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Abstract

Drug resistance remains an ongoing challenge for the majority of patients treated with inhibitors 

of the vascular endothelial growth factor (VEGF) pathway, a key regulator of tumor angiogenesis. 

Preclinical models have played a significant role in identifying multiple complex mechanisms of 

antiangiogenic treatment failure. Yet questions remain about the optimal methodology to study 

resistance that may assist in making clinically relevant choices about alternative or combination 

treatment strategies. The origins of antiangiogenic treatment failure may stem from the tumor 

vasculature, the tumor itself, or both together, and preclinical methods that define resistance are 

diverse and rarely compared. We performed a literature search of the preclinical methodologies 

used to examine resistance to VEGF pathway inhibitors and identified 109 papers from more than 

400 that use treatment failure as the starting point for mechanistic study. We found that definitions 

of resistance are broad and inconsistent, involve only a small number of reagents, and derive 

mostly from in vitro and in vivo methodologies that often do not represent clinically relevant 

disease stages or progression. Together, this literature analysis highlights the challenges of 

studying inhibitors of the tumor microenvironment in the preclinical setting and the need for 

improved methodology to assist in qualifying (and quantifying) treatment failure to identify 

mechanisms that will help predict alternative strategies in patients.
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INTRODUCTION

Among the original hypotheses attributed to the potential benefits of targeting the tumor’s 

blood supply - the process of angiogenesis - was the potential for delayed, if not completely 

eradicated, resistance to therapy [1]. Rationally designed cancer therapeutics aim to block 

normal ‘host’ processes such as angiogenesis and seek to limit existing tumor growth to 

stem the distribution and initiation of distant metastatic lesions. Currently there are 10 FDA 

approved agents targeting the vascular endothelial growth factor (VEGF) pathway – a key 

driver of tumor angiogenesis – as first or second line treatments in 13 disease types either 

alone or in combination with chemotherapy [2]. However, efficacy is limited in most cases, 

with the majority of patients experiencing relapse and the onset of refractory/resistant 

disease [3].

The Importance of Preclinical Models for the Study of Antiangiogenic Drug Efficacy

Currently approved VEGF pathway inhibitors include proteins which block VEGF 

(bevacizumab, afibercept) or the VEGF receptor (ramucirumab), and small molecule 

receptor tyrosine kinase inhibitors (RTKIs) such as sunitinib, sorafenib, pazopanib, and 

several others – all of which inactivate the VEGF receptors and other targets (summarized in 

[2]; see Jimenez-Valerio and Casanovas in this issue). Prior to clinical testing and approval, 

numerous preclinical studies validated the importance of VEGF signaling as a driver of 

tumor angiogenesis and showed the anti-tumor efficacy of various inhibition strategies [4]. 

Such studies used multiple methodologies, including in vitro and in vivo models of tumor 

growth or angiogenesis (see [5] for detailed review). In vitro examinations of VEGF 

pathway inhibitor efficacy most typically included drug exposure to VEGFR+ endothelial 

cells to demonstrate target specificity and activity, while recent studies have shown treatment 

impact on other stromal cells critical for tumor growth such as bone marrow derived cells 

(BMDCs), cancer associated fibroblasts (CAFs), pericytes, immunomodulating cells, and 

many others (reviewed in [6]). Though less frequent, tumor cells have also been found to 

express functional VEGFRs and in vitro tests have suggested that direct tumor treatment 

effects may contribute, at least in part, to overall anti-tumor efficacy [7].

However, determining the anti-cancer activity of antiangiogenic drugs based solely on in 
vitro studies is limited and therefore studies in vivo have proved most critical to assess the 

complex tumor/host interactions that occur during cancer growth. In vivo models used to 

study the impact of VEGF blockade include i) mechanistic assays - which focus on 

angiogenesis formation and involve models such as the chicken chorioallantoic membrane 

(CAM), dorsal air sac, corneal pocket, and various chamber assays – some of which allow 

for specific assessments of drug action (reviewed in [8]), or ii) tumor based assays, which 

allow for insight into the complex and expansive interplay between cancer and the host 

microenvironment. Tumor-based in vivo systems are critical for evaluation of the pathologic 

growth factor imbalances that the tumor initiates to generate new blood vessel formation. 
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These include basement membrane degradation, endothelial activation and sprouting, 

recruitment of supportive stromal and immune cells - all of which act in concert to facilitate 

tumor growth (for detailed review see [9]).

