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Abstract

Nairobi, Kenya exhibits a wide variety of micro-climates and heterogeneous surfaces.

Paved roads and high-rise buildings interspersed with low vegetation typify the central busi-

ness district, while large neighborhoods of informal settlements or “slums” are characterized

by dense, tin housing, little vegetation, and limited access to public utilities and services. To

investigate how heat varies within Nairobi, we deployed a high density observation network

in 2015/2016 to examine summertime temperature and humidity. We show how tempera-

ture, humidity and heat index differ in several informal settlements, including in Kibera, the

largest slum neighborhood in Africa, and find that temperature and a thermal comfort index

known colloquially as the heat index regularly exceed measurements at the Dagoretti obser-

vation station by several degrees Celsius. These temperatures are within the range of tem-

peratures previously associated with mortality increases of several percent in youth and

elderly populations in informal settlements. We relate these changes to surface properties

such as satellite-derived albedo, vegetation indices, and elevation.

Introduction

In a changing climate, heat and heat exposure are growing concerns. Currently, extreme tem-

perature is one of the deadliest forms of climate hazard worldwide [1]. This burden is pro-

jected to increase as the climate warms, but will be unequally distributed, with heat exposure

in some African regions, including East Africa, projected to increase by two orders of magni-

tude relative to that in Europe [2]. This presents a challenge to urban planners, public health

officials and the disaster management community, since resource-poor countries may be ill-

equipped to handle these challenges.

Heat exposure also has the potential to be exacerbated by increasing urbanization, which

cause city temperatures to be hotter than the surrounding rural temperatures by several
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degrees [3]. These urban-rural thermal differences, often referred to as the urban heat island

effect, have several causes: increased surface area from added buildings, increased heat reten-

tion from man-made materials, and decreased evapo-transpiration from clearing plants and

vegetated surfaces [4]. However, urban areas are neither monolithic nor homogeneous. Differ-

ent micro-climates cause temperature readings to differ by up to several degrees [5], meaning

that a resident’s heat exposure may vary by or even within neighborhood. It may also mean

that some areas need intervention when other areas do not. Understanding the existence of

micro-climates within the urban setting can have important implications for the disaster man-

agement and public health spheres by creating opportunities for more targeted interventions

to reduce the effects of heat exposure now and in a warmer climate.

Nairobi, Kenya exhibits a wide variety of heterogeneous surfaces. The central business dis-

trict is characterized by paved roads, wide sidewalks, and high-rise buildings interspersed with

low vegetation, while large neighborhoods of informal settlements or ‘slums’ are characterized

by dense metal housing, little vegetation, and limited access to public utilities and government

services. This and other informal settlements contain low, dense housing types built from gal-

vanized iron sheets, wood and mud with inadequate access to basic services such as clean

water. In 2003, the Government of Kenya and UN Habitat signed a memorandum of under-

standing with an objective of upgrading slums in Nairobi, but a substantial number of resi-

dents still live in informal settlements. Population counts in informal settlements are difficult

to estimate precisely, but it is estimated that anywhere from one third to 60% of Nairobi’s 3.1

million residents live in informal settlements [6, 7], the largest of which is Kibera. The popula-

tion residing in these settlements are potentially highly vulnerable to heat exposure due to lack

of information on heat wave occurrence and risk, inadequate access to routine health services,

limited access to potable water, limited household ventilation and lack of access to cooling

centers.

Previous Nairobi field studies have found evidence of warmer urban temperatures [8], par-

ticularly for minimum daily temperature, and satellite thermal imagery shows that land surface

temperature is warmer in the city and in informal settlements (Fig 1) than in some rural loca-

tions. An epidemiology study also found that heat is related to increased rates of mortality and

morbidity in Nairobi’s informal settlements [9]. However, no study of temperature and ther-

mal comfort in informal settlements has ever been conducted in Nairobi or other cities in

Kenya (of which the authors are aware).

