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Abstract

Mutations in the gene encoding comparative gene identification 58 (CGI-58), also known as α β 
hydrolase domain-containing 5 (ABHD5), cause neutral lipid storage disorder with ichthyosis 

(NLSDI). This inborn error in metabolism is characterized by ectopic accumulation of 

triacylglycerols (TAG) within cytoplasmic lipid droplets in multiple cell types. Studies over the 

past decade have clearly demonstrated that CGI-58 is a potent regulator of TAG hydrolysis in the 

disease-relevant cell types. However, despite the reproducible genetic link between CGI-58 

mutations and TAG storage, the molecular mechanisms by which CGI-58 regulates TAG 

hydrolysis are still incompletely understood. It is clear that CGI-58 can regulate TAG hydrolysis 

by activating the major TAG hydrolase adipose triglyceride lipase (ATGL), yet CGI-58 can also 

regulate lipid metabolism via mechanisms that do not involve ATGL. This review highlights recent 

progress made in defining the physiologic and biochemical function of CGI-58, and its broader 

role in energy homeostasis.
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1. The Human Genetic Link Between CGI-58 and Abnormal TAG Storage

Over forty years ago, several patients presented to the clinic with a severe form of dry and 

scaly skin, which was diagnosed as a new syndrome called Chanarin-Dorfman syndrome; 

also known as neutral lipid storage disease with ichthyosis (NLSDI) [1–3]. These patients, 

and many thereafter, have been characterized with accumulation of TAG-rich cytosolic lipid 
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droplets in keratinocytes, circulating leukocytes (known as Jordan’s anomaly), hepatocytes, 

skeletal myocytes, and several cell types within the central nervous and auditory systems [1–

3]. In an initial attempt to delineate the metabolic disturbances in NLSDI patients, several 

groups isolated skin fibroblasts from affected individuals and found clear defects in TAG 

hydrolysis and improper recycling of TAG lipolysis products into membrane phospholipids 

[4–6]. In 2001, a landmark study by Judith Fischer’s group identified the first genetic 

mutations associated with NLSDI [7]. NLSDI is caused by mutations in the gene encoding 

comparative gene identification 58 (CGI-58), also known as α β hydrolase domain-

containing 5 (ABHD5). Since this original discovery, several additional loss-of-function 

mutations in CGI-58 have been identified in independent NLSDI subjects [8–11]. This 

reproducible genetic link between CGI-58 mutations and NLSDI has provided a strong 

rationale to understand the mechanisms by which CGI-58 regulates TAG metabolism. Given 

this, many laboratories have attempted to identify molecular mechanisms by which CGI-58 

regulates lipid metabolism in diverse cellular contexts. This review discusses the successes 

and challenges realized in this pursuit, and highlights the fundamentally important role that 

CGI-58 plays in cellular lipid homeostasis and systemic energy metabolism.

2. The Role of CGI-58 in Adipose Tissue Lipolysis

Given that TAG storage is most active in adipose tissue, and that the molecular underpinning 

of TAG lipolysis is best understood in adipocytes, the vast majority of mechanistic studies 

with CGI-58 have been conducted in adipocyte cell models. In mature adipocytes, CGI-58 

resides primarily on cytosolic lipid droplets due to its direct interaction with the lipid droplet 

associated protein perilipin 1 (PLIN1) [12–15]. However, during catecholamine-stimulated 

lipolysis, cAMP-activated protein kinase A (PKA) phosphorylates both PLIN1 [16,17] and 

CGI-58 itself [18], facilitating the release of CGI-58 from the lipid droplet surface where it 

can subsequently interact with the major TAG hydrolase adipose triglyceride lipase (ATGL), 

also known as patatin-like phospholipase domain containing 2 (PNPLA2) [12–15] (Fig. 1). 

A seminal study by Lass and colleagues demonstrated that direct interaction between 

CGI-58 and ATGL potently activates ATGL-mediated TAG hydrolysis in adipocytes [19], 

providing the first clues into how CGI-58 impacts TAG metabolism. This study also showed 

that wild type recombinant CGI-58 can activate ATGL in an in vitro TAG hydrolysis assay, 

yet introduction of point mutations that are found in NLSDI patients lack the ability to 

activate ATGL [19]. Several independent groups have likewise found that CGI-58 co-

activates ATGL during catecholamine-stimulated lipolysis in adipocytes [20–25]. Recently, 

the structural determinants of CGI-58-mediated ATGL co-activation in adipocytes have also 

been clarified [26,27]. Removal of N-terminal amino acids 10–31 of CGI-58 disrupts both 

CGI-58’s ability to localize to lipid droplets and its ability to co-activate ATGL [26]. Within 

the N-terminus, three tryptophan residues (Trp21, Trp25, and Trp29) help form a tether for 

CGI-58 to stably interact with cytosolic lipid droplets [26]. Using a domain swapping 

approach from ABHD5 to a structurally similar variant of the α/β hydrolase domain-

containing family ABHD4, Sanders and colleagues determined that two conserved amino 

acids (R299 and G328) were sufficient to confer ATGL co-activation onto ABHD4 [27]. In 

parallel, mutations of R299 and G328 residues in ABHD5 reduced adipocyte lipolysis 

without altering CGI-58’s interaction with perilipin [27]. These studies provide important 
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clues into the structural determinants by which CGI-58 regulates lipase activity [26,27]. 