Studying Antiangiogenic Treatment Failure

Yet despite more than a decade of approved use of VEGF pathway inhibitors clinically, 

choosing the optimal methodology to study drug effects in the preclinical setting remains 

debated [10–12]. Indeed, the gap between preclinical drug efficacy and actual treatment 

benefits for patients are significant and sobering statistics show the paucity of drugs whose 

initial preclinical promise translated into similar benefits in humans [10]. The potential for 

overstated positive preclinical results may, at least in part, explain the high attrition rates for 

drugs clinically, with as little as 8% of treatments passing on to Phase I successfully [13], 

and even less (5%) showing benefits in the Phase III setting [14].

But the importance of preclinical research does not stop at drug approvals. Studies involving 

drug resistance - an unfortunate (and often inevitable) reality for most therapies - are 

important in identifying potential causes of failure. In the case of angiogenesis inhibitors, the 

number of publications detailing resistance to VEGF pathway blockade has risen 

dramatically in recent years, with multiple underlying mechanisms identified. These include 

intrinsic resistance mechanisms, characterized by an innate indifference of the tumor (or 

host) to VEGF action leading to growth in spite of treatment, or acquired mechanisms which 

includes adaptive modifications that render treatment ineffective [15]. Since the tumor is not 

the primary drug target for antiangiogenic therapy, the study of resistance is complex. Unlike 

traditional cytotoxic chemotherapy and radiation or other tumor-targeted treatment strategies 

that may evoke mutations or gene amplifications as a primary cause of non-responsive tumor 

clones, antiangiogenic therapy may provoke concerted stromal and tumor reactions which 

(together or separately) lead to eventual failure [3]. As such, the list of antiangiogenic 

treatment resistance mechanisms has become expansive, and can include compensatory 

tumor- and host-mediated factors (such as FGF upregulation, as well as several other 

proteins [16]), recruitment of BMDCs (such as CD11b+GR1+ cells) [17], and there are many 

others that have been extensively reviewed elsewhere [15].

What is the Best Model of Resistance?

While multiple mechanisms have been proposed to explain acquired and intrinsic resistance, 

exactly how therapy failure has been experimentally tested warrants special consideration. 

There are a diverse set of in vitro and in vivo methodologies that have been utilized but these 

have rarely been compared for relative benefit. For instance, how is resistance defined in the 

preclinical setting when the tumor cell may not be the primary driver of failure? Do current 

resistance explanations differentiate between likely tumor or host origins? Finally, and 

perhaps most importantly, what is the most clinically relevant preclinical methodology to 

study resistance? Such questions are surprisingly complex and could impact what we know 

(or do not) about the search for treatment strategies to extend the benefits of antiangiogenic 

therapy.
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To better understand this we undertook a detailed literature search of the preclinical methods 

used to define VEGF pathway inhibitor resistance. Our findings suggest the majority of 

mechanisms attributed to VEGF pathway inhibitor failure stem from a small subset of 

approved drugs, often include limited model systems such as in vitro exposure of tumor cells 

to treatment or in vivo studies that do not mirror clinical metastatic disease progression, and 

typically include multiple (sometimes incongruent) definitions of resistance - potentially 

limiting the value for patient relevance (See Box 1). Together, our survey of the literature 

shows the challenges in identifying mechanisms of resistance using preclinical studies and 

the need to utilize clinically relevant cancer models to better guide treatment choices during 

(or after) antiangiogenic treatment failure.

