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Abstract

Schizophrenia is a disabling, heterogeneous disorder with clinical features that can be parsed into 

three domains: positive symptoms, negative symptoms and cognitive deficits. Current 

antipsychotic drugs produce fairly robust clinical benefit against positive symptoms, but typically 

have minimal therapeutic effects on negative symptoms and cognitive deficits.

Oxytocin (OT) is a nonapeptide that, in addition to its role as a hormone regulating peripheral 

reproductive-relevant functions, acts as a neurotransmitter in the brain. Several lines of preclinical 

and clinical research suggest that the OT system may play a role in regulating the expression of 

schizophrenia-spectrum disorders and that targeting the central OT system may yield novel 

treatments to address these symptoms.

In this review, we summarize the extant preclinical and clinical evidence relevant to the role of OT 

in schizophrenia with particular emphasis on its putative therapeutic effects on each of the three 

above-mentioned clinical domains.
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Introduction

Schizophrenia (SCZ) is a disabling, heterogeneous disorder whose symptoms can be parsed 

into three domains: positive symptoms, negative symptoms and cognitive deficits. Positive 

symptoms include the presence of perceptual aberrations (auditory and visual 

hallucinations), delusions (fixed, false beliefs), and disorganized behavior or speech. 

Negative symptoms are composed of deficits in motivation (avolition), experiencing pleasure 

(anhedonia), seeking social interaction (asociality), verbal communication (alogia), and 

emotional expression. In addition to these impairments, most people with SCZ also have 

deficient cognitive processing that further impairs their ability to function. NIMH-

MATRICS initiative identified 7 specific domains of cognitive impairment in patients with 
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SCZ, visual and verbal learning and memory, attention/vigilance, working memory, 

reasoning and problem solving, information processing speed and social cognition (1). 

Although currently subsumed under a single diagnostic label, in reality there is substantial 

clinical heterogeneity among patients meeting the criteria for SCZ (2).

Established antipsychotic drugs (APDs) exert their most robust and consistent clinical 

benefit on the positive symptoms of SCZ, a therapeutic effect associated primarily with their 

ability to bind mesolimbic dopamine D2 receptors. Whereas inhibition of mesolimbic D2 

neurotransmission is the sole mechanism of action for first generation APDs (FGAs), e.g., 

haloperidol, second generation APDs (SGAs), e.g., clozapine, have additional 

pharmacological mechanisms most notably binding and blockade of serotonin-2A (5HT2A) 

receptors (3, 4) while producing minimal extrapyramidal side effects. As the negative 

symptoms and cognitive deficits are major contributors to poor functioning in patients with 

SCZ it is highly unfortunate that APDs have, at best, modest therapeutic effects on these 

domains of the disorder (5, 6). It follows that developing novel, effective treatments for 

negative symptoms and cognitive deficits is a pressing therapeutic priority.

One promising molecule in addressing this need is oxytocin (OT), a nonapeptide 

neurohormone with well-known peripheral reproduction-related functions, including 

induction of uterine contractions and milk letdown. OT also acts as a neurotransmitter in the 

brain and is now widely recognized to regulate social cognition/affiliation, stress, learning 

and memory (7).

Evidence from animal studies and several recent small, randomized, double blind, placebo 

controlled clinical trials in humans suggests that the OT system is a promising therapeutic 

target for all three of the abovementioned symptom domains of SCZ. In this review, we 

summarize these data, and address the potential for OT or OT-mimetics1 to provide broad-

spectrum benefit in multiple domains of this devastating disorder.

Positive Symptoms

Positive symptoms are a sine qua non of SCZ as, according to the diagnostic criteria of 

DSM-V, at least one positive symptom must be present to confer this diagnosis. 

Pathophysiologically, increased (or dysregulated) dopaminergic transmission in the 

