPK may have several non-metabolic roles that could impact processes of pathological
importance in cancer. For example, AMPK appears to have an important role in mitosis

Nat Rev Urol. Author manuscript; available in PMC 2017 November 06.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Khan and Frigo

Page 11

through several mechanisms including targeting components of the mitotic spindle assembly,
regulating the breakdown and assembly of the Golgi apparatus, and modulating the
cytoskeleton159.198,207,250-252 \\hile these effects may at first appear contrary to the
induction of tumor suppressive factors such as p53 (described above), collectively these
events may function as a protective checkpoint, assuring that cell cycle progression does not
occur prematurely. This type of “cautious” signaling would be in contrast to other reports of
more direct oncogenic roles for AMPK such as acting as an essential downstream effector of
oncogenic HRasV12 or Pten deletion that functions to directly phosphorylate and inhibit the
tumor suppressor retinoblastoma (Rb) protein4. To what extent this occurs in advanced
prostate cancer, where Rb is often mutated or lost, is unknown?233,

Finally, one of the emerging areas of interest is AMPK’s actions in the nucleus. While early
reports of AMPK functions largely pertained to cytoplasmic AMPK activity, it is now
evident that this kinase has additional roles in transcription and epigenetics. To that end,
AMPK can regulate the activity of several transcription factors and transcriptional
coregulators such as HNF-4a,, CAMP-response element binding protein (CREB), FOXO3,
PGC-1a, CRTC2 and class lla histone deacetylases33:162.172,178,179,199,200,203,219,254-258 |
addition, AMPK was reported to interrupt the association of nuclear receptors with the
coactivator p30093185_ This could have important implications in prostate cancer given the
key role of AR in the disease. Correspondingly, AMPK was reported to inhibit AR
activityl. However, this study appears to be in direct contrast to data from Karacosta et al
indicating that CaMKK2 potentiates AR activity in prostate cancer3%. In our hands, we have
been unable to detect either agonistic or antagonistic effects of CaMKK2 and/or AMPK on
AR activity with the caveat that we have only explored a limited gene set (unpublished data).
Hence, differences between groups may be attributable to variations in the subsets of AR-
target genes being regulated. Certainly, this is an area that needs further investigation.

The predominant view of those supporting a context-dependent role for AMPK suggest that
AMPK first acts as a tumor suppressor early in tumorigenesis and then later shifts towards a
more oncogenic role in the advanced stages of the disease, contributing to therapy resistance
and cancer reoccurrence3:98:119.259-268 'Early on, AMPK would be activated in response to
inhibitory mutations in tumor suppressor genes or gain-of-function events in known
oncogenic pathways. This would lead to the classic AMPK-mediated catabolic functions
including inhibition of oncogenic mTOR signaling and/or lipogenesis as well as regulation
of the cell cycle. As the tumor evolves, the cancer cells encounter various stresses such as
hypoxia, matrix detachment and starvation in addition to chemotherapies that also increase
cellular stress. At this advanced stage, AMPK is hypothesized to drive cancer progression by
promoting metabolic plasticity, resistance to cellular stress and thus, cell survival.

While the early/tumor suppressive and late/oncogenic paradigm could indeed be true for a
number of cancers, prostate cancer may be unique. Contrary to many other cancers, clinical
data suggest that AMPK activity is increased in both early and late disease stages’:33:37.268,
In addition, as described above, many of the classic tumor suppressive functions of AMPK
are overridden in prostate cancer by other canonical signaling pathways. For example, AR’s
ability to increase mTOR signaling and lipogenesis in the presence of AMPK signaling
(described aboveé), may negate two of the major tumor suppressive networks. However, it

Nat Rev Urol. Author manuscript; available in PMC 2017 November 06.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Khan and Frigo

Page 12

should be noted that prostate cancer is an extremely heterogeneous disease?%9. As such,
broad generalizations may lead to inaccuracies. Future studies are required to better
characterize AMPK’s disease stage-specific roles and whether these roles vary amongst
prostate cancer subtypes.

Targeting AMPK

Several strategies are currently being employed to modulate AMPK activity in cancer.
However, it is unclear whether agonists or antagonists should be used given AMPK’s
context-dependent role (oncogenic versus tumor suppressive). Further, the important roles of
AMPK in numerous physiological processes may ultimately preclude AMPK itself from
ever being a viable therapeutic target since alteration of this key signaling molecule will
likely have multiple side effects. Described below are efforts to activate or inhibit AMPK
activity and special considerations that will need to be considered moving forward.