Box 1

Summary of Key points

• Preclinical assessments of antiangiogenic therapy efficacy and resistance are 

best modeled in vivo

• Definitions of resistance in preclinical studies are highly variable

• Models used to study resistance are dominated by in vitro assays involving 

tumor cells (not the primary target) or in vivo assays involving ectopically 

implanted primary tumor models

• Preclinical models of resistance rarely mimic clinically relevant metastatic 

disease

• Improved models and standardized criteria for failure may assist in defining 

alternative treatment strategies to improve patient responses

A SURVEY OF PRECLINICAL ANTIANGIOGENIC RESISTANCE MODELS

Defining Resistance

We performed a series of searches using the National Center for Biotechnology information 

(NCBI) ‘PubMed’ search engine to isolate preclinical studies focused on the study of VEGF 

pathway inhibitor resistance in in vitro and in vivo systems. Searches were subject to several 

restrictions. These included only VEGF pathway targeted therapeutics either currently 

approved for clinical use (such as sunitinib, bevacizumab, sorafenib, pazopanib, axitinib, 

cabozantinib, regorafenib, ramucirumab, aflibercept) or those mouse biologics used most 

frequently (more than 5% of studies found) such as mouse VEGF (B.20 or G6.31) or 

VEGFR-2 (DC101) neutralizing antibodies (see Fig. 1 for search criteria and definitions). 

Our search results identified 381 publications related to antiangiogenic drug resistance to 

which we added 30 papers found independently. From these, 109 were confirmed as dealing 

with the study of VEGF pathway resistance in the preclinical setting. Critically, for the 

purpose of this review we classified ‘resistance’ as those studies where treatment failure was 

the starting point for mechanistic investigation. This means that studies with endpoints 

aimed at delaying intrinsic or acquired antiangiogenic resistance or extending a period of 

efficacy (i.e., by combination treatment studies), rather than direct derivation or study of 
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resistance models, were excluded from our analysis. While these criteria meant that some 

studies with less commonly used drugs or mechanistic approaches (i.e., including alteration 

of gene or protein expression in cells [18, 19] or animals [20]) may not be included, these 

were in the minority and the papers we selected offer an accurate representation of the 

mechanisms currently associated with VEGF pathway inhibitor resistance in cancer (see 

Supplemental Box 1 for additional search criteria and Supplementary Table 1 for complete 

search results).

The Challenges of Modeling Preclinical Antiangiogenic Drug Resistance

Our literature review shows a broad range of models used to examine resistance. For 

instance, in vivo tumor studies (most typically in mice) have proved most valuable in the 

assessment of antiangiogenic treatment failure. Models include spontaneous tumors 

generated by chemical induction or transgenic mice (genetically engineered mouse models, 

or GEMMs), the latter of which offer the most complete representation of the molecular and 

pathological stages of cancer initiation and progression seen in patients [12, 21]. GEMMs 

can include the pancreatic islet cell carcinoma (RIP1-TAG2) model amongst many others [8, 

10], and several GEMMS have played a significant role in identifying antiangiogenic drug 

resistance mechanisms, including compensatory upregulation of pro-angiogenic molecules 

as just one example (see [12] for a detailed review). But the use of GEMMs to study VEGF 

pathway resistance are in the minority (see below) and implanted tumor models have been 

more typically used to study treatment failure. These include human tumor xenografts 

whereby cells from patients (patient-derived xenograft, PDX) or established lines (cell-line 

derived xenograft, CDX) are injected into immunocompromised mice ectopically (not in site 

of cell origin - most typically under the skin subcutaneously) or orthotopically (into the site 

of cell origin) [5]. Similarly, mouse implantation studies can be used whereby GEMM-

derived or cell line-derived mouse cells are implanted (ectopically or orthotopically) into 

immunocompetent animals syngeneically (as an allograft or isograft) [12]. While human 

CDX and PDX models offer the potential to study (and predict) the impact of treatment on 

human cancer, the use of syngeneic tumor experiments offer the study of immune impact on 

disease progression and toxicity profiles [22], and therefore provide a more clinically 

relevant testing method (reviewed in [10, 12]).