Another recent study also demonstrated that cytosolic fatty acid binding proteins (FABP) 

directly interact with CGI-58 within its helix-loop-helix cap region, and FABP-CGI-58 

interactions facilitate ATGL-mediated lipolysis [28]. This FABP-CGI-58 interaction during 

active lipolysis may be important in shuttling fatty acid and acylglycerol lipolysis products 

away from the lipid droplet [28], which is clearly defective in CGI-58 deficient cells [4–6]. 

In fact, there is evidence that the fatty acids released from the lipid droplet under FABP-

CGI-58 facilitation, are then translocated by FABP to the nucleus to act as peroxisome 

proliferator-activated receptor (PPAR) ligands [28]. Collectively, these studies provide a 

molecular mechanism by which CGI-58 directly binds to and co-activates ATGL to promote 

catecholamine-stimulated lipolysis in adipocytes (Fig. 1). However, it appears that CGI-58’s 

ability to alter TAG hydrolysis is strictly dependent on ATGL specifically in adipocytes, and 

its interaction with ATGL does not account for CGI-58’s ability to dictate lipid homeostasis 

in several other cell types including keratinocytes, hepatocytes, and several cancer cells as 

discussed in detail below.

3. CGI-58 Regulates Skin Lipid Homeostasis in an ATGL-Independent 

Manner

One of the defining features of NLSDI is the presence of ichthyosis, a dermatological 

condition where the skin appears dry and scaly [1–3]. Interestingly, genetic deficiency of 

CGI-58 in mice also results in dramatic alterations in lipid homeostasis and defective 

epidermal barrier function [29]. These two findings in human and mouse models of CGI-58 

loss-of-function strongly suggest that CGI-58 plays a major role in skin lipid homeostasis. In 

contrast, neither loss of function human ATGL mutations [30,31] or genetic deletion of 

ATGL in mice [32] results in ichthyosis or other skin abnormalities. In fact, unlike CGI-58, 

ATGL is not abundantly expressed in the skin, creating a condition where CGI-58 most 

likely regulates skin lipid metabolism via a mechanism that does not rely on ATGL-

coactivation. CGI-58 global knockout mice die postnatally due to a severe skin barrier 

defect, which is characterized by defective TAG hydrolysis and the absence of key barrier 

structure lipids called Ω-(O)-acylceramides [29]. These lipid abnormalities are rescued by 

the addition of recombinant CGI-58, but not by addition of ATGL [29], further suggesting an 

ATGL-independent mechanism. Recent studies in epidermal-specific CGI-58 knockout mice 

reveal that CGI-58 is essential for Ω-(O)-acylceramide synthesis and the formation of the 

cornified lipid envelope [33]. In agreement, transgenic overexpression of CGI-58 in 

differentiated, but not basal, keratinocytes can rescue global CGI-58−/− mice from lethal 

postnatal barrier dysfunction [33]. In human skin CGI-58 is highly enriched in the stratum 
granulosum within lamellar bodies, which is a skin microenvironment that is thought to 

originate from differentiated keratinocytes [34]. Several studies have shown that CGI-58 

expression is elevated during keratinocyte differentiation, and knockdown of CGI-58 results 

in diminished expression of keratinocyte differentiation markers [29,35]. Collectively, data 

collected in both human and mouse models of CGI-58 deficiency support the concept that 

CGI-58 is necessary for the hydrolysis of TAGs and synthesis of Ω-(O)-acylceramides in the 

skin. Given its key roles in keratinocyte lipid metabolism, it is clear that CGI-58 is a 

gatekeeper of the cornified lipid envelope, which is necessary for skin barrier function. 
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Unfortunately, at this point the molecular mechanisms linking CGI-58 to TAG hydrolysis, Ω-

(O)-acylceramide synthesis, and keratinocyte differentiation in the skin are not known. 

However, there is now unequivocal evidence that CGI-58 regulates skin lipid homeostasis 

via an ATGL-independent mechanism. The continued search for this mechanism could have 

broad implications in dermatological diseases such as NLSDI and other related forms of 

inherited ichthyosis.

4. The Role of CGI-58 in Liver Disease Progression

Much like its role in the skin, CGI-58 is a potent regulator of liver lipid metabolism via 

mechanisms that do not rely on ATGL co-activation. In addition to ichthyosis, another 

common finding in people with CGI-58 loss-of-function mutations is severe liver disease 

including hepatic steatosis, non-alcoholic steatohepatitis (NASH), and cirrhosis [36–40]. In 

contrast to CGI-58 mutations, human ATGL mutations are not associated with hepatic fat 

accumulation or liver disease, but instead are associated with skeletal and cardiac muscle 

lipid accumulation [30,31]. Mice with diminished CGI-58 function in hepatocytes, 

accomplished by either antisense oligonucleotide (ASO)-mediated knockdown or by 

hepatocyte-specific CGI-58 genetic deletion, have striking hepatic steatosis which 

progresses with age into NASH and fibrosis [41–43]. Although ATGL−/− mice also develop 

mild hepatic steatosis, they never progress into NASH or fibrosis [32,44]. However, it is 

important to note that global ATGL−/− mice die prematurely due to cardiomyopathy, which 

makes it difficult to know whether long-term ATGL deficiency would indeed advance 

towards frank fibrosis. A recent study directly tested whether CGI-58 regulates TAG 

metabolism via an ATGL-dependent mechanism by knocking down CGI-58 in the liver of 

wild type or ATGL−/− mice [45]. This work demonstrated that CGI-58 can regulate hepatic 

steatosis and inflammation in the complete genetic absence of ATGL, indicating that CGI-58 

regulates hepatic TAG metabolism and inflammation via ATGL-independent mechanisms 

[46].