Interest in targeting AMPK started when retrospective studies of diabetic patients taking the
biguanide drug metformin reported decreased risks of a variety of cancer types including
prostate cancer®®-92, These were extremely exciting reports since metformin was an ideal
candidate drug for repurposing as it is cheap, widely available, easy to use and safe at the
concentrations used to treat diabetes. But as described above, recent retrospective as well as
new prospective studies have called into question the anticancer effects of metformin in
prostate cancer (66-78 and (NCT01433913)). Debate continues in part because metformin’s
potential anticancer mechanism of action is still not clear.

In general, it is thought that the effects of metformin on cancer can be through two
mechanisms categorized under indirect or direct effects. The most obvious indirect effect
would result from metformin’s ability to reduce circulating insulin levels, a known mitogen
and anti-apoptotic signal for some cancers2’9, What is not known in this regard is whether
the metformin-induced changes in insulin levels would be significant enough, particularly in
nondiabetics, to alter tumor biology2”2. In contrast, numerous preclinical studies have shown
direct tumor suppressive effects in in vitroand in vivo models272273, One of the major
concerns with ongoing clinical trials was the question of whether a high enough
concentration of metformin could reach the tumor cell to have direct anti-tumor effects. This
depends both on the bioavailability of the drug and cellular uptake. Doses of metformin that
are used to treat diabetic patients achieve plasma concentrations in the portal vein, where the
drug is first absorbed and shuttled to, between 40-70 uMZ274. After liver uptake (note,
metformin is not metabolized in animals or humans and is eliminated by the kidneys
unchanged), systemic plasma concentrations drop to ~10-40 pM273, The micromolar
concentrations used to treat diabetics are clearly enough to decrease glucose production in
the liver, likely functioning in part through AMPK. However, there is recent debate even in
this regard276:277_ An initial concern in the field was that the majority of in vitro studies
required higher concentrations of metformin (i.e. millimolar range) to inhibit the respiratory
chain complex 1 and have tumor suppressive effects2’8. This would present a problem for
the model that metformin has direct tumor suppressive effects. In this case, high enough
drug concentrations could not reach the tumor and would indicate any potential anti-cancer
effects would have to be mediated through an indirect mechanism. If one did want direct
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tumor suppressive effects, new clinical trials using higher metformin doses would have to be
considered. However, this might defeat one of the major benefits of repurposing metformin,
its very safe clinical profile at the doses used to treat diabetics as higher doses may result in
dangerous side effects such as lactic acidosis. Regardless, two brief letters were recently
(April 2016) published back-to-back in Cell Metabolism that suggest the current doses being
used in preclinical animal models may be sufficient to model effective clinical doses??9:280,

Dowling et al used liquid chromatography-mass spectrometry to demonstrate that in a
xenograft model of colorectal cancer, mice given drinking water with metformin dissolved
into it at a concentration of 5 mg/ml (comparable to what has previously been used in similar
studies), plasma and, surprisingly, tumor concentrations of metformin reached ~30 pM, a
concentration that was sufficient to increase AMPK activity (assessed by AMPK Thr172
phosphorylation)27°. It was not reported whether metformin-treated mice also exhibited
decreased tumors in this experiment. To achieve similar phospho-AMPK Thr172 levels in
cell culture, HCT116 colon cancer cells had to be treated with 10-20 mM (>300 fold
increase) metformin. These results indicate that metformin is much more readily taken up /in
vivothan in vitro. Interestingly, samples taken from nondiabetic breast cancer patients given
metformin exhibited considerably lower plasma metformin levels (~2.8 uM) than those from
diabetic patients (up to 25 uM), suggesting higher doses may be needed for anti-cancer
efficacy particularly in non-diabetic patients. These results again call into question a role for
metformin’s reported direct antitumor effects in previous clinical studies. If high enough
concentrations could not be reached in patient tumors, how could the reported beneficial
effects of metformin be due to direct actions on the tumor?