In Nairobi, the main observation station (Dagoretti) is located at the Kenya Meteorological

Department Headquarters, just a kilometer away from the informal settlement of Kibera, but

characterized by very different land cover type and architecture. In this paper, we ask if infor-

mal settlements are hotter than the central monitoring station, and if so, why, by investigating

temperature, humidity and the thermal comfort or heat index in several informal settlements

in Nairobi, Kenya. This question has important implications for heat exposure for residents of

informal settlements in Nairobi and beyond.

Methods

Observations

A network of Ibutton sensors (Fig 2) installed in three geospatially diverse Nairobi informal

settlements (slums), Kibera, Mathare and Mukuru, provided the datasets used in this paper.

Kibera is the largest informal settlements in Kenya and is situated southwest of Nairobi. Many

houses in Kibera are densely built and accessed through narrow, unpaved paths. The primary

construction materials comprise of galvanized iron sheet roofs, mud walls and concrete floors.

There also exist gated concrete houses and flats with a mixture of asbestos and galvanized iron
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sheet roof tops built by the County Council of Nairobi. The second slum, Mathare, is located

to the north east of Nairobi in a valley along Mathare River. The houses in Mathare are charac-

terized by walls and roofs made of galvanized iron sheets. The houses are closely built leaving

narrow access paths to people’s houses with little ventilation. A few sensors were also placed in

the Mathare North neighborhood characterized by apartment buildings or flats, which are five

to six stories high. The final slum, Mukuru, is located to the south east of Nairobi adjacent to

the main industrial zone. The houses in this neighborhood are a mixture of a few high rise

buildings and houses constructed from galvanized iron sheets (both walls and roofs), housing

a significant number of people working within the surrounding industries.

We compare these sites to the Dagoretti weather station, situated at the Kenya Meteorologi-

cal Department (KMD) headquarters (Fig 1) on a grassy, tree-lined campus (Fig 3a). The

KMD headquarters is located inside the political boundaries of the Kibra constituency but

approximately a kilometer away from the residential areas of Kibera. We also rely on a site at

the University of Nairobi Chiromo Campus, a wooded and vegetation-filled campus that is

fenced off from Nairobi Central Business District. We use four daily temperature variables

Fig 1. Map. Locations of iButton heat monitors in Nairobi, Kenya. Red colors represents the mean daily temperatures at each monitor; purple colors

represent the land surface temperature calculated from Landsat8. Black outlines denote the Mathare, Mukuru and Kibra constituencies, the latter of which

contains the Kibera informal settlement neighborhood.

https://doi.org/10.1371/journal.pone.0187300.g001
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Fig 2. Schematic. A schematic of the iButton and radiation shield.

https://doi.org/10.1371/journal.pone.0187300.g002
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from Dagoretti: 9am (local time) temperature, 3pm temperatures, minimum and maximum

temperature. Minimum and maximum temperature are recorded from a min-max thermome-

ter, an analogue instrument that captures the highest and lowest temperatures within a time

period, in this case twenty-four hours, while the 9am and 3pm measurements are recorded

from the station thermometer at 9 o’clock and 3 o’clock. We use Dagoretti’s daily minimum

temperature from 1984 to 2014 to compute long-term climatological means for each day and

Dagoretti’s sub-daily data (maximum and minimum temperature) from 2016 for temperature

and relative humidity to validate the iButton data. The iButton thermometer/hygrometers, a

product of Maxim Integrated, have an onboard data logger and are accurate to 0.5˚C degrees.

The sensors were housed in a custom, naturally aspirated radiation shield made of WhiteOp-

tics White98 Reflector Film and the ensemble was attached with zip-ties to the eaves of houses,

posts, and trees (Fig 2).