In addition to its role in regulating fatty liver and NASH, CGI-58 has also been linked to 

mechanisms driving viral hepatitis [46,47]. The hepatitis C virus (HCV) encodes a structural 

protein known as core, which directly interacts with cytosolic lipid droplets in hepatocytes 

via a unique lipid-binding domain [48,49]. In HCV infected individuals, core’s avid 

interaction with cytosolic lipid droplets interferes with normal lipase activity and as a result, 

TAG hydrolysis is blunted [50]. A recent study demonstrated that HCV-core induced hepatic 

steatosis requires ATGL activity, yet unexpectedly is associated with increased interaction of 

ATGL and CGI-58 at the lipid droplet surface [46]. This results strongly suggests that 

CGI-58 and ATGL can interact at the hepatocyte lipid droplet surface, similar to what is 

know in adipocytes [19–25], yet unlike in adipocytes, this interaction is not coupled to 

ATGL activation and TAG hydrolysis [45,46]. Therefore, additional work is required to 

determine the functional consequence of ATGL-CGI-58 interaction in hepatocytes. In the 

context of HCV infection, it has recently been shown that CGI-58 is necessary for the 

assembly of the HCV viral particle by facilitating the hydrolysis of lipid droplet TAG stores 

for the re-packaging into the nascent lipo-viroparticle [47]. Previous studies in hepatocyte 

cell lines and ASO-treated mice have demonstrated that CGI-58 is necessary for the 

packaging of TAG into nascent very low density lipoproteins (VLDL) [41,51,52]. However, 
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hepatocyte-specific genetic deletion of CGI-58 was not associated with altered VLDL-TAG 

secretion [43]. Therefore, addition work is needed to determine whether CGI-58 is indeed 

rate-limiting for the delivery of cytosolic lipid cargo into the endoplasmic reticulum and 

Golgi for VLDL or HCV lipo-viroparticle assembly and secretion. In addition to its role in 

hepatocytes, it is important to note that CGI-58 is also expressed in non-parenchymal cells 

in the liver including stellate cells [53] and macrophages [54–57], and regulates TAG 

hydrolysis in these cells as well [53–57]. However, the cell autonomous roles of CGI-58 in 

stellate cells and macrophages within the liver microenvironment have not been well 

characterized. Additional studies are needed to determine whether CGI-58 function in these 

non-parenchymal cells plays a role in liver disease progression. Collectively, CGI-58 plays a 

major role in hepatic TAG hydrolysis and the progression of liver disease from simple 

steatosis to NASH and cirrhosis via mechanisms that do not appear to rely on ATGL co-

activation.

5. The Collaborative Role of CGI-58 in Skeletal and Cardiac Muscle Lipid 

Metabolism and Signaling

Fatty acids are key energy substrates in both skeletal and cardiac myocytes, where both 

CGI-58 and ATGL act in concert to promote metabolic flux of fatty acids from the lipid 

droplet to the mitochondria in these cells. Much like its role in adipocytes, CGI-58 appears 

to primarily regulate muscle lipolysis and downstream oxidative metabolism via direct co-

activation of ATGL (Fig. 2). In support of this concept, human mutations in either CGI-58 

[2] or ATGL [30,31] result in the accumulation of TAG-rich cytosolic lipid droplets in 

skeletal muscle, with ATGL mutations causing a much more severe lipid accumulation 

phenotype. Furthermore, people with loss-of-function mutations in ATGL exhibit 

symptomatic muscle weakness and cardiomyopathy [30,31,58–60], whereas symptomatic 

myopathy is less common in people with primary CGI-58 mutations [1–3]. Given the 

striking cardiac and skeletal muscle lipid accumulation seen in humans with ATGL 

mutations, affected patients are diagnosed with a variant of NLSDI called neutral lipid 

storage disease with myopathy (NLSDM) [30,31,58–60]. In agreement with findings in 

humans, several independent groups have generated genetically modified mouse and cell 

models that support a clear link between CGI-58 and ATGL in myocyte lipolysis and fatty 

acid metabolism [30,31,58–60]. A seminal study by Haemmerle and colleagues first showed 

that global genetic deficiency of ATGL in mice is associated with massive skeletal and 

cardiac muscle TAG accumulation, which results in premature lethality due to cardiac 

dysfunction [32]. Young global ATGL−/− mice, lacking ATGL-mediated lipolysis in both 

cardiac and skeletal muscle, also have impaired exercise performance [61]. This issue is due 

in part to limited free fatty acid supply to the working muscle as well as lower basal 

glycogen stores in liver and skeletal muscle [61]. Highlighting the key role ATGL plays in 

the cardiac TAG metabolism, global ATGL−/− mice have profound cardiac TAG 

accumulation [32], and cardiomyocyte-specific reintroduction of ATGL in global ATGL−/− 

mice rescues these mice from premature lethality [62]. In addition to regulating fatty acid 

fuel availability in myocytes, ATGL-driven lipolysis also liberates lipid agonists for the 

nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα) [63,64]. 

Given that ATGL−/− mice lack ATGL-driven provision of endogenous PPARα agonists, 
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several groups have demonstrated that treatment with exogenous PPARα agonists can 

effectively rescue the lethal cardiomyopathy in global ATGL−/− mice [63,64].

Similar to ATGL−/− mice, ice lacking CGI-58 in skeletal or cardiac myocytes also exhibit 

TAG accumulation and diminished PPARα signaling [65,66]. Selective deletion of CGI-58 

in cardiac and skeletal myocytes results in muscle TAG accumulation, decreased PPARα-

target gene expression, and defective mitochondrial fatty acid oxidation [65,66]. 

