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Abstract

One day in the near future, Molly, an artificial intelligence assistant, can answer almost any 

questions in chemistry and related disciplines. She will have a major impact in the way we 

perform research, education and public outreach.
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1. Introduction

“Ok Google” has become a common phrase used by people all over the world to ask 

questions, such as “why is the sky blue?” and “how to design a treehouse?” Similar voice-

activated assistants, such as Siri, Alexa, and Cortana, have also been developed and are 

changing our everyday lives. Behind these assistants are powerful search engines combined 

with the most sophisticated artificial intelligence (AI) algorithms developed to date, which 

include knowledge representation, pattern/image recognition, machine learning, automated 

reasoning and prediction, in addition to modern voice recognition capabilities. Given the 

demonstrated potential and initial success of these AI assistants, a conceivable Holy Grail 

for chemistry is an AI assistant for chemists, i.e., some day in the future, we will be able to 

wake up in the morning and find answers to any question in the chemical science and 

engineering fields, such as “why is my catalyst so much better (or worse) than I initially 

designed?”, “what’s in my materials?”, “how to design a compound that can bind to this 

target or catalyze this reaction?”, “how to synthesize this compound?”, and even “how to 

cure cancer?” To differentiate this powerful assistant from the ones mentioned above, let’s 

call her “Molly”, which is a cute nickname for “Molecules”, a foundation for almost all 

chemical sciences and related scientific and engineering fields.
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Molly differs from Google in more than the name: currently, “Ok Google” is very good at 

searching and presenting facts available on the web. Many chemists have already been 

taking advantage of this capability to search through literature and find the most relevant 

publications. The Holy Grail for chemists is for Molly to be able to “think” like us; e.g., to 

be able to analyze information from publications and propose novel chemical strategies for a 

given problem. However, since solutions to most chemistry problems are not numerical, it is 

not easy to come up with the best ideas using pure numerical computation. To accomplish 

these goals, Molly needs much more sophisticated AI, such as heuristic programming and 

machine learning that includes neural network and deep learning. For example, when 

chemists want to tackle a problem in initiating a project, we 1) search the literature to find 

the most relevant publications; 2) read the literature and summarize the state-of-the-art in the 

field; 3) analyze the literature and combine with personal knowledge and experience to come 

up with novel ideas to solve the problem; 4) design methods or approaches to implement the 

ideas; 5) carry out experiments and collect data; 6) analyze the data to assess the success or 

failure of the ideas; and 7) summarize lessons learned from the project to enrich our 

knowledge, publish the results and thus contributing to the literature used in Step 1. 

Limitations or mistakes in any of these steps can derail the project, such as lack of 

comprehensiveness in the literature search, reading and summary in Steps 1 and 2, or lack of 

knowledge and experience or personal bias in Steps 3 to 7. Right now, “Ok Google” is very 

good at Step 1, is beginning to improve at Step 2, but is largely incapable of Steps 3 to 7. To 

overcome this limitation, we often hold meetings among researchers in the field and recruit 

experts outside our area of expertise as collaborators. However, geographic restrictions and 

time limitations mean that we often miss the opportunities to seek advice from or work with 

the most knowledgeable and experienced collaborators and miss many of the options to 

solving the problems in science. Molly can help overcome this limitation by searching for 

and seeking input from chemists and collaborators all over the world. More importantly, 

through machine learning, Molly can come up with ideas that combine the best intellectual 

inputs of all chemists and their collaborators without geographic restrictions or personal 

bias. Furthermore, since chemistry is fundamentally an experimental science, Molly is able 

to take advantage of powerful chemical instrumentation, including smartphones, or 

accessories and sensors that can transmit the results to a smartphone, to collect data in order 

to provide much more in-depth answers than “Ok Google”.