A network of 50 iButton sensors was installed in December 2015 and left to record through

February 2016, at which time 43 remained (Fig 1). Sensors were installed facing North on or

near private homes, schools, and non-profit organizations in parts of the Mukuru, Mathare,

and Kibera neighborhoods. We also installed a sensor at the University of Nairobi Chiromo

Fig 3. Study sites. The iButton thermometer/hygrometer installed in situ. a) shows the central monitoring site at the Kenya

Meteorological Department headquarters and b) shows a typical household in the Kibera neighborhood.

https://doi.org/10.1371/journal.pone.0187300.g003
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Campus observatory. iButtons were attached mostly to wooden posts (35 or 71%) and trees (6

or 12%) at a height of two to three meters. One sensor located at the Dagoretti station was

installed on the metal frame of a Gill Screen at a height of 1.5 meters. Most sensors were

installed in partial shade (22 or 45%) or full shade (23 or 47%); four were installed in full sun

(8%). Five sensors were subsequently rejected for data quality concerns, including sensors

attached to metal or in full sun, leaving 36 sensors for analysis.

Temperature and humidity observations are used to compute the heat index HI, a bi-qua-

dratic function that estimates human heat exposure from relative humidity and temperature in

Fahrenheit. Note that T˚F = .9/5 � T˚C + 32.

HI ¼ c1 þ c2T þ c3RH þ c4TRH þ c5T2 þ c6RH2 þ c7T2RH þ c8TRH2 þ c9T2RH2

where c1 = −42.37, c2 = 2.04901523, c3 = 10.14333127, c4 = −0.22475541, c5 = −0.00683783, c6 =

−0.05481717, c7 = 0.00122874, c8 = 0.00085282, c9 = −0.00000199 [10]. Heat index is a unit-

less quantity but can be understood as human-perceived temperature in degrees Fahrenheit.

Data validation

iButton thermometers have been extensively validated in the literature [11], though a warm

bias during daytime has been reported [12]. Using observations at three hour temporal resolu-

tion, we quantify the possible bias using three metrics. First, we calculate the percent bias

(PBIAS) (1), the tendency of the iButton sensor to measure the average deviation of the iBut-

ton sensor reading O from the station record S. A value of zero is a perfect match; positive

(negative) values indicate that the iButton overestimates (underestimates) the records com-

pared to station instruments.

PBIAS ¼
PN

i¼1
ðSi � OiÞ

PN
i¼1

Oi

� 100 ð1Þ

Next, we calculate the Modified Index of Agreement or MIOA (2), which measures the degree

of iButton error [13] between the iButton observations O and the station observations S. This

metric varies between zero and one, with one indicating a perfect match and zero indicating

no match.

MOIA ¼ 1 �

PN
i¼1
ðOi � SiÞ

j

PN
i¼1
ðjðSi �

�OÞj þ jðOi �
�OÞjÞj

ð2Þ

Here, we use j = 2. We also calculate the mean difference in temperature and relative humidity,

RH. We note that for the observation period of December 2, 2015 to February 20, 2016, data

availability varies by meteorological parameter, as reported in Table 1.

Comparison with KMD instruments at Dagoretti—both an analogue thermometer as well

as a min-max thermometer—confirms that thermometers agree well for morning measure-

ments, but less well during the afternoon. Table 1 shows the results of our validation analysis

for hourly data at 9am and 3pm local time, as well as minimum and maximum daily tempera-

ture, Tmin and Tmax, respectively. The bias is highest for Tmax, but lowest for Tmin. Similarly,

agreement is poorest for Tmax and best for Tmin. Hourly agreement follows a similar pattern

with bias lower and agreement higher for 9am than for 3pm, with a 3pm local time mean dif-

ference of 1.79˚C (Fig 4). However, we note that the mean difference is larger for Tmax than at

3pm (3.2 versus 1.79˚C), despite the fact that maximum temperature occurs close to 3pm.

Without overlapping data, it is difficult to determine the cause, but one possibility is that the

different instruments have different responses and that perhaps the high bias for Tmax may be
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overstated. Differences for Tmin was not found to correlate with radiation, radiation lagged one

day, or temperature. KMD data for Tmax was unavailable for similar analysis.