Chandel et al performed a similar study using the HCT116 colon cancer xenograft model but
with a 1.25 mg/ml solution of metformin?80, a concentration the investigators previously had
shown to inhibit tumor growth in this model (a functional role for AMPK was never tested).
Here, they detected both plasma and tumor metformin concentrations in the range of 3.2—
12.4 uM, levels that can be achieved in routine diabetes treatment28L, In addition, it was
noted that due to its cationic nature, metformin is predicted to accumulate 100- to 500-fold
in the mitochondria due to the membrane potential. Collectively, these results indicate that
the doses currently being used in ongoing clinical trails are reasonable. However, this still
leaves the question that if doses currently given to diabetic patients are sufficient to block
mitochondrial activity in patient tumors, then why did the previous epidemiological studies
not consistently demonstrate anticancer effects? More importantly, why was no survival
benefit observed following the first formal blinded clinical trail of metformin even though
plasma drug levels were in the micromolar range282? Certainly further work is needed in this
area. It will be particularly important to determine whether isolated mitochondria from
treated patients indeed do have significantly enriched metformin levels and whether
additional biological factors like the expression of membrane transporters influence drug
efficacy.

The hydrophilic nature of metformin likely prevents it from passively diffusing through
plasma membranes. Hence, cellular uptake is controlled by cationic transporters such as
OCT1, OCT2 and OCT3 (encoded by the genes SLC22A1, SLC22A2and SLC22A3
respectively)283. OCT3/SLC22A3is highly expressed in the prostate indicating that
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metformin uptake would not be an issue284. But interestingly, low SLC22A3expression is a
strong predictor of poor prognosis in prostate cancer patients285-288 \Whether changes in
SLC22A3expression could in part explain some of the differences between the contrasting
retrospective analyses of metformin’s effects on prostate cancer remains to be determined.
One would predict that tumors with low OCT3 levels would have decreased sensitivity to
metformin. As risk allele variants associated with SL.C22A3 expression are
known?285.286,288,289 these could be screened prior to selection of patients for future clinical
trials.

Despite the controversies surrounding the clinical studies, enthusiasm for metformin is still
high due to preclinical studies demonstrating that the drug has potent therapeutic effects
across a broad range of cancers?%0. Researchers have hypothesized that the drug’s anticancer
effects could be mediated through AMPK because of work demonstrating that metformin
can increase AMPK activity in cells20:220.291-293 \etformin, like other biguanides such as
phenformin, can indirectly activate AMPK by inhibiting complex | of the electron transport
chain®1:63.276,278,294.295 Thjs subsequently causes cellular energy stress, increasing the
AMP/ATP ratio that could lead to an activation of AMPK complexes throughout the cell.
Further studies pointed to an additional metformin-initiated, genotoxic activation of
AMPK2%_ But the exact mechanism of this effect has been called into question297:298, |jke
metformin, a number of other activators of AMPK, including synthetic (ex. phenformin,
AICAR, rosiglitazone, 2-deoxyglucose, etc) and natural (ex. salicylate, resveratrol,
berberine, etc) compounds, can inhibit cancer cell growth, migration and/or
invasion1:7:20:293.299.300 | contrast, AICAR was able to rescue the inhibition of prostate
cancer cell proliferation caused by the molecular or pharmacological inhibition of
CaMKK235. It is important to note that many of these compounds such as metformin and
AICAR have been demonstrated to be highly nonspecific and clearly have tumor suppressive
(and possibly oncogenic) properties independent of AMPK?#5:47:49,50,53,54.276 |1 js
reasonable to speculate then that additional stress signaling pathways may be responsible for
the decreased cellular growth following the onset of stress. In fact, induction of cell death by
several AMPK *“activators” can be exacerbated by knocking out AMPK, indicating that
AMPK is often turned on in response to these drugs as a last ditch survival
effort21-2326.28-31,53,170.178 |n this regard, use of these compounds in combination with
inhibitors of AMPK could be warranted. While drugs like metformin may indeed have
tumor suppressive effects under some contexts, this may be due more to systemic effects
rather that direct targeting of the cancer cell itself. Genetic studies using conditional
knockout and transgenic animals will be essential to parse out these mechanisms of action.