But how has antiangiogenic drug resistance been studied preclinically? Our literature search 

of 109 studies yielded several surprising findings which may highlight the challenges 

associated with defining consistent mechanisms of resistance to VEGF pathway inhibition. 

These challenges include:

Relatively few Drugs are Evaluated—While the number of studies describing 

mechanisms to antiangiogenic drug resistance have increased in the last decade (Fig. 2A), 

more than 90% of studies involved one or more of only 4 drugs (sorafenib, sunitinib, 

bevacizumab, and DC101) (Fig. 2B). This could be the result of drug availability as certain 

drugs (particularly novel biologics such as antibodies) can be proprietary and require 

industry agreements or only be obtained following placement in commercial hybridoma 

facilities (as is the case with DC101 [23]). As well, acquiring drug volumes in sufficient 

quantities for protracted treatments to use in resistance studies may be difficult, or it could 
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be that some agents simply have limited utility in mice. An example of the latter may 

include use of human VEGF specific antibodies such as bevacizumab which inhibits only 

human cell-generated VEGF in CDX/PDX models. The use of bevacizumab preclinically 

can be helpful or limited depending on the preclinical approach taken and scientific question 

asked. For instance, Curtarello et al. used bevacizumab in vivo to investigate the effects of 

VEGF blockade on human tumor cell metabolism [24] and others have used bevacizumab in 

tumor systems where functional VEGF/VEGFR autocrine interactions are important in 

tumor growth [25]. Together, our search results show that, despite the numerous resistance 

mechanisms attributed to VEGF pathway inhibition preclinically, a surprising number derive 

from a relatively small subset of therapeutic approaches.

In Vitro Resistance is Derived Mostly Using Tumor, not Stroma Cells—We found 

that of the papers identified for analysis, there was a relatively even distribution between in 
vitro (58/109) and in vivo (45/109) models used to derive resistance to antiangiogenic 

agents, with 6 studies performing both (Fig. 3A). In the case of in vitro studies, the most 

typical scenario involved selection of drug resistant cells following chronic exposure to a 

VEGF pathway inhibitor over a protracted period (acquired resistance) or with the 

immediate identification of non-responsive cells (intrinsic resistance). Surprisingly, our 

findings show that the vast majority of in vitro resistance studies involved treatment of tumor 

cells (Fig. 3B), rather than stroma cells (such as endothelial cells). While this would seem 

initially paradoxical since the primary target is the host vasculature rather than the tumor, 

VEGF RTKIs that have been shown to have direct-tumor effects which could lead to tumor 

alterations that could minimize direct or indirect effects. For example, Gotink and colleagues 

exposed human renal cell carcinoma (RCC) 786-O and colorectal carcinoma (CRC) HT-29 

cells to high doses of the VEGF RTKI sunitinib and demonstrated that tumor cell 

insensitivity could be mediated by lysosomal sequestering of drug, thereby diluting 

treatment effects [26]. In other examples, human CRC cells exposed to bevacizumab for 

long periods led to increased migratory ability in vitro and increased metastasis when 

implanted in vivo into mice as primary (ectopic) tumors [25]. Such studies highlight the 

autocrine action of VEGF on certain tumor cell populations and, while such VEGF-

dependent tumor cells may be rare, indicate the impact of chronic exposure on cell behavior 

[25].

But the utility of deciphering mechanisms of resistance from tumor cells exposed in vitro to 

VEGF inhibitors remains unclear, and only 3 out of 64 studies attempted to derive treatment-

resistant endothelial cells in an in vitro setting. For example, Huang et al. [27] and 

Guerrouahen et al. [28] show that chronic exposure of sunitinib or bevacizumab in vitro to 