Validation of iButton hygrometers has not been reported in the literature, though the man-

ufacturer reports that the hygrometer has 5% precision. Our tests found good agreement with

the station hygrometer (Table 1), with slight overestimation at 9am and slight underestimation

bias at 3pm. This results in a low mean difference at 9 am (1.89%) and at 3 pm (-0.76%). As the

MIOA values for humidity exceed those for temperature, we conclude that iButton hygrometer

is not only a reasonable way to assess ambient humidity but furthermore, as MIOA is a nor-

malized measure, more accurate throughout the day compared to the temperature reading.

We conclude that iButton data are a reasonably accurate representation of Nairobi’s night-

time thermal environment, especially for relative humidity, but perform less well in the after-

noon. To account for this bias between iButton and Dagoretti instruments, this study uses the

iButton sensor located in the same Gill screen as the Dagoretti thermometer as the ‘station

temperature’. It is possible that this iButton may itself have a warm bias even compared to

Table 1. Instrument Evaluation Statistics. PBIAS, MIOA and mean difference for temperature and humidity

measurements with respect to KMD instruments as well as the number of days the KMD data was available.

The total observation period is 80 days.

time PBIAS MIOA Mean Dif. Days Available

9am 3.69 0.83 0.86 80

3pm 5.507 0.741 1.79 51

Tmin 0.19 0.877 0.16 79

Tmax 10.60 0.39 3.2 11

RH 9am 2.02 0.96 1.89 80

RH 3pm -1.06 0.99 -0.71 51

https://doi.org/10.1371/journal.pone.0187300.t001

Fig 4. Instrument evaluation. Difference between an iButton co-located with the Dagoretti weather station and KMD station instruments. Note that hourly

thermometer and min/max thermometer are different instruments.

https://doi.org/10.1371/journal.pone.0187300.g004
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other iButton sensors because of its attachment to the shaded metal frame of the Gill screen.

However, this error will underestimate station-neighborhood differences rather than

overestimate.

Satellite data

Satellite data from Landsat8 is used to calculate albedo, LST, and Normalized Digital Vegeta-

tion Index (NDVI), a proxy for vegetation abundance which detects photosynthetically active

plants by looking at differences in their spectral reflectance of near-infrared light (NIR) and

visible or red (VIS) spectrum light. The Landsat8 scene was taken on February 22, 2015 at

10am local time and downloaded from USGS’s EarthExplorer (https://earthexplorer.usgs.gov/

). LST is calculated by inverting the Planck function and applying emissivity and atmospheric

water vapor corrections as in [14]. Albedo is calculated as in [15] using a normalized form of

[16]. NDVI is calculated as the normalized difference of the near infrared band NIR and the

thermal infrared band TIR:

NDVI ¼
NIR � VIS
NIRþ VIS

NDVI functionally ranges from 0 to 1, and can be understood as the fraction of surface cov-

ered in vegetation.

Statistics

We restrict the period of analysis to December 2, 2015 to February 20, 2016 in order to elimi-

nate days when the network is only partially deployed. From this eighty day period, we calcu-

late daily minimum and daily maximum temperature Tmin and Tmax, which represent the

maximum of hourly temperatures computed over the 24-hour period starting at midnight

local time. Mean daily temperature or Tmean represents the mean of hourly temperature over

the 24 hour period beginning at midnight. To understand spatial variability, we calculate the

time-mean, denoted by �� for each sensor of minimum (maximum) daily temperature Tmin

(Tmax), which represents the average of minimum (maximum) daily temperatures at a given

sensor for the 80 day period. We also examine the difference between the reference site at the

Dagoretti weather stations and other temperatures for minimum and maximum daily temper-

ature, ΔTmin and ΔTmax.