2. “Ok Molly” Chemistry: past achievements, present practices, and future 

challenges

Molly has a strong foundation built from many years of research in applying AI to 

chemistry,1–4 with the DENDRAL project (originally stood for DENDRitic Algorithm)1 as 

one prime example. Despite progress made by many pioneers in the field, applications of AI 

to the frontiers of chemical research are not common in today’s academic and industrial 

labs. Now is an ideal time to pursue the “Ok Molly” project, because recent advances in data 

bases, cloud storage and computing, modern heuristics, pruning and deep learning 

algorithms, and computing power (e.g., the Blue Waters Supercomputer capable of 13 

quadrillion calculations per second) have made it possible for computers such as IBM’s 

Deep Blue to defeat a world chess grandmaster in 1997 and IBM’s Watson to beat the 
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world’s best Jeopardy champions in 2011. Early this year, Google’s AlphaGo completed a 

4-1 series victory over a world champion of Go by being able to teach itself. Self-driving 

cars that can train themselves based on feedbacks from camera, radar and sonar to navigate 

roadways are being tested in cities around the world. Although impressive progress has been 

made in areas outside of chemistry, we need much better integration between AI and 

chemistry in order to make Molly a reality.

While there are many potential applications of Molly, some are easier to implement than 

others and can be adopted into the Molly format in the near future, while many others are 

much more difficult and require further research and development. The first area is likely in 

theoretical explanation of chemical phenomena using computation, as most of the solutions 

have already been written into numerical forms, such as computer programs, that can be 

handled by the powerful computers behind all AI assistants. A primary example is the 

successful development of density functional theory and the wide application of computer 

programs implementing the theory. The key to the success of Molly is to make such 

programs accessible to non-specialists outside theoretical and computational chemistry, 

including the general public so as to expand the outreach of chemistry to society (see 

Section 3 below), by setting up servers in the cloud and making them more available. 

Critical to Molly’s success are proper parameterization of chemical phenomena and choice 

of the best computer programs to provide the answers. If successful, one day in the near 

future, anyone should be able to ask, “Ok Molly, why is my catalyst so much better (or 

worse) than I initially designed?”

The second area of application of Molly is in data analysis and interpretation. Examples 

include the matching of either a mass spectrum or NMR spectrum of an unknown compound 

to those in the databases, which is being practiced in chemistry right now. A more 

sophisticated example is collection and analysis of databases of either chemical reactions or 

metabolic pathways so that Molly can predict reactivity of chemical and biological catalysts. 

A major issue is that many of these databases for different reactions are collected 

independent of each other, often written using completely different computer languages. As 

a result, it is very difficult to use one type of program to read and analyze data across 

different databases. An even further challenge for Molly is when there is not an exact match. 

Can it learn from the results in the current databases to deduce spectra and thus identify 

compounds not yet in the databases? If yes, one day in the near future, anyone should be 

able to ask, “OK Molly, what is in my material”?

The third and perhaps a more challenging area of the application of Molly is in the design of 

compounds that have predictable properties such as the ability to bind a target molecule 

selectively or catalyze a reaction efficiently. Given the tremendous success in designing 

protein-protein interactions using computer programs,5 including those taking advantage of 

participation by the general public via crowd sourcing computational powers (Figure 1a),6 it 

is possible in the near future to design compounds that can bind a target molecule, including 

pharmaceutical drugs that bind and inhibit certain enzymes in metabolic pathways (Figure 

1b).7,8 It is much more difficult, however, to design catalysts that can accelerate certain 

reactions, because, instead of focusing on the resting states as in designing most binders, 

catalysts exert most of their influence on transition states, which are often not well 
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characterized. It is particularly challenging to design functional metalloenzymes or metal-

containing catalysts. Unlike non-metalloenzymes where the geometric parameters and 

bonding characters of active sites containing carbon, oxygen and nitrogen centers are well 

defined, those of metal-containing active sites, especially in the transition state, vary much 

more widely and are less well-defined.9 As a result, few metalloenzymes have been designed 

that display activities can match those of native enzymes (Figure 1c).10 This challenge also 

provides an excellent opportunity for Molly to implement artificial neural network and 

machine learning to search good examples of native enzymes and proven chemical catalysts 

and come up with new designs that a group of chemists and their collaborators could not 

otherwise achieve due to limitations of knowledge. If successful, one day in the near future, 

anyone should be able to ask, “OK Molly, how to design a compound that can bind to this 

target or catalyze this reaction?”