To avoid some of the uncertainties inherent to using indirect activators of AMPK, direct
activators of AMPK have been identified and shown to have tumor suppressive properties in
several cancers11:1217.47 The exact AMPK binding sites for some of these compounds (ex.
OSU-53, PT1) are incompletely defined!1:1314.301 Fyrther, the off-target effects of these
drugs are unclear®. One of the more recently developed direct activators, MT 63-78, was
able to decrease the proliferation of prostate cancer cells in vitro as well as suppress tumor
growth /n vivol’. MT 63-78, similar to A-769662 and salicylates, allosterically activates
AMPK by directly binding to the B1 regulatory subunit17:390:302 These results would appear
at odds with the above-described clinical data and functional studies that suggest the p1
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subunit is oncogenic101.104, This apparent conundrum may be due to differences in the
duration of stimuli. For example, transient pulses of AMPK activity may only lead to the
phosphorylation and modulation of the most sensitive downstream AMPK targets.
Conversely, a sustained robust activation of AMPK, such as in the presence of
pharmacological activation by MT 63—-78 may hyperactivate a greater number of AMPK
complexes, therefore modulating a larger set of downstream targets. In this latter case, the
broad activation of downstream targets would have tumor suppressive effects such as
increasing cellular stress.

In contrast to studies demonstrating AMPK activity blocks prostate cancer cell growth,
antagonists of AMPK such as compound C inhibit prostate cancer cell proliferation and
migration%-31.34.37_n addition to compound C, other inhibitors of AMPK have been
identified. These include the kinase inhibitors sunitinib and midostaurin that have potent
anticancer effects /n vitroand in vivo in a variety of cancers303:304. However, similar to
many of the AMPK agonists, these drugs have well known pleiotropic effects and hence
likely also possess AMPK-independent tumor suppressive properties8:50:305,.306,

Part of the rationale for the use of AMPK activators in cancer is AMPK’s known ability to
inhibit oncogenic cellular processes such as de novo lipogenesis and mTOR signaling.
However, inhibitors of lipogenesis and mTOR already exist raising the question “Could we
instead target the specific oncogenic, downstream processes of AMPK signaling?”
Furthermore, AMPK agonists may not have a strong effect in prostate cancer where AR and
PI3K-Akt are commonly hyperactivated and increase lipogenesis and mTOR signaling and
thus may override the inhibitory effects of AMPK on these processes. Conversely, inhibition
of AMPK may augment lipogenesis and/or mTOR signaling. In this regard, combined
treatment with inhibitors of AMPK and lipogenesis and/or mTOR may have utility.
However, it remains to be determined whether such an approach would have severe side
effects given the important roles of these processes throughout the body.

A key step that needs to occur in our understanding of AMPK’s actions in prostate cancer is
the identification of the downstream targets of AMPK that are the drivers of the disease.
Elucidation of these pathways may reveal better, and more selective, therapeutic targets.
Alternatively, if we can identify the tissue- or disease-specific regulators of AMPK, these
may also yield viable new targets. CaMKKZ2, as an upstream kinase of AMPK, may
represent one such target. As highlighted above, CaMKK?2 is increased in prostate cancer,
has a restricted expression profile, and mediates several oncogenic processes. A cell-
permeable inhibitor of CaMKK2, STO-609, has been available since 2002307,
Correspondingly, STO-609 treatment reduced androgen-sensitive prostate cancer
proliferation, migration and invasion as well as the growth of castration-resistant
tumors34:35, Therefore, STO-609, or an STO-609-like compound with better
pharmacokinetic and pharmacodynamic properties, may have therapeutic value in prostate
cancer.
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Conclusions

To understand AMPK’s role in prostate cancer, one must first identify 1) the type of stimulus
(i.e. how AMPK is activated), 2) the composition of the heterotrimer(s) and 3) the
downstream driver pathways that are being modulated. All three are interconnected. The
type and duration of the stimulus will dictate which subcellular AMPK complexes are
activated and for how long. The amount of AMPK complexes at each subcellular site will be
influenced by the subunit composition. The location of the complexes may also be regulated
by posttranslational modifications and/or additional anchoring mechanisms. At this time, it
is poorly understood what determines the distribution of the complexes. Each distinct
AMPK complex is going to be associated with a set of targets that can be phosphorylated
when that particular complex is activated. One should also be cognizant that many of these
downstream processes are influenced by other oncogenic signals such as AR and/or Myc.
For instance, even though increased AMPK may lead to the phosphorylation of ACC1, an
event known to block de novo lipogenesis, in most prostate cancers AR signaling likely
overrides this blockade by increasing the expression of an entire network of enzymes
involved in lipogenesis. Taken together, the upstream cues determine which specific AMPK
complexes are activated and therefore what downstream biological processes will be
modulated. An example would be the activation of AMPK by prolonged energetic stress (ex.
metformin treatment) in contrast to the controlled activation of a subpopulation of AMPK by
an upstream kinase such as CaMKK2. High levels of AMP caused by prolonged energetic
stress would lead to the robust activation of a large number of AMPK complexes throughout
the cell, modulating most of the known AMPK targets and processes. Compare this to the
activation by CaMKKZ2, a major upstream kinase of AMPK in prostate cancer (described
above). CaMKK?2’s predominant cytoplasmic localization and requirement for a direct
association with AMPK to phosphorylate and activate the protein indicates CaMKK2 will
only increase the activity of a smaller, restricted set of AMPK complexes located primarily
in the cytoplasm. This is exacerbated in prostate cancer where the a1 isoform of the
catalytic subunit, which is more cytoplasmic8:89, is the predominant form33.34.99,
Interestingly, to date the majority of AMPK’s tumor suppressive effects have been
associated with its nuclear functions (ex. p53, p21 and p27 induction, p300 inhibition, etc).
Hence, stimuli that favor the activation of non-nuclear AMPK complexes may favor the
induction of more oncogenic processes.