To understand variability in time, we also compute averages with respect to space, denoted

by<�> in a given neighborhood: <TMathare>, <TMukuru>, <TKibera> as well as the standard

deviation, σMukuru, etcetera. Additionally, to understand how 2015 relates to the historical

record, we calculate an extreme temperature threshold of daily temperature using the Dagor-

etti station’s daily daily Tmin and Tmax from 1984-2014. To do so, we calculate the time-series

of temperatures from each day of the year (e.g., January 1 1984, January 1 1985, etc.) and calcu-

late the 95th percentile, resulting in a daily time-series of 95th percentiles. We apply a monthly

(30 day) rolling mean to smooth this. This threshold makes use of KMD instruments; in order

to compare with our own instruments, we adjust it by the mean instrument bias in Tmin and

Tmax (Table 1).

Results

Temperature

Measurements show that air temperature in Nairobi varies geographically, and that on aver-

age, sensors located in informal settlements are warmer than the sensor located at the reference
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PLOS ONE | https://doi.org/10.1371/journal.pone.0187300 November 6, 2017 8 / 17

https://earthexplorer.usgs.gov/
https://doi.org/10.1371/journal.pone.0187300


site at the Dagoretti weather station (hereafter, “station”). Fig 5a and 5b maps Tmin and Tmax for

each sensor by location, and demonstrates that despite its physical proximity to informal set-

tlements in Kibera, the station is cooler than most sites for both Tmin and Tmax. Minimum and

maximum daily temperature occur at approximately 6am and 3pm local time. Monitors have a

mean difference of ΔTmin = 1.83˚C and ΔTmax = 3.1˚C from the station.

The spatial variability of temperature is consistent throughout the summer, meaning that

relative to the sample mean, hot sensors are consistently warmer, and cool sensors are consis-

tently cooler, though day-to-day variability exists particularly for sensors near the sample aver-

age. This can be seen in Fig 6, which shows the time-series of daily temperature <Tmin> (top

lines) and<Tmax> (bottom lines) at the reference site as well as for each neighborhood’s aver-

age. Thus, we conclude that the differences observed with the station are robust in time and

space.

Summer 2016 was the hottest in 30 years in Nairobi and temperatures exceeded a number

of climatological heat thresholds (Fig 6), including minimum daily temperatures being more

than 2˚C above the 1967-1999 climatological mean minimum daily temperature. The heat per-

sisted throughout the summer, and day-to-day variability was low, only 1.0˚C, as measured by

the standard deviation of the timeseries of daily Tmean. Both Tmax and Tmin exceed the 95th per-

centile of climatological temperature (after adjustment for instrument bias) on most days: at

the station, all 80 days exceed the Tmin threshold and 76/80 or 95% exceed the Tmax threshold.

In the neighborhoods, all days exceed the threshold. Furthermore, varying the reference period

used to calculate the 95th percentile to 2000-2015 did not affect this result significantly and

only resulted in a few additional days at the station not exceeding the threshold.

Urban-rural differences are thought to be largest at night [3]. In Fig 7, we examine mean

temperature by hour in each neighborhood and see that there are nighttime differences with

the Dagoretti weather station, but these differences persist throughout the day and are in fact

largest during daytime hours. The Mathare neighborhood is hottest at night, with <ΔTmin > =

3.2˚C, whereas the Mukuru neighborhood is hottest during the day, with <ΔTmax > = 4.8˚C.

Error bars in Fig 7 represent spatial variability in each neighborhood, calculated by taking the

Fig 5. Mean temperature by location. Mean temperature for a) minimum daily temperature and b) maximum daily temperature for each sensor for

summer 2015-2016 in Nairobi.

https://doi.org/10.1371/journal.pone.0187300.g005
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standard deviation of same time-of-day measurements averaged across all days. Spatial vari-

ability is larger during the day than at night, largest during the afternoon, and also varies some-

what by neighborhood. The daytime spatial variability is highest in Kibera and Mukuru,

peaking at σKibera = 2.6˚C and σMukuru = 2.6˚C, while maximum variability in Mathare is

slightly lower, σMathare = 2.1˚C.

Humidity

Humidity can exacerbate or moderate the impact that high temperature has on heat exposure.