Interestingly, myocyte-specific deletion of CGI-58 preferentially increases TAG storage in 

type I slow twitch muscle fibers, which are known to rely predominantly on oxidative 

degradation of fatty acids during endurance type of exercise. In fact, CGI-58 likely plays a 

key role in oxidative metabolism in human muscle as well. Overexpression of CGI-58 in 

human myotubes promotes TAG hydrolysis and increases fatty acid oxidation, whereas 

CGI-58 knockdown reciprocally diminishes mitochondrial fatty acid oxidation [67]. 

Interestingly, in human myotubes CGI-58 function is closely linked to the expression of 

peroxisome proliferator-activated receptor δ target genes (PPARδ) [67]. Furthermore, the 

expression levels of both CGI-58 and ATGL correlate with markers of fatty acid oxidation in 

human skeletal muscle [68]. During a exercise, CGI-58 and ATGL interactions are more 

apparent at the lipid droplet surface in both human and rodent skeletal muscle [69,70]. In the 

context of skeletal muscle, the ability of CGI-58 and ATGL to interact at the lipid droplet 

surface is likely facilitated via direct interactions of either protein with the muscle-enriched 

lipid droplet coat protein perilipin 5 (PLIN5) [71–73]. Collectively, a large body of evidence 

in humans and rodents supports a role for CGI-58 as a key regulator of muscle 

mitochondrial oxidative metabolism via its ability to co-activate ATGL-driven TAG lipolysis 

[58–73] (Fig. 2).

6. The Role of CGI-58 in Macrophage Function and Atherosclerosis

It is well known that in the context of cardiovascular disease (CVD), that lipid metabolism 

and lipid signaling in macrophages plays a central role in orchestrating atherosclerotic 

plaque formation [74]. Given CGI-58’s ability to regulate TAG hydrolysis to generate 

endogenous ligands for peroxisome proliferator-activated receptors (PPARs) in other 

contexts, there has been considerable interest in the role CGI-58 plays in macrophage 

function in the context of CVD and other cardiometabolic diseases. To study the role of 

macrophage CGI-58 in the context of atherosclerosis, Goeritzer and colleagues crossed 

myeloid-specific CGI-58 knockout mice to the hyperlipidemic apolipoprotein E (apoE) null 

background [57]. Deletion of CGI-58 in macrophages did not significantly affect 

atherosclerosis progression, but this work did show that macrophages lacking CGI-58 are 

skewed towards the classical M1 activation state when maintained in culture [57]. An 

independent study also demonstrated that macrophage-specific deletion of CGI-58 causes 

macrophages to acquire an M1-like phenotype, which is associated with activation of the 

NLRP3 inflammasome [54]. In stark contrast to the role that CGI-58 plays in M1 skewing 

and inflammasome activation, macrophage-selective deficiency of ATGL has a much more 

dramatic effect [75–78]. ATGL deficient macrophages are polarized towards the alternative 

M2-like phenotype without showing signs of inflammasome activation [75–78]. Macrophage 

deletion of ATGL also results in significantly reduced atherosclerosis in low density 

lipoprotein receptor deficient mice [76]. Given the role that macrophages play in sensing 
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bacterial pathogens, several groups have also evaluated the role of CGI-58 and ATGL in the 

in vivo response to bacterial endotoxin (lipopolysaccharide; LPS) [79,80]. Interestingly, both 

global ATGL−/− mice and CGI-58 ASO-treated models have increased levels of circulating 

pro-inflammatory cytokines when challenged with LPS, yet the tissue source of these 

cytokines seems quite different [79,80]. CGI-58 ASO-treated mice have reduced LPS-

induced cytokine gene expression in the liver [79], whereas ATGL deficient mice have 

elevated LPS-induced cytokine gene expression in the liver [80]. In CGI-58 ASO-treated 

mice, it seems that the major source of elevated circulating pro-inflammatory cytokines is 

white adipose tissue [79]. Collectively, multiple studies clearly indicate cell autonomous 

roles for both CGI-58 and ATGL in macrophage function in vivo. However, based on the 

phenotypes of macrophage-specific knockout mouse models, it is most likely that CGI-58 

and ATGL impact macrophage function independent from one another.

7. The Role of CGI-58 in the Intestinal Lipid Absorption

Both CGI-58 and ATGL are abundantly expressed in the small and large intestine in rodents 

and non-human primates, where they help determine enterocyte TAG hydrolysis and fatty 

acid flux [51,81,82]. It is well known that intestinal enterocytes can transiently store dietary 

fatty acids after esterification into TAG in cytosolic lipid droplets [83,84]. In fact, a 

significant portion of absorbed fatty acids are first esterified into cytosolic lipid droplets as 

TAG, and then subsequently liberated by lipase action to be delivered into the endoplasmic 

reticulum where they are re-esterified and packaged onto nascent chylomicrons [85]. 