1While OT exerts its primary actions by binding the single oxytocin receptor (OXTR), it also has significant affinity for vasopressin 
receptors, including the vasopressin-1A (V1A) receptor (the AVPR most abundant in brain) 8. Manning M, Misicka A, Olma A, 
Bankowski K, Stoev S, Chini B, et al. (2012): Oxytocin and vasopressin agonists and antagonists as research tools and potential 
therapeutics. J Neuroendocrinol. 24:609–628. Experiments disambiguating the relative roles of OXTR versus V1AR in mediating OTs 
central effects have, in fact, found that AVPR often contribute to OT’s effects, 9. Sala M, Braida D, Lentini D, Busnelli M, Bulgheroni 
E, Capurro V, et al. (2011): Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure 
susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry. 69:875–882., and sometimes, is 
solely responsible, 10. Schorscher-Petcu A, Sotocinal S, Ciura S, Dupre A, Ritchie J, Sorge RE, et al. (2010): Oxytocin-induced 
analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J Neurosci. 30:8274–8284. 11. Song Z, McCann 
KE, McNeill JKt, Larkin TE, 2nd, Huhman KL, Albers HE (2014): Oxytocin induces social communication by activating arginine-
vasopressin V1a receptors and not oxytocin receptors. Psychoneuroendocrinology. 50C:14–19. That said, the relative role of OXTR 
versus AVPRs has not been well elucidated in clinical or preclinical studies related to SCZ spectrum disorders. Thus, readers should 
keep in mind that the experimental effects of OT reviewed herein, may be mediated by OXTR, one of the AVPRs, or both. Readers 
should also note that the structure, function, and physiology of the OT system are described in detail in other papers in this special 
Edition and have previously been reviewed by 12. Macdonald K, Feifel D (2012): Oxytocin in schizophrenia: a review of evidence for 
its therapeutic effects. Acta Neuropsychiatr. 24:130–146.

Feifel et al. Page 2

Biol Psychiatry. Author manuscript; available in PMC 2017 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mesolimbic pathway from the ventral tegmental area to the nucleus accumbens is thought to 

play a crucial role in the generation of positive symptoms (13, 14).

Preclinical Studies of OT’s Effects on Positive-Like Symptoms

Animal models of relevance for positive symptoms of SCZ, although fraught with 

translational challenges, are valuable tools to screen putative novel APDs and to gain a better 

understanding of their mechanisms of therapeutic action (2). Since there is currently no 

reliable way to induce and measure hallmark positive symptoms (e.g. auditory 

hallucinations, delusional thinking) in animals, investigators seeking to model these 

symptoms have, mostly, attempted to reproduce the neurochemical perturbations that are 

thought to underlie their manifestation (2, 15). In this regard, psychostimulants such as 

amphetamine and cocaine produce mesolimbic hyperdopaminergia, which in turn produce 

behavioral changes (e.g. hyperactivity). Though hyperactivity is not a characteristic feature 

of SCZ, in the psychostimulant model it functions as a behavioral surrogate for the 

underlying abnormality: mesolimbic hyperdopaminergia. Notably, FGAs and SGAs 

attenuate the hyperactivity associated with the drug-induced hyperdopaminergia (16, 17) 

suggesting predictive validity of this model for drugs with antipsychotic efficacy.

In a series of studies aimed at investigating OT’s anti-addiction properties, Sarnyai et al. 

(1990), reported that subcutaneous (SC) OT produced a dose-dependent attenuation of 

cocaine-induced hyperactivity (18) (see Table 1 for a summary of OT preclinical studies 

with relevance to the positive symptoms of SCZ). A follow up microdialysis study 

confirmed these findings were associated with OT’s inhibition of the cocaine-induced 

increase in nucleus accumbens dopamine levels (19). Importantly, the nucleus accumbens is 

a brain region highly responsive to the dopamine elevating effects of stimulants, and has 

been implicated in both the pathophysiology of SCZ (15) as well as the clinical effects of 

APDs (20). A subsequent, similar study by Qi et al. (21) showed that Intracerebroventricular 

(ICV) OT dose-dependently blocked methamphetamine-induced hyperactivity as well as the 

methamphetamine-induced increase in nucleus accumbens and striatal dopamine.

Feifel and Reza (22) conducted the first intentional investigation of OT’s antipsychotic 

potential by examining its ability to reverse deficient prepulse inhibition of the startle reflex 

(PPI). PPI is a measure of sensorimotor gating, a key process involved in the central nervous 

system’s processing of information (23). Deficits in PPI have been consistently 

demonstrated in patients with SCZ and are thought to reflect an underlying abnormality in 

the brain’s process of gating excessive environmental stimulus, thereby leaving SCZ patients 

vulnerable to a chaotic internal representation of reality. Deficient PPI is thus considered an 

‘endophenotype’ of SCZ (24).

SCZ-like deficits in PPI can be modeled in animals in a number of ways, including the 

administration of psychotomimetic drugs, such as those that increase mesolimbic dopamine 

transmission. Importantly, the potency of reversal of PPI deficits by APDs are predictive of 

their potency against positive symptoms (25). As all established APDs bind D2 receptors, 

they are able to block disruption of PPI by both direct (e.g. dopamine mimetics) and indirect 

dopamine agonists (which increase extracellular dopamine levels).
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Feifel and Reza demonstrated that subcutaneously (SC) administered OT reversed PPI 

deficits induced by the indirect-dopamine agonists amphetamine but not by the direct 

dopamine agonist apomorphine, suggesting OT had the potential to attenuate mesolimbic 

hyperdopaminergia via presynaptic rather than postsynaptic mechanisms. These findings 

present the possibility that OT may have a mechanism of action that complements the 

postsynaptic inhibition of mesolimbic dopamine transmission produced by established 

APDs. Although it is thought that peptides such as OT do not effectively cross the blood-

brain barrier, a recent study demonstrated that intraperitoneal administration of 

pharmacological doses of OT in rodents produced a rapid, significant increase in brain OT 

levels (26). This effect may in part be due to stimulation of endogenous OT release in the 

brain.