(non-transformed) vascular endothelial cells can lead to upregulation of multidrug resistant 

proteins (such as P-glycoprotein) or compensatory angiogenic signals (such as FGF), 

respectively. This lack of in vitro study may be due, at least in part, to the technical difficulty 

of establishing resistance in ‘normal’ VEGFR2+ endothelial cells as limited passages and 

need for growth factor stimulation (i.e., VEGF supplementation). Nevertheless, it is 

important to consider that mechanisms of resistance to antiangiogenic therapy have focused 

disproportionally on the tumor response to treatment, rather than the host cells, and it 

remains unclear whether this has impacted known resistance mechanisms.
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In Vivo Resistance Studies use Mostly Implanted Ectopic Xenografts—In our 

examination of in vivo studies, we found an even more surprising imbalance in 

methodologies used to study resistance to VEGF pathway inhibitors. For instance, out of 74 

papers, the majority of studies (66) involved the study of resistance in implanted tumors 

rather than in models of spontaneous tumor growth, such as various GEMMS or following 

intravenous implantation (Fig. 3C). Interestingly, from these implanted studies, we found 

that the vast majority (52 of 66) involved only ectopic tumor implantations, and most 

included established tumor cell lines injected subcutaneously into the skin, compared to 

orthotopic implantations (7 of 66 papers; Fig. 3D). This may have importance as several 

studies have now demonstrated that antiangiogenic therapies can have differential effects 

depending on whether tumors are implanted ectopically or orthotopically, even when all 

other conditions are controlled (such as cell number, drug, treatment, etc) [29]. As an 

example, Shojaei et al. found that VEGF RTKI treatment in mice implanted with 4T1 mouse 

mammary carcinomas subcutaneously had improved tumor benefits compared to mice with 

the same cells implanted orthotopically (i.e., mammary fat pad) [30]. Such differences in 

treatment outcomes have been noted for antiangiogenic therapies as well as other agents, 

such as chemotherapy where organotropic differences have been shown to alter tumor 

response to therapy (reviewed in [29, 31]).

Another confounding factor that could impact how antiangiogenic resistance mechanisms 

are interpreted is the fact that the majority of implanted studies were performed in 

immunocompromised mice with human xenografts (56 of 66 papers) in contrast to mouse 

syngeneic studies involving syngeneic tumor models (i.e., either iso or allograft 

implantations). Indeed, this reliance on models involving compromised immune systems 

may rule out critical interactions that play a key role in resistance. For instance, tumor 

infiltrating lymphocytes (TILs), macrophages, and myeloid derived suppressor cells 

(MDSCs), and several cells and immuneregulated cytokines and growth factors, all are 

known to influence tumor growth and response to therapy (reviewed in [10]). As such, 

identification of mechanisms of antiangiogenic treatment failure primarily in 

immunocompromised settings may overlook key elements and underestimate contributing 

factors that lead to resistance [10, 32].

Resistance Studies Rarely Include Metastasis—While the majority of studies 

involving antiangiogenic drug resistance derive from investigations of localized (typically 

implanted) primary tumors, we found that few studies have specifically studied resistance 

deriving from spontaneous metastatic lesions as they would present in the majority of 

clinical patients not responding to therapy. Indeed the study of metastasis in preclinical 

experimental treatment strategies is rare, in large part because of difficult technical 

challenges [33]. Replication of the complex processes involved in the metastatic cascade 

have proved limited, with several difficulties noted. These include poor metastatic potential 

of most cells, high variability (including diverse growth patterns), and difficulty in 

quantitative assessment methods to detect disease during progression (reviewed in [29]). 

Most preclinical models of spontaneous metastasis include studies where the primary tumor 

is left in place (and metastasis is assessed at an institutional endpoint for primary disease) or 

primary tumor is surgically removed [29, 33]. Syngeneic mouse models are most typical for 
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the study of metastasis because the tumors grow rapidly, but xenograft studies can be used in 

instances where highly metastatic human tumor cell variants are selected through multiple 

implantation/resection cycles [34]. In other instances, injection of tumor cells into the 

bloodstream in an experimental metastasis model can be used, though this eliminates 

intravasation and initial tumor growth phases of the process and may therefore be limited 

[31, 33].