We examine the effect of humidity on thermal comfort by using the heat index, and find that

while temperature is higher in informal settlements than relative humidity is lower. These

Fig 6. Temperature by time. Minimum and maximum daily temperature for each the ensemble average of iButtons in each neighborhood (solid lines)

and the iButton located at the central monitoring station (dotted lines). The 95th percentile of 1984-2014 temperature (dashed black) for minimum and

maximum temperature is calculated from the Dagoretti station and adjusted by the mean iButton-Dagoretti instrument difference to correct for

instrumentation bias.

https://doi.org/10.1371/journal.pone.0187300.g006

Fig 7. Mean temperature by hour. Diurnal cycle of a) mean hourly temperature in each neighborhood and b) mean heat index by neighborhood. Error

bars show the sensor-to-sensor standard deviation, representing spatial variability.

https://doi.org/10.1371/journal.pone.0187300.g007
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geographic differences in humidity, however, are not enough to offset the impact that tempera-

ture has on the heat index in informal settlements. The net result is that the heat index is ele-

vated in informal settlements than at the central monitoring site. This is shown in Fig 7b,

which shows mean hourly heat index by neighborhood and the spatial variability in heat

index. These curves look similar to those calculated for temperature in Fig 7a, indicating that

the heat index difference between sites is similar to the site-to-site temperature differences.

Data was not available to compute other heat exposure metrics such as apparent temperature.

Proposed explanatory mechanism

The observed geographic variability can be explained in part by the variations in surface prop-

erties. Urban heat excess is often related to surface properties, though it can also be caused by

anthropogenic emissions of heat and pollutants into the atmosphere. Our measurements find

evidence of land-atmosphere coupling in Nairobi informal settlements, indicating that surface

properties are responsible for much of the observed urban heating. This can be seen in the

strong correlation between LST and mean daily air temperature (Fig 8) (r = 0.61, p = 0.00).

The correlation is strongest for mean daily temperature, and weakest for minimum daily tem-

perature, suggesting that surface properties control heating and, to a lesser extent, cooling, and

that optimal heat mitigation strategies must reduce daytime heating in addition to increasing

nighttime cooling.

The urban surface energy budget can be written in terms of surface properties:

Rnet ¼ H þ Lþ G

where Rnet is the net radiative budget, H is sensible or dry heat, L is the latent heat of evapora-

tion or condensation from evapotranspiration, and G is ground flux of excess heat [17]. While

we have not measured these terms directly, we can remotely sense proxies for these surface

variables using satellite data, namely elevation, vegetation abundance, and surface reflectivity

or albedo. A multiple linear regression shows that much of the spatial variability in mean daily

air temperature (66%) can be explained by these surface factors:

< Tmean >¼ � 0:7green � 0:007elevation � 7:8albedo � 4:5NDVI þ 35:8

Except for albedo, all covariates are statistically significant at 95%. Here, green represents the

presence of vegetation near the sensor as measured in situ during sensor deployment and is an

indicator variable equal to 0 (no vegetation present) or 1 (site dominated by vegetation). Its

Fig 8. Relationship with LST. Relationship between LST and a) Tmin, b) Tmax, and c) Tmean.

https://doi.org/10.1371/journal.pone.0187300.g008
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coefficient indicates that moving to a vegetated location results in a mean cooling of approxi-

mately 0.7˚C. This variable is distinct from NDVI, a continuous variable which ranges from 0-

0.6 in our study locations (see Fig 9, 3rd and bottom row) and is capturing greenness seen

from above rather than ground-level plants. NDVI represents green intensity rather than a

percent coverage, and so cannot be directly related to green without further ground truthing.

The NDVI coefficient indicates that moving to entirely vegetated locations will result in a cool-

ing of up to 4.5˚C if an NDVI of 1 can be achieved, though NDVI rarely attains this value, so a

more likely maximum cooling value for this area is 2.7˚C. The discrepancy with green could be

interpreted as a function of scale, but more likely points to a variety of vegetation characteris-

tics that affect temperature.