However, our understanding of the molecular mechanisms regulating intestinal TAG 

lipolysis and fatty acid re-esterification for packaging into nascent chylomicrons is still in its 

infancy. Recent studies implicate both CGI-58 and ATGL in regulation of the cytosolic TAG 

hydrolysis and chylomicron assembly in intestinal enterocytes [81,82]. To study the role of 

CGI-58 in intestinal lipid absorption, Xie and colleagues selectively deleted CGI-58 in 

intestinal enterocytes using Cre-LoxP technology [81]. Enterocyte-specific deletion of 

CGI-58 results in a 4-fold increase in intestinal TAG levels resulting from diminished TAG 

hydrolysis activity [81]. Moreover, enterocyte-specific CGI-58 knockout mice show 

significantly reduced postprandial plasma TAG levels, but total intestinal fat absorption is 

only reduced by <0.5% [81]. These results suggest that CGI-58 is a key determinant of the 

hydrolysis of cytosolic TAG in enterocytes, yet does not dramatically alter the efficient 

packaging of TAG into nascent chylomicrons. Using a tissue-specific genetic approach, 

Obrowsky and colleagues found some similar and some divergent results when deleting 

ATGL from enterocytes [82]. Enterocyte-specific deletion of ATGL reduced total TAG 

hydrolase activity and increased intestinal TAG levels [82]. Although this was not associated 

with alterations in postprandial TAG levels, paradoxically, intestinal cholesterol absorption 

decreased [82]. These studies clearly demonstrate a role for CGI-58 and ATGL in TAG and 

cholesterol metabolism in the intestine. However, additional work is needed to determine if 

CGI-58 and ATGL work through independent pathways in intestinal enterocytes.

8. The Unexpected Role of CGI-58 in Insulin Sensitivity

Given the critical roles that CGI-58 and ATGL play in intracellular fatty acid metabolism 

and signaling lipid generation, these two proteins are uniquely positioned to impact cellular 

Brown and Brown Page 7

Biochim Biophys Acta. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



insulin action. It has been repeatedly reported that accumulation of lipid intermediates in the 

TAG biosynthetic pathway, including long chain acyl-CoAs and diacylglycerol (DAG) 

species, are associated with insulin resistance in rodents and humans [86]. Originally 

proposed by Dr. Roger Unger, the “lipotoxicity” theory of insulin resistance posits that 

abnormal accumulation of lipid intermediates can antagonize normal insulin action in the 

liver and skeletal muscle [87]. Based on the lipotoxicity theory, one would predict that 

CGI-58 or ATGL loss of function would result in lipotoxicity-induced insulin resistance, but 

this is not the case in rodents or humans. First, neither CGI-58 nor ATGL mutations are 

associated with insulin resistance or type 2 diabetes in humans [1–3,30,31]. Furthermore, 

mice lacking either ATGL [32,88,89] or CGI-58 [41,42,79,66] in the liver or skeletal muscle 

have improvements in systemic insulin sensitivity. Although both ATGL and CGI-58 

deficient mice exhibit similar improvements in insulin sensitivity, the mechanisms driving 

this phenotype are quite different in the two models. In the case of CGI-58, the primary 

organ driving improvements in insulin sensitivity is the liver [42,79]. ASO-mediated 

knockdown of CGI-58 promotes a large accumulation of DAG species in the liver [41,42], 

and such a large accumulation of DAGs would be predicted to drive hepatic insulin 

resistance [86]. Despite this accumulation of DAG lipids, CGI-58 ASO-treated mice are 

protected from DAG-induced insulin resistance due to sequestration of DAGs in the lipid 

droplet and endoplasmic reticulum [42]. This lipid droplet sequestration of DAGs results in 

prevention of high fat diet-induced accumulation of DAGs at the plasma membrane where 

they normally act to negatively regulate insulin receptor-driven signaling events [86]. 

Collectively, the improvements in glucose tolerance seen in CGI-58 ASO treated mice stem 

almost exclusively from improvements in hepatic insulin action via a mechanism involving 

DAG sequestration [41,42,79]. In contrast, the improvements in glucose tolerance in global 

ATGL knockout mice have been primarily linked to improvements in skeletal muscle insulin 

signaling and stimulation of insulin-stimulated glucose uptake [88,89]. Therefore, the 

striking improvements in glucose tolerance seen with either ATGL or CGI-58 deficiency in 

mice derive from skeletal muscle-specific or liver-specific improvements in insulin action, 

respectively [41,42,79,88,89].

9. CGI-58’s Role in Colorectal Malignancy

It is well known that many types of cancers are characterized by dysregulated cellular 

metabolism [90]. The vast majority of cancer metabolism studies have focused on specific 

alterations in glycolytic pathways, but emerging evidence suggests that reorganization of 

CGI-58-related lipid metabolic networks also plays a role in cancer pathogenesis. Several 

recent reports have linked epigenetic or genetic regulation of CGI-58 function to malignant 

transformation in the context of skin, cervical, and colorectal cancer [56,91–94]. A study by 

Ou and colleagues showed that silencing of CGI-58 in normal fibroblasts is sufficient to 

induce malignant transformation [93]. Furthermore, enterocyte-specific deletion of CGI-58 

promotes in vivo malignant transformation of adenomatous polyps in the colorectal cancer-

prone ApcMin/+ mouse model [93]. In this model CGI-58 deletion in enterocytes was 

associated with increased aerobic glycolysis and induction of epithelial-mesenchymal 

transition (EMT) [93]. Another report from the same group showed that transgenic 

overexpression of CGI-58 in macrophages promotes colorectal cancer via a mechanism that 
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involved suppression of spermidine synthase (SRM)-driven spermidine production in the 

colonic microenvironment [56]. Importantly, the ability of CGI-58 to regulate colorectal 

tumorigenesis does not appear to depend on co-activation of ATGL, but instead involves 

regulation of autophagic flux in cancer cell lines [94]. These studies support a role for 

CGI-58 as a tumor suppressor in the context of colorectal cancer in ApcMin/+ mice, but 

whether this holds true in human malignancies is still not known. Currently, there are no 

reported cases of cancer (colorectal or other types) in patients with primary mutations in 

CGI-58 (i.e. NLSDI mutants), so additional work is needed to clarify the role of CGI-58 in 

malignant transformation and cancer cell metabolism in humans.