Given AMPK’s ubiquitous and diverse roles throughout the body, we suspect that broadly
targeting AMPK may not be a viable option in cancer. Further, the use of direct AMPK
activators or inhibitors will likely suffer from the counterproductive activation of some
AMPK-mediated oncogenic pathways and impairment of other AMPK-mediated tumor
suppressive signals. We propose that the elucidation of downstream AMPK-mediated
processes will 1) uncover the driver signaling events and 2) highlight new therapeutic
targets. Alternatively, identification and targeting of the prostate cancer-specific upstream
cascades that favor the activation of these downstream oncogenic events could have greater
overall efficacy because it would impact multiple AMPK-mediated, pro-cancer processes. In
addition, the tissue and disease-specific nature of the upstream signal would offer a unique
therapeutic target to prostate cancer, potentially mitigating side effects. Finally, while the
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model of AMPK signaling outlined above is for prostate cancer, it is possible that the
molecular concepts described here could be extended to explain AMPK actions in other
cancers, diseases and even non-disease states.
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Key points

AMPK is a heterotrimer complex that can come in at least 12 different
versions. The different AMPK complexes can have unique subcellular
locations and activities.

Diverse upstream signals regulate different AMPK subcellular complexes.

While first identified as a master regulator of metabolism, AMPK may have
numerous roles beyond metabolism.

AMPK can have context-dependent effects in cancer.
CaMKK?2 appears to be the dominant upstream AMPK kinase in the prostate.
Most small molecule modulators of AMPK have known off-target effects.

Given its ubiquitous expression and varied roles throughout the body, directly
targeting AMPK may present numerous on-target side effects.
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Scenario 3

Location 1 Location 1 Location 1
Active complex Active complex
is here is here
Effects: A, B, C Effects: A, B, C
Location 2 Location 2 Location 2
Active complex | | Active complex
is here is here
Effects: C, Y Effects: C, Y

Total Effects: A, B, C

Total Effects: C, Y

Figure 1. Compartmentalized signaling
A, Example of compartmentalized signaling. In Scenario 1, a particular signaling complex is

activated at a specific location (Location 1). At Location 1 are the parts needed to generate
certain effects (A, B, C) that are also known to be regulated by the described active complex.
Thus, when the active complex is at this site (Location 1), the associated downstream
processes are regulated to produce effects A, B and C. Processes regulated by the active
complex but located elsewhere, such as at Location 2 that could produce effects C and Y,
will not be altered in this scenario. In contrast, when the complex is activated at Location 2
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and not 1 such as in Scenario 2, then only effects C and Y are produced and not effects A
and B. In Scenario 3, the complex is activated everywhere and hence, all known processes
controlled by the active complex will be regulated, producing a broad range of effects (A, B,
C, Y). B, Regarding AMPK-mediated cellular effects, there are different AMPK complexes
located throughout the cell (ex. cytoplasmic versus nuclear). Depending on which of these
complexes is activated (could be more than one), the net effect AMPK has on a cell will be
the summation of the actions of all of the activated subcellular populations of AMPK and
their associated downstream effector processes.
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A Energy stress Upstream kinase

/ (ex. CAMP) (ex. CaMIKK2)

AMPK AMPK
Effect #1 Effect #5 Effect #1

Effect#2 v Effect#4 Effect#2 WV
Effect #3 Effect #3
Oncogenic Tumor ﬁcogenic Tumorl
Scenario 1 Scenario 2