Fig 9. Relationship of temperature and surface variables with each other. Scatter plots showing the relationship between

mean daily temperature Tmean, land surface temperature (LST), elevation, NDVI, albedo, and green. NDVI, albedo, and green are

unit-less quantities ranging from 0 to 1. Top left shows Tmean versus LST, second row shows (from left to right) Tmean versus

elevation and LST versus elevation, etcetera.

https://doi.org/10.1371/journal.pone.0187300.g009
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The regression result suggests that vegetation plays a regulating role on urban climate in

Nairobi. Tmean correlated significantly with NDVI (Fig 9, 1st column, 3rd row, r = −0.73,

p = 0.00), though we note that Tmax exhibited stronger correlations with NDVI than with Tmin

(r = −0.67 versus r = −0.47). As vegetation affects evapotranspiration and thus latent heat

release, this is consistent with the hypothesis that vegetation is effective at reducing daytime

heating and that latent heating plays an important control on Nairobi climate. This result

does, however, carry the caveat that vegetation influences instrument sun exposure during the

day, possibly affecting differences in Tmax site-to-site.

Furthermore, a combination of these surface properties may help explain thermal differ-

ences between neighborhoods. While the vegetation fraction is overall low, we note that

Mukuru, the neighborhood hottest during the day, has the lowest measured vegetative fraction

(NDVIMukuru = 0.09), half of that in Kibera: NDVIKibera = 0.189 (NDVIMathare = 0.12) (Fig 9,

third row). Another factor is elevation, which will affect radiative efficiency and possibly wind

speed and thus the nighttime cooling rate. Kibera is the highest elevation neighborhood:

hMathare ¼ 1614m, compared to hMukuru ¼ 1618m and hKibera ¼ 1741m, further explaining why

it remains cooler during the day (see Fig 9, second row, first column). Mathare has the lowest

median elevation (overlinehMathare = 1612), further contributing to nighttime heat. This analy-

sis omits some properties, notably surface geometry and the sky view factor, which can play

important roles in thermal regulation. Nevertheless, physically consistent relationships

between temperature and elevation, albedo and vegetation suggest that these surface properties

are important to temperature variability within and around informal settlements.

Impact on health

The warmer conditions seen in summer 2015/2016 increase the likelihood of negative health

impacts. Epidemiologists have found that extremely high heat increases mortality and morbid-

ity, where an “extreme” is frequently defined as when temperature exceeds the 95th percentile

of the long term temperature record (e.g., [18]). While more accurate long term data within

neighborhoods would be needed to determine what the 95th percentile of local temperature is,

negative health effects have been seen in children and the elderly in Kibera at temperature

thresholds as low as the 75th percentile [9], found to be 20˚C, as measured at the Moi Airbase

weather station in Nairobi. That study found that mortality in age groups 0-4 and 50

+ increased by 1% for every 1˚C increase in mean daily temperature above 20˚C. Temperatures

met or exceeded this threshold on 5 days at the station during the measurement period,

accounting for instrument differences in hourly temperature (Fig 10). On these days, tempera-

tures in the neighborhood exceeded the central monitoring station by several degrees. This

suggests that increases in mortality are possible on the hottest days, but that also that the health

threshold in [9] is probably representative of higher local temperatures. We note that this rela-

tionship was calculated using another station which may exhibit different biases than the

KMD instruments for which we have data, but we did find that the station temperature record

used in this paper was consistent with the mean, max, and threshold data reported from the

Moi station in [9].

The thermal differences observed between the Dagoretti weather station and neighbor-

hoods potentially put the examined neighborhoods at greater risk for heat-related illness.

Kenya does not have a national heat alert system, but generally, national meteorological agen-

cies issue heat alerts when temperature or the heat index exceeds thresholds, either absolute or

relative, allowing public health and disaster management professionals to respond. If station

temperature remains below a given threshold when neighborhood temperatures exceed the

threshold, disaster management professionals may fail to provide relief because they do not
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have accurate information on conditions in vulnerable communities. We find that this is a

concern for Nairobi as informal settlements are hotter than the threshold temperature so con-

sistently, but the station is not. The station temperature exceeded the [9] threshold for only 6%

of days (5/80), meaning that heat alerts relying on this threshold would have failed to issue a

heat alert on most days (Fig 10), assuming that. We note, however, different thresholds may

have had more success; the use of a daily heat threshold calculated for each day’s temperature

(e.g., as in Fig 6) would have had higher accuracy.