10. Conserved Roles of CGI-58 Homologues in Cellular Lipid Metabolism 

and Signaling

The storage of energy in the form of TAG is not unique to higher vertebrates [95]. In fact, 

almost all known organisms have evolved intricate systems to regulate both TAG synthesis 

and lipolysis to provide fatty acid fuel as well as critical signaling lipids. Much like its role 

in mammals, CGI-58 homologues also regulate TAG metabolism and signal transduction in 

several other organisms including Arabidopsis thaliana, Caenorhabditis elegans, and 

Saccharomyces cerevisiae. [96–107]. In the model plant organism Arabidopsis thaliana, loss 

of the CGI-58 homologue results in abnormal accumulation of TAG-rich lipid droplets in 

leaves, which do not typically store TAG [96,97]. Interestingly, plant CGI-58 does not 

appear to interact with an ATGL-like lipase, but instead directly interacts with an ATP-

binding cassette protein known as PXA1 [98]. In plants PXA1 is critical for the uptake of 

fatty acids into peroxisomes for subsequent β-oxidation [98]. In addition to facilitating 

PXA1-driven peroxisomal β-oxidation, plant CGI-58 also facilitates PXA1’s ability to 

generate the critical plant hormones jasmonic acid and indole acetic acid [98], both of which 

are critical regulators of plant growth and homeostasis [99]. Another recent report 

demonstrated that plant CGI-58 can also interact with spermidine synthase 1 (SPDS1), and 

this direct interaction facilitates the conversion of the polyamine putrescine into spermidine 

[100]. This report is in agreement with similar findings in human colorectal cancer cells 

[56]. Also, CGI-58-facilitated TAG hydrolysis in plants has recently been shown to be 

necessary for the physiological process of light-induced stomatal opening [101]. Therefore, 

in a manner similar to vertebrate CGI-58 isoforms, plant CGI-58 regulates TAG hydrolysis 

to provide critical fuel for ATP synthesis, but also participates in the generation of hormone-

like second messengers that further shape cellular energy metabolism and physiological 

processes such as stomatal opening (Fig. 3). In the free-living nematode Caenorhabditis 
elegans CGI-58 likewise regulates TAG hydrolysis during periods of nutrient deprivation 

[102]. During times of prolonged nutrient deprivation Caenorhabditis elgans can enter the 

“dauer” stage, which represents a static developmental period that is thought to occur to 

facilitate survival during time of stress. During the dauer stage, worm CGI-58 interacts with 

the lipase ATGL-1, but facilitates lipid droplet shrinkage and TAG hydrolysis in a largely 

ATGL-1-independent fashion [102]. Interestingly, worm CGI-58 promotes TAG hydrolysis 

and preferentially liberates 20 carbon-containing polyunsaturated fatty acids [102]. Finally, 

homologues of CGI-58 in the model yeast organism Saccharomyces cerevisiae also regulates 

cellular TAG and phospholipid homeostasis [103]. This study found that human CGI-58 was 
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closely related to a yeast encoded lysophosphatidic acid acyltransferase (LPAAT) enzyme 

known as Ict1p [103]. Following up on this observation Ghosh and colleagues showed that 

introduction of human CGI-58 into Saccharomyces cerevisiae resulted in reduced TAG 

levels, and increased LPAAT activity [103]. The implications of this paper will be discussed 

below in detail, as this reported LPAAT activity has since been called into question. 

Collectively, CGI-58 appears to have a conserved role in TAG hydrolysis as well as in the 

generation of key hormone-like signaling molecules that impact energy homeostasis.

11. Conclusions and Perspectives: The Continued Search for ATGL-

Independent Functions of CGI-58

Even though it is apparent that CGI-58 plays a fundamentally important role in TAG 

lipolysis and the generation of key signaling molecules in every organism studied, we still 

do not fully understand how this enigmatic protein achieves this regulatory role. CGI-58 is a 

member of the alpha beta hydrolase domain-containing (ABHD) family of enzymes, many 

of which possess a classic lipase catalytic triad [104]. However CGI-58 lacks the predicted 

nucleophile serine within the lipase active site, and by all accounts has no intrinsic lipase 

activity towards TAG or many other glycerolipid and glycerophospholipid substrates [104]. 

There is now unequivocal evidence in adipocytes [19–25], myocytes [65–69], and hepatic 

stellate cells [53] that CGI-58 can stimulate TAG hydrolysis and alter PPAR signaling by co-

activating ATGL (Fig. 1 & 2). However, CGI-58 can regulate TAG hydrolysis and cellular 

signaling in many other cell types including hepatocytes [45], keratinocytes [33], and several 

cancer cell lines [94] via an ATGL-independent mechanism. Given these ATGL-dependent 

and ATGL-independent roles for CGI-58, human mutations of either CGI-58 or ATGL are 

associated with some shared yet several divergent phenotypes [11]. In people with primary 

mutations in either CGI-58 or ATGL, the main shared phenotype is ectopic TAG storage in 

circulating leukocytes known as Jordans’ anomaly [11], In contrast to this shared phenotype, 

primary ATGL mutations are always associated with cardiomyopathy, yet much less 

frequently associated with ichthyosis, hepatomegaly, hepatic steatosis when compared to 

primary CGI-58 mutations [11]. Also, primary CGI-58 mutations are always associated with 

ichthysosis, but much less frequently associated with skeletal or cardiac myopathy [11]. 