These considerations of metastasis modeling are potentially important because of growing 

evidence suggesting that metastases respond differently than primary localized disease 

following treatment with antiangiogenic therapy [35–37]. For this reason, it is notable that of 

36 in vivo studies that derived a resistant phenotype following VEGF pathway inhibition, 

only 2 involved selection of metastatic cells (Fig. 3F). In one instance, Hammers et al. 
examined a metastatic lesion taken from a sunitinib-treatment refractory RCC patient (and 

then studied in a PDX mouse model) [38], in another, Hsueh et al. [39] obtained metastatic 

lesions from a sunitinib-treatment refractory GIST patient and studied resistance 

mechanisms in vitro [40]. It is critical to note that this represents only studies which derived 
resistance as compared to studies involving the study of resistance (see Supplemental Box 1 

for complete definitions and search limitations). In our literature review, we found that of 74 

papers that studied resistance in vivo, 55 involved models that considered only primary 

tumor responses and only 19 studies considered primary and metastatic growth together. Our 

findings suggest that few, if any, preclinical evaluations of VEGF pathway resistance have 

been performed in models of spontaneous metastatic disease that is in a clinically relevant 

setting (i.e., following surgical removal of a primary tumor) (see Supplemental Table 1).

Resistance Definitions are Diverse and Often Inconsistent—Perhaps most 

intriguing from our review of the preclinical literature is that, regardless of the model used to 

derive and study resistance to antiangiogenic therapy, exactly how resistance was defined 

varied considerably from study to study. This may have a significant impact on the 

mechanisms attributed to VEGF pathway inhibition as we found that variable cancer models 

often were associated with an equally variable range of study-specific definitions of what 

constitutes treatment failure (Fig. 4). For instance, we found that in vitro studies often used a 

multitude of drug doses and treatment durations which, in turn, could impact genotypic and 

phenotypic changes attributed to resistance. Examples of such differences can be observed in 

in vitro studies involving tumor cells exposed to sorafenib and sunitinib that, depending on 

the study/investigator, included highly variable time periods (such as 4 to 12 months [41–43] 

or 3 to 12 months [26, 44], respectively) or highly variable drug concentrations (such as 

5μM to 25 μM [42, 45], and 5μM to 20 μM [42, 44, 46], respectively). It is unclear whether 

such methodological differences can explain why common resistance pathways are not 

typically shared between similar systems of multiple studies.

Importantly, similar methodical variations in vivo could also impact how resistance is 

evaluated, particularly for studies involving tumor-bearing animals that are exposed to 

treatment for prolonged periods. For example, resistance following treatment of a primary 

implanted tumor has been defined in many ways, often very differently depending on the 

study. Therefore, resistance has been defined as, 1) an increase in tumor diameter by 2mm 

during treatment (from its pretreatment diameter of 12mm) [47], 2) a tripling of tumor 
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volume from a determined size [48], 3) a tumor that reaches 1000mm3 during treatment 

[49], or 4) tumors that reach institutional endpoints (such as sizes of 1500–2000 mm3) [50]. 

In most instances, tumor size is the primary variable and actual duration of treatment is not 

considered, thus models may differ significantly in terms of amount of drug given and the 

time period in which it is given. Such definitions may vary greatly from study to study, or 

even within individual experiments (i.e., two treated animals may reach a given size 

threshold at significantly different time points). Indeed, even GEMM models involving 

resistance can differ considerably in terms of resistance definitions. For instance, some may 

define failure as continued tumor growth (following an initial delay [51]) while for others it 

would be presentation of any invasive phenotype [16, 52]. Therefore, in addition to the 

aforementioned differences in treatment responses in ectopic or orthotopic tumors (in either 

human xenografts or mouse syngeneic models), we found that consistent definitions of 

resistance between studies are rare. This may explain not only the diverse mechanisms 

attributed to antiangiogenic treatment failure, but the lack of consistency from study to 

study.