Nucleus

Scenario 1 Scenario 2

Figure 2. Upstream stimuli determine the differential regulation/activation of AMPK-mediated
downstream effects

A, Depending on the particular upstream cue (ex. energy stress (Scenario 1) or
phosphorylation by an upstream kinase (Scenario 2)), different subpopulations of AMPK
can be activated (or inactivated). The net phenotypic effect of each type of AMPK activation
will be the summation of all the regulated downstream pathways, shifting the balance
between oncogenic and tumor suppressive AMPK signaling. In Scenario 1, all downstream
AMPK targets (both oncogenic and tumor suppressive) are activated. Here, the tumor
suppressive functions could dominate. In Scenario 2, there is a more selective activation of
AMPK complexes that favor the induction of oncogenic downstream processes. B, The type
of upstream stimuli and thus manner in which cellular AMPK complexes are activated is
likely influenced by both the location of upstream cues and AMPK complexes, which can be
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influenced by amongst other aspects the subunit composition, as well as the duration of
signal. In this regard, in Scenario 1, a persistent energetic stress such as high AMP (or ADP)
levels would be able to activate the majority of AMPK complexes. In contrast, an upstream
kinase with a more restricted location such as CaMKK2 (Scenario 2) could only
phosphorylate/activate local AMPK complexes, perhaps for a limited duration. This would
lead to a restricted set of downstream processes that AMPK could regulate.
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AR

’l' \K1 Upstream
phosphatases

CAMKK2

lca2+
Myristoylation

Active Inactive

Figure 3. Proposed regulation of AMPK in prostate cancer
AMPK can be activated by multiple posttranslational modifications as well as energetic

stress (ex. high AMP or ADP levels). In the prostate, the dominant upstream kinase of
AMPK is CAMKK?2, a calcium-dependent kinase whose expression is directly controlled by
AR signaling. In contrast, AMPK can be inactivated by upstream phosphatases that, to date,
are still ill-defined in the prostate. Further, inhibitory phosphorylation events caused by other
kinases have been described but it is unclear if these modifications occur in prostate cancer.
Additionally, high levels of ATP are known to inhibit AMPK. However, the inhibition of
ATP may be overridden when CAMKK?2 is highly expressed.
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Direct AMPK Targets

List of previously validated direct targets of AMPK.
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AMPK Target Target Site (Human) Functional Consequence References
ACC1 S80 Inhibits ACC enzymatic activity leading to inhibition of de Carlson & Kim (1973), Davies
novo lipogenesis etal. (1990), Ha et al. (1994),
Munday et al. (1988)
ACC2 S222 Inhibits ACC enzymatic activity leading to promotion of Winder et al. (1997), Chen et
fatty acid oxidation al. (2000), Dzamko et al.
(2008), Steinberg et al. (2010)
AKAP1 S107 Facilitates mitochondrial respiration Hoffman et al. (2015)
AMOTL1 S793 AMPK phosphorylates AMOTL1 to stimulate Lats kinase DeRan et al. (2014)
which inhibits YAP
Beclin-1 S91, S94 Induces autophagy Kim et al. (2013)
BRAF S729 Promotes the association of BRAF with 14-3-3 proteins and Shen et al. (2013)
disrupts its interaction with the KSR1 scaffolding protein
CKle (Clock) S389 Increases CKle activity Um et al. (2007)
CLIP-170 S312 Results in CLIP-170 localizing closer to the distal end of the Nakano & Takashima (2010)
microtubules (cell polarity), modulating cell migration
CREB S133 Increases CREB transcriptional activity and expression of Thomson et al. (2008)
downstream target genes
CRY1 Clock) S71 Targets CRY1 toward ubiquitin mediated degradation Lamia et al. (2009)
CRTC2/TORC2  S171 Induces 14-3-3- interaction, blocks nuclear translocation and Koo et al. (2005)
association/activation of CREB
eEF2K S398 Activates eEF2K and blocks translation elongation by Browne et al. (2004), Hong-
inactivating eEF2; can also induce autophagy Brown et al. (2008), Leprivier
et al. (2013), Xie et al. (2014)
FOXO03 S413, S588 Increases transcriptional activity of FOXO3 Greer et al. (2007), Bodur et al.
(2015)
GBF1 T1337 Suppresses GEF activity of GBF1 resulting in disassembly Miyamoto et al. (2008)
of the Golgi apparatus
GFAT1/GFPT1 S261 Inhibits enzymatic activity of GFAT1, decreasing flux Li et al. (2007), Eguchi et al.
through the hexosamine biosynthetic pathway (2009)
HDACA4/5/7 S259, S498 Induces 14-3-3 hinding, cytoplasmic sequestration and McGee et al. (2008),
inhibition of HDACs Mihaylova et al. (2011)
H2B S37 Increases transcription of genes involved in cell survival Bungard et al. (2010),
HMGCR S872 Inactivates HMGCR and thus inhibits cholesterol synthesis Clarke & Hardie (1990)
HNF4 S304 Represses transcriptional activity of HNF4a Hong et al. (2003)
IRS1 S794 Context-dependent regulation of PI3K-Akt signaling Jakobsen et al. (2001), Qiao et
al. (2002), Tzatsos et al. (2007)
MFF S155, S172 Induction of mitochondrial fission Toyama et al. (2016),
Ducommun et al. (2015)
PAK2 S20 Promotes PAK?2 activity, leading to increased Banko et al. (2011)
phosphorylation/inhibition of MRLC
PFKFB2 S466 Increases PFKFB2 kinase activity and glycolysis Marsin et al (2000)
PFKFB3 S461 Increases PFKFB3 kinase activity and glycolysis Marsin et al (2002)
p27 T198 Stabilizes p27, inducing autophagy-mediated cell survival Liang et al. (2007)
p300 S89 Inhibits its ability to interact with nuclear receptors Leff et al. (2003), Yang et al.