Collectively, the findings in animal models and humans strongly suggest both ATGL-

dependent and independent roles for CGI-58.

In the search for the elusive ATGL-independent function of CGI-58, many avenues have 

been explored with limited success. As mentioned above, mammalian CGI-58 has 

previously been reported to possess lysophosphatidic acid acyltransferase (LPAAT) activity 

[97,105], suggesting a potential role in the generation of the critical signaling lipid 

phosphatidic acid. However, subsequent investigation has revealed that the LPAAT activity 

originally associated with recombinant CGI-58 [97,105] was due to a bacterial contaminant 

LPAAT acquired during the affinity purification process [106]. This was demonstrated by the 

fact that mutations of the predicted acyltransferase active site of CGI-58 does not reduce 

LPAAT activity [106]. Moreover, affinity purification of recombinant CGI-58 from a 

bacterial strain that lacks the sole LPAAT found in the Escherichia coli genome (plsC) 

yielded no detectable LPAAT activity [106]. It is important to note that other proteins have 
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been mistakenly identified as LPAAT enzymes due to similar problems with affinity co-

purification of bacterial LPAATs [107]. Another recent report also suggested that CGI-58 

instead possesses intrinsic lysophosphatidylglycerol acyltransferase (LPGAT) activity to 

convert lysophosphatidylglycerols (LPG) to phosphatidylglycerol (PG) [108]. However, 

CGI-58 knockdown in mouse liver is associated with marked accumulation of PG lipids, 

which is inconsistent with a LPGAT activity for CGI-58 [41]. Moreover, an independent 

study recently found that both plant and mouse versions of CGI-58 do not have detectable 

LPGAT activity [109]. Therefore, additional work is needed to clarify whether CGI-58 

indeed possesses LPGAT activity, and whether this is linked to ATGL-independent 

phenotypes driven by CGI-58 loss of function. In the continued search for an acyltransferase 

activity for CGI-58, it will be important to consider the challenges of purifying recombinant 

CGI-58 from bacterial expression systems [106].

Given the product of TAG hydrolysis is diacylglycerol (DAG), and CGI-58 knockdown 

alters hepatic DAG storage [42], it is tempting to speculate that CGI-58 may be a key 

regulator of cellular DAG metabolism and DAG-mediated signal transduction. CGI-58 

knockdown in mice leads to increased hepatic DAG levels [41,42,45], and prevents the 

inflammatory cytokine-driven generation of several signaling lipids that can be derived from 

DAG [79]. Two recent reports also support the possibility that CGI-58 could play a direct 

role in the regulation of DAG metabolism or subcellular localization [42,110]. First, CGI-58 

knockdown causes hepatic DAG accumulation in lipid droplets/endoplasmic reticulum, 

while preventing accumulation of DAG at the plasma membrane [42]. Second, CGI-58 co-

activation broadens the selectivity of ATGL for the sn-2 position of TAG to include the sn-1 

position, resulting in the generation of both sn-1,3 and sn-2,3 DAG [110]. It is important to 

note that ATGL deficiency decreases hepatic DAG levels, whereas CGI-58 knockdown 

increases hepatic DAG both in the presence or absence of ATGL [45]. Although the 

mechanism by which CGI-58 knockdown causes DAG accumulation within the lipid 

droplet/endoplasmic reticulum compartment is unknown, the reciprocal reduction in hepatic 

DAG by ATGL deficiency likely directly stems from defective TAG lipolysis to DAG in 

hepatocytes. In support of this concept, adipocyte-specific deletion of ATGL likewise 

reduces total adipose DAG levels [111]. Given that ATGL and CGI-58 reciprocally regulate 

hepatic DAG levels, and the fact that CGI-58 knockdown increases hepatic DAG in both the 

presence and absence of ATGL [45], it is tempting to speculate that CGI-58 plays an ATGL-

independent role in DAG shuttling or metabolism. An early study by Subramanian and 

colleagues [12] showed that during active adipocyte lipolysis that CGI-58 moves away from 

the lipid droplet surface towards the cytoplasm. Based on this trafficking pattern [12], and 

alterations in cellular DAG levels with CGI-58 deficiency [41,42,45,110], it remains 

possible that CGI-58 may be important in shuttling the lipolytic product DAG away from the 

droplet and towards the generation of signaling lipids [5]. In fact, some of the earliest studies 

in NSLDI fibroblasts showed cleared defective shuttling of acylglycerols from TAG pools 

[5]. However, additional studies are required to better understand if CGI-58 has the ability to 

bind and shuttle specific stereoisomers of DAG away from the lipid droplet.

Another potential ATGL-independent role of CGI-58 in TAG hydrolysis could be its recently 

reported role in regulating cellular autophagy. In fact, autophagy of lipid droplets, also called 

“lipophagy”, has recently been described as a key means to regulate hepatic TAG levels 

Brown and Brown Page 11

Biochim Biophys Acta. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



during times of excessive starvation [112]. CGI-58 has been shown to directly interact with 

the autophagy protein beclin 1 in colon cancer cells [94]. This work showed that CGI-58 

competes for a caspase binding site on beclin 1, thereby blunting caspase-mediated cleavage 

of beclin 1, and also showed that CGI-58 and beclin 1 expression levels were correlated in 

human colorectal cancer tissue [94]. Another recent study showed that CGI-58 regulates the 

autophagy of mitochondria, a process known as “mitophagy” [108]. This study showed 