An even further challenge for Molly is to propose synthetic routes for compounds of 

interest. While retro-synthesis has been practiced by organic chemists for decades and some 

programs have been developed to implement the practices (Figure 2a),1–4,11–13 it is still 

difficult to replace manual designs with computer programs, at least in the frontiers of 

research programs. A major challenge is that there are multiple branches and procedures to 

synthesize the same target compounds, and it is difficult to evaluate and decide on the most 

efficient route with the best overall yields and lowest costs. Like a chess game, the first step 

that is obviously the most efficient may not lead to the overall victory; one needs to take into 

account the next few steps before making the first move. In addition to overall yields, Molly 

also needs to take into consideration other factors such as overall costs, chemical safety, and 

waste generation. One advantage of machine learning is that, like human being, it can learn 

from not only successful, but also failed experiements.14 The key barrier to Molly’s success 

is how to parameterize chemical compounds, particularly their functional groups in three-

dimensions, as well as their reactivity (Figure 2b), into digital forms that computers can 

recognize, and how to combine the chemical information with AI algorithms such as pattern 

recognition, machine learning, and automated reasoning. If these barriers can be overcome, 

one day in the near future, anyone should be able to ask, “OK Molly, how to synthesize this 

compound?”

Most people who have used voice-activated assistants such as “Ok Google” are often 

impressed by the initial answers to certain simple questions and then frustrated by “I don’t 

know how to answer that yet” in response to some more sophisticated questions. Molly is no 

exception. An ultimate challenge for Molly is the ability to answer more sophisticated 

questions such as “how to cure cancer?” because answering it correctly requires knowing 

solutions to many components of the problems, such as what causes cancer, how to design 

compounds or drugs to inhibit the key components that cause cancer, and how to synthesize 

and then test these compounds in cancer cells in animals and in human, based on knowledge 

from clinical trials. Just like users of “Ok Google” who believe that, with more time and 

training, it will get better at answering more sophisticated questions, Molly will, too.
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3. “Ok Molly” as a means for more effective chemical education and 

outreach to the general public

While Molly is designed to mainly help chemists to expand the frontiers of research as 

described above, she will also have a huge impact in our chemical education and public 

outreach. Many students think chemistry is difficult to understand and change their majors 

from chemistry and shun chemistry after graduation as a result. AI algorisms, such as those 

in machine learning, have the potential to discover best types of materials and best means to 

deliver the materials to cater individual styles of learning in order make it easier to study and 

understanding chemistry. Molly will also make chemical education much more accessible to 

anyone that has a smartphone or a similar device, like a tablet. However, a well-developed 

Molly who know answers to almost all questions may pose challenges for course instructors 

to test students in giving homework, quizzes, and exams, as the students can often find 

answers to the questions by asking Molly. However, just like calculators and Google 

searches have not made tests in courses obsolete, Molly will not either, as educators will 

adapt the practices to make instructions more effective. For the same reason, even if Molly 

can answer all the questions, it will not take away our chemistry jobs, as it will only make us 

work more efficiently and intelligently, because there will always be challenges to integrate 

AI with chemistry to make Molly smarter, and there are always new and higher level 

questions that Molly needs to answer.

Moreover, we chemists often lament the wrong perception of chemistry by the general 

public who frequently associate chemistry with toxic chemicals. The successful 

development and implementation of Molly will help change such a perception in 

demonstrating that chemistry is much more useful for everyday lives and many seemingly 

difficult chemistry concepts can be explained in plain language by Molly. One way to bring 

a better understanding of chemistry to the public is to equip Molly with highly sensitive 

chemical sensors interfaced with smartphones for on-site and real-time detection, wireless 

transmission and interpretation of the results (Figure 3a), demonstrating how chemistry can 

make their lives better.15–17 To make Molly work well in this area, we need to make the 

sensor attachments as small as possible, and as generally applicable to as many targets as 

possible. A primary example is to repurpose the widely available and well developed 

portable meters such as FDA-approved glucose meter attached to smartphone to measure 

many other non-glucose targets, by transforming selective binding of non-glucose targets by 

aptamers or antibodies into generation of glucose (Figure 3b).18,19 The development of 

sensor arrays is also very important20 because it is extremely difficult to design a sensor with 