As it grows hotter, daytime sensor-to-sensor variability increases, as measured by the spatial

standard deviation of sensors temperatures (r = 0.4, p< 0.00). However, as minimum daily

temperatures increase, nighttime sensor-to-sensor variability (standard deviation) decreases.

Moreover, as temperatures rise, the mean difference between sensors and the station hΔTi
decreases (Fig 11). This is particularly true for nighttime temperatures (r = −0.84, p< 0.05),

Fig 10. Temperature and health thresholds. Mean daily temperature for each the ensemble average of iButtons in each neighborhood (solid lines) and

the iButton located at the central monitoring station (dotted line). The heat threshold is the 20˚C threshold at which statistically significant increases in

mortality are observed, measured at the Moi weather station, in [9], adjusted by the mean 9am and 3pm iButton-Dagoretti instrument difference to correct

for mean instrumentation bias. Mean temperatures are computed as the average of hourly temperatures.

https://doi.org/10.1371/journal.pone.0187300.g010

Fig 11. Temperature versus temperature difference. Relationship between (a) Tmin and (b) Tmax and ΔT, the mean difference between Nairobi

neighborhood and the central monitoring station. Black line shows the linear regression line.

https://doi.org/10.1371/journal.pone.0187300.g011
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but a significant relationship is also found between daytime temperatures and the difference

with the station (r = −0.25, p = 0.03). We quantify this difference using a linear regression of

the form ΔT = mTstation + b, where m denotes the sensitivity of ΔT to Tstation (black line,

Fig 11). For Tmin, m = −0.41˚/˚C and for Tmax, m = −0.19˚/˚C, suggesting that as temperature

increases by a degree, station differences decrease by 0.2–0.4˚C. Ultimately, this effect is not

enough to reverse the sign of ΔT, which remains positive for all but 3 days.

Conclusions

During the hottest summer on record in Nairobi, temperatures measured within 3 informal

settlement neighborhoods— Kibera, Mathare, and Mukuru— regularly exceed temperatures

at the central, non-slum monitoring station by several degrees or more. These differences per-

sist throughout the day and night. The spatial patterns observed in temperature are consistent

over the measurement period—that is to say, hot stations remain hotter, and cool stations

remain cooler. This spatial variability increases during periods of extreme heat, though the

mean differences with the station tend to be smaller as it warms. This is particularly true for

maximum daily temperature, though the station remains hotter than the spatially averaged

temperature for the entire measurement period. We can connect much (66%) of the site-to-

site variability in mean temperature to surface properties. In particular, the presence of vegeta-

tion (measured remotely and in situ) is a significant predictor of cooler mean temperatures.

These measurements suggest that Dagoretti weather station underestimates the heat expo-

sure that is experienced by residents of informal settlements. Temperatures measured within

neighborhoods are within the range of temperatures that have previously been associated with

negative health outcomes for children and elderly populations [9]. Ultimately, our results sug-

gest that some of Nairobi’s urban heating may be mitigated through improved urban design

and increased greenery, though more data is needed to assess this.

Several questions remain outstanding for understanding heatwaves, the heat island, and

their interaction in Nairobi and similar cities. Future studies should consider a broader range

of neighborhoods to understand how heat and heat exposure may affect all residents. Finally,

we note that we took measurements in an extraordinarily hot year. As temperatures rise and

hot summers like 2015 become more common, a fuller understanding of how the urban heat

island interacts with heatwaves will become more important. Such an understanding may aid

in the development of more targeted interventions to reduce the effects of heat exposure now

and in a warmer climate.
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