CGI-58 overexpression stimulated the activity of 5’-AMP-activated protein kinase (AMPK) 

and diminished the signaling of the mammalian target of rapamycin complex 1 (mTORC1), 

both of which are major regulatory nodes in autophagy activation [108]. Although additional 

work is needed, these studies provide support for the idea that CGI-58 may regulate cellular 

TAG storage via regulation of lipophagy and mitophagy. As the search for the elusive 

ATGL-independent function of CGI-58 continues it will be important to consider regulatory 

roles in cellular autophagy programs. Moreover, recent identification of endogenous and 

synthetic ligands of CGI-58 that facilitate the release of CGI-58 from perilipins on the lipid 

droplet surface without altering PKA activation [25] provides an extremely useful tool to 

further understand the ATGL-independent roles of CGI-58. Collectively, CGI-58 is a 

conserved regulator of intracellular TAG hydrolysis and the generation of signaling lipids. In 

some cellular contexts (adipocytes and myocytes), CGI-58 accomplishes this regulatory role 

via direct co-activation of ATGL-driven TAG hydrolysis. Whereas, in many other cell types 

CGI-58 potently regulates TAG hydrolysis and lipid signaling via an elusive second ATGL-

independent mechanism. The identification of the ATGL-independent function(s) of CGI-58 

will have broad implications both in the field of energy metabolism as well as signal 

transduction.
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Abbreviations

ABHD5 αβ hydrolase domain 5

ATGL adipose triglyceride lipase

CGI-58 comparative gene identification-58

DAG diacylglycerol

FABP fatty acid binding protein

G0S2 G0/G1 switch gene 2

HCV hepatitis C virus

LPA lysophosphatidic acid (LPA)
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LPAAT lysophosphatidic acid acyltransferase

LPGAT lysophosphatidylglycerol acyltransferase

MAG monoacylglycerol

NLSDI neutral lipid storage disease with ichthyosis

NLSDM neutral lipid storage disease with myopathy

PA phosphatidic acid

PLIN1 perilipin 1

PNPLA2 patatin-like phospholipase domain containing 2

PPARα peroxisome proliferator-activated receptor alpha

TAG triacylglycerol

VLDL very low density lipoprotein
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Highlights

• Mutations in α/β-hydrolase domain (ABHD5) cause neutral lipid storage 

disorder.

• ABHD5/CGI-58 regulates adipose lipolysis via co-activation of ATGL.

• ABHD5/CGI-58 regulates skin barrier function in an ATGL-independent 

manner.

• ABHD5/CGI-58 is a key regulator of insulin action and inflammatory 

responses.

• The role of ABDH5/CGI-58 in neutral lipid metabolism is conserved across 

species.

Brown and Brown Page 21

Biochim Biophys Acta. Author manuscript; available in PMC 2018 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The role of CGI-58 in adipocyte lipolysis. Under basal conditions, CGI-58 interacts with 

perilipin 1 (PLIN1) at the lipid droplet surface, where it is tethered away from interactions 

with the triacylglycerol (TAG) lipase adipose triglyceride lipase (ATGL). Upon 

catecholamine stimulation, elevations in cellular cyclic AMP activate protein kinase A 

(PKA), which then phosphorylates the diacylglycerol (DAG) lipase, hormone sensitive 

lipase (HSL), and also PLIN1 and CGI-58. PKA-mediated phosphorylation of HSL 

facilitates its translocation from the cytosol to the lipid droplet surface, while 

phosphorylation of PLIN and CGI-58 causes dissociation of these two proteins and 

subsequent interaction of CGI-58 and ATGL to drive TAG hydrolysis.
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Fig. 2. 
The role of CGI-58 in skeletal muscle metabolism and transcriptional regulation of 

mitochondrial function. Non-esterified fatty acids (NEFA) are delivered to skeletal muscle 

either complexed to albumin or via lipoprotein lipase-driven lipolysis of triglyceride-rich 

lipoproteins (TGRLP), and taken up into the cell helped by fatty acid transport proteins 

(FATPs) or the scavenger receptor cluster of differentiation 36 (CD36). Once inside the cell, 

a portion of newly delivered NEFA are activated into fatty acyl-coenzyme A (FA-CoA) 

molecules and either used for oxidative fuel in the mitochondria or are esterifed into 

triacylglycerols (TAG) via the action of diacylglycerol acyltransferase (DGAT) enzymes. At 

the lipid droplet surface CGI-58 co-activates adipose triglyceride lipase (ATGL) to promote 

hydrolysis of TAG, and the liberated NEFAs and other acylglycerol lipolysis products are 

delivered to either the mitochondria for oxidation or the nucleus to activate peroxisome 

proliferator-activated receptor α (PPARα) signaling to further drive oxidative gene 

expression.
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Fig. 3. 
The role of CGI-58 in plant lipid metabolism and signaling. In the model plant organism 

Arabidopsis thaliana CGI-58 directly interacts with the peroxisomal ATP-binding cassette 

transporter PXA1. These proteins collaborate to promote transport of non-esterified fatty 

acids (NEFA) to provide energy and also stimulate the transport of key intermediate 

metabolites that are critical for plant hormone production. First, the interaction between 

CGI-58 and PXA1 facilitates the transport and β-oxidation of NEFA in peroxisomes. In 

parallel, CGI-58 facilitates PXA1-dependent transport of the plant hormone lipid 

intermediates 12-oxo phytodienoic acid (OPDA) and indole butyric acid (IBA) into the 

peroxisome where they are converted, respectively, to jasmonic acid or indole acetic acid, 

which are key regulatory hormones in plants promoting pathogen resistance and growth.
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