(2001)
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AMPK Target Target Site (Human) Functional Consequence References
p53 S15 Increases p53 activity, promotes expression of p21 and cell Imamura et al. (2001), Jones et
cycle arrest al. (2005)
PGC-la T177, S538 Induction of PGC-1a and mitochondrial biogenesis Jager et al. (2007)
PPP1R12C S452 Induces 14-3-3 binding and inhibition of PPP1R12C, leading Banko et al. (2011)
to increased phosphorylation/inhibition of MRLC
Rb S811 Inhibition of Rb followed by subsequent increased Dasgupta et al. (2009), Rios et
proliferation al. (2013)
RPTOR S722, 5792 Induces 14-3-3 binding and inhibition of mMTOR Gwinn, D.M., et al. (2008)
SIRT1 T344 Disrupts the interaction between SIRT1 and its inhibitor Lau et al. (2014)
DBC1
SREBP1 S396 Inhibits transcriptional activity of SREBP1 Lietal. (2011)
TBC1D1 S237, T596 Promotes 14-3-3 binding and glucose transporter (ex. Chen et al. (2008), Chavez et
GLUT4) trafficking al. (2008), Pehmoller et al.
(2009)
TBC1D4/AS160 T642, S704 Promotes 14-3-3 binding and glucose transporter (ex. Treebak et al. (2006), Kramer
GLUT?4) trafficking etal. (2006), Treebak et al.
(2010)
TSC2 T1227,S1345 Enhances TSC2 activity Inoki et al (2003)
ULK1 S317, S467, S556, S778  Activates ULK1, promotes autophagy Kim et al. (2011), Egan et al.
(2011)
VPS34 T163/S165 Inhibits the non-autophagy Vps34 complex Kim et al. (2013)
YAP S94 Mo et al. (2014)

Disrupts YAP-TEAD interaction and leads to inhibition of
YAP
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List of notable indirect targets of AMPK.
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AMPK Indirect Target

Functional Consequence

References

GLUT1 Induction of GLUT1 expression, increased glucose uptake Barnes et al. (2002), Yun et al. (2005),
Wau et al. (2013)

MRLC Changes in cell shape, induction of cell polarization, proper spindle pole Lee et al. (2007), Bultot et al. (2009),

assembly and mitosis Banko et al. (2011), Thaiparambil et
al. (2012)

PRODH/POX Increases PRODH activity, increasing flux through the pentose phosphate Pandhare et al. (2009)
pathway, increasing autophagy and promoting cell survival under
conditions of nutrient stress

SIRT1 Enhances SIRT1 activity by increasing NAD+ levels Canto et al. (2009)

SREBP2 Reduces levels of SREBP2 and SREBP2 downstream targets HMGCR Liu et al. (2015)

and HMGCS, decreasing de novo cholesterol synthesis, ameliorates the
SREBP2 up-regulation induced by thyroid-stimulating hormone
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