CONCLUSION

This analysis of the preclinical literature of the models and methods used to evaluate 

resistance to VEGF pathway inhibitors reveals several challenges investigators must 

confront in the study of treatment failure. Our findings show that the majority of studies 

performed in vitro evaluate tumor-responses to therapy, with few studies specifically focused 

on stroma cell responses to understand how host responses may contribute to treatment 

failure. For in vivo work, we found that the majority of preclinical models involve 

ectopically implanted (mostly in the skin) primary (localized) tumor growth studies of 

VEGF pathway inhibitor resistance, with the majority utilizing human xenograft models in 

immunocompromised animals. Few resistance models involve spontaneous tumor growth 

and progression (i.e., GEMMs) and we found that few, if any, studies have been conducted 

in mice that mimic clinically relevant spontaneous metastatic disease as it would present in 

patients (i.e., following surgical resection of a primary tumor and relapsed disease as a 

primary endpoint). Finally, our review of the literature found that defining resistance is not 

uniform across the majority of studies, with numerous differences in treatment (i.e., dosing 

and duration) and endpoint considerations (i.e., primary or metastatic tumor growth) as 

potential key considerations for future elucidation of resistance mechanisms.

Together this literature analysis highlights the disconnect between preclinical and clinical 

research methods and the need to improve models to evaluate not only treatment efficacy but 

also to more faithfully replicate treatment failure.
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Fig. 1. Criteria used for literature search of preclinical antiangiogenic treatment resistance
Search terms used: 1 Angiogenesis, 2 Cancer OR Tumor, 3 Drug, 4 Resistance OR Resistant 

OR Refractrory, 5 in vitro OR in vivo, 6 Sunitinib OR Sutent OR SU11248, 7 Bevacizumab 

OR Avastin OR R435, 8 Sorafenib OR Nexavar OR BAY 43-9006, 9 Pazopanib OR Votrient 

OR GW786034, 10 Axitinib OR Inlyta OR AG013736, 11 Cabozantinib OR Cometriq OR 

XL-184, 12 Regorafenib OR Stivarga OR BAY73-4506, 13 Ramucirumab OR Cyramza OR 

IMC-1121B, 14 Ziv-aflibercept OR Zaltrap, 15 DC101, 16 B.20 or G6.31. Search Criteria: 

Data in this review were compiled from PubMed and MEDLINE database searches before 

August 16, 2015. # Studies identified as having a primary focus on deriving or studying 

treatment failure as a starting point were included in analysis (see Supplemental Box 1). 

Studies involving delay of acquired resistance were excluded (see text for details); *Clinical 

studies, Reviews, and studies for resistance to non-antiangiogenic treatment were 

excluded; %studies not identified by search parameters but found to conform to criteria were 

included (total 15).
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Fig. 2. Incidence of resistance papers published and VEGF pathway inhibitors used in preclinical 
analysis
A) Distribution of papers and years published of 109 preclinical studies selected for analysis 

of resistance mechanisms. B) Usage distribution of 12 VEGF pathway inhibitors among 109 

papers selected for analysis. Note: percentages exceed 100% as a result of studies including 

multiple drugs.
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Fig. 3. Breakdown of the models used to study preclinical VEGF pathway inhibitor resistance in 
the papers selected for analysis
A) Distribution of papers involving in vitro and in vivo derivation of resistance. B) Number 

of papers involving derivation of resistant tumor or non-tumor cells in vitro. C) Number of 

papers involving in vivo derivation of resistance in implanted tumor and spontaneous disease 

models. D) Distribution of papers studying resistance in vivo involving ectopic and 

orthotopic tumor implantation models. E) Distribution of papers studying resistance in vivo 
involving xenograft and syngeneic tumor implantation models. F) Number of papers 

involving derivation of resistance models based on treatment of localized primary tumor or 

metastatic disease. Note: Gray areas represent papers that belong to both groups. Numbers in 

parenthesis correspond to numbers of papers in each group.
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Fig. 4. Schematic of tumor models and definitions used to evaluate preclinical VEGF pathway 
inhibitor resistance
From 109 preclinical studies, numerous tumor models are used, including in vitro (2D single 

cell based) and in vivo (primarily involving localized primary growth tumors). Examples 

shown of varied methods used to define resistance. Note: † Sunitinib as example; ‡ RIP1-

Tag2 as example, %Genetically Engineered Mouse Model. See text for details.
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