100% selectivity towards the target without any interference from other components in the 

real samples; sensor arrays that mimic our nose or tongue can overcome this limitation. Just 

like our brains can tell us what is in the material based on smell or taste, the artificial neural 

network and machine learning capability of Molly can be developed to identify and quantify 

any materials in front of us.
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4. Conclusion and perspectives

Like many Holy Grails, Molly sounds familiar, as many people have been pursing it for a 

long time. However, to achieve its true mission, we are still far away from it. This 

commentary attempts to summarize past achievements, present practices, and future 

challenges for Molly in order to stimulate discussions and further development in this area. 

Given the progress made in AI behind “Ok Google”, IBM’s Deep Blue, Watson, and 

Google’s AlphaGo, it is time to integrate them for chemical research, education and public 

outreach. To achieve the goal, we chemists cannot wait for the AI community to apply the 

AI algorithms to chemistry problems. Instead, we need to play an active role in recruiting 

and collaborating with AI researchers to overcome major barriers, some of which are 

described above. We also need to educate a new generation of chemists who are experts in 

the interface of AI and chemistry.

Molly does not belong just to us chemists. Since chemistry is the central science, and 

molecules are the building blocks of most science and engineering, including biology, 

bioengineering, and materials science and engineering, the development of the platform 

requires expertise from all disciplines. Its applications will have a huge impact on not only 

all of science and engineering, but all of society in general.

While the majority of users will employ Molly for good causes, it is inevitable that some 

people will exploit Molly for malicious purposes, including something as dire as terrorists 

asking Molly how to make chemical weapons. Additionally, while machine learning can be 

powerful, it can be problematic if Molly is fed with misinformation on purpose by people 

with unscrupulous intentions. One example is Tay, a Twitter bot created by Microsoft as an 

experiment in AI based conversational understanding. In principle, the more Tay chats with 

people, the smarter it gets. However, it took less than 24 hours for Twitter to corrupt an 

innocent Tay to make racist and sexist remarks. These negative effects are not reasons for us 

to stop developing Molly; they are incentives for us to work harder to make Molly not only 

think like a human being, but also learn to have a moral and ethical standard in carrying out 

chemical research and education. For example, can Molly be programed to learn to identify 

false positive results or her own mistakes, and then to employ proof-reading and error 

removal algorisms to correct these mistakes. If she can, such a Molly sounds like an ultimate 

Holy Grail.
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Figure 1. 
a) Crystal structures of a monomeric retroviral protease solved by protein folding game 

players. Starting from a model (red), a group of protein folding game players generated a 

model (yellow) that was closer to the crystal structure later determined (blue).6 The figure is 

produced from Reference 6, with permission from the Nature Publishing Group; b) 

Employing deep-learning neural network to improve virtual screening of libraries of 

molecules that dock strongly to their targets;8 c) A rational designed enzyme with catalytic 

activity matching that of a native oxidase.10

Lu Page 8

Acc Chem Res. Author manuscript; available in PMC 2018 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
a) Selected computer-aided organic synthesis programs; b) An example of describing an 

organic reaction in digital forms by one of these programs. The figures are reproduced from 

Reference 12, with permission from The Royal Society of Chemistry.
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Figure 3. 
a) Integrated quantum dot barcode smartphone optical device for wireless multiplexed 

diagnosis of infected patients.16 b) Repurposing the widely available and well developed 

portable glucose meter as a general health monitor for many other non-glucose targets, such 

as interferon gamma (IFNγ), a biomarker for tuberculosis, with excellent selectivity against 

other components in the blood, such as human serum albumin (HSA).17
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