In addition to mesolimbic hyperdopaminergia, reduced central glutamatergic function--

particularly through the NMDA receptor complex--has also been implicated in positive 

symptoms (27). In kind, non-competitive NMDA antagonists such as PCP and its analog, 

dizocilpine (MK801), produce PPI deficits in animals. Whereas both FGAs and SGAs 

reverse PPI deficits produced by dopamine agonists, only SGAs will reverse PPI deficits 

produced by non-competitive NMDA antagonists (28). Furthermore, PPI deficits in SCZ 

patients are consistently restored by treatment with SGAs (29). In their abovementioned 

study, Feifel and Reza also found that SC OT restored PPI deficits induced by dizocilpine. 

This finding suggested that OT’s APD-like profile involved more mechanisms than just 

dopamine inhibition, and that it shared features with the multi-transmitter effects of SGAs 

(22).

Other supporting data regarding OT and the glutamate system came from Caldwell et al. 

(30), who found that OT knockout (KO) mice were more sensitive to PCP-induced PPI 

deficits than wild type mice suggesting that endogenous OT may protect against 

hypoglutamatergic-induced psychosis. In contrast, KO and wild type mice were equally 

sensitive to amphetamine-induced PPI disruption, suggesting that the APD-like effects of 

endogenous OT are specific to the glutamate system.

Although PPI deficits can be induced by a plethora of factors (28), we have limited our 

discussion in this section to PPI-deficit animal models produced by hyperdopaminergia (e.g., 

amphetamine and decreased NMDA receptor activation, e.g., with PCP). These 

psychostimulants often produce positive symptoms in humans that are indistinguishable 

from the positive symptoms exhibited by patients with SCZ and have, therefore, been 

extensively used to develop robust, well-accepted animal models of psychosis (15, 31). 

Other PPI-deficit animal models such as those based on natural deficiencies (e.g., BN rat) 

are more appropriately included in the “Preclinical Cognitive Deficits” section since it is not 

clear that the mechanisms underlying these particular PPI deficits are relevant to positive 

symptoms.

Exogenous OT Effects on Positive Symptoms

In addition to the aforementioned preclinical evidence that OT may counteract central 

hyperdopaminegia and hypoglutamatergia, the finding that a single administration of 
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intranasal (IN) OT in healthy subjects increased trust of strangers (32, 33) raised the 

possibility that OT may ameliorate paranoid delusions, which involve clinical levels of 

mistrust driven by the misattribution of malevolent intentions to others.

The last few years have seen the publication of four small clinical trials designed to 

primarily investigate the ability of IN OT added-on to stable doses of APDs, to reduce 

psychosis in SCZ (see Table 2 for a summary of OT clinical trials in SCZ). In the first of 

these trials, Feifel et al. carried out a clinical proof-of-concept study of OT’s therapeutic 

potential. In a randomized double blind placebo-controlled crossover trial, IN OT was given 

twice daily to patients with SCZ for 3 weeks and reported that OT significantly reduced their 

positive subscale scores on the Positive and Negative Symptoms Scale (PANSS) (34). 

Improvement in Clinical Global Impression (CGI) scores confirmed the clinical significance 

of their findings. In a similar trial, Pedersen, et al. (35) reported that twice daily IN OT given 

to SCZ patients for 2 weeks significantly lowered the PANSS positive subscale scores 

compared to IN placebo (35). In the largest human trial to date, Modabbernia, et al. (36) 

gave SCZ patients twice daily IN OT for eight weeks and reported that OT significantly 

improved PANSS total and positive scores starting 4 weeks after the start of OT treatment. 

Finally, Lee, at al. (37) gave twice daily IN OT for three weeks to SCZ patients but did not 

detect a significant change in Brief Psychiatric Rating Scale (BPRS). The negative finding in 

this study-- in contrast to the earlier three--may be related to their use of the BPRS. 

Specifically, this group reported the overall score of this 18-item scale, a measure which 

reflects the summation of various aspects of psychosis. On the other hand, studies with 

positive findings used the 30-item PANSS, considered the gold standard in SCZ research. 

Importantly, the PANSS items are readily categorized into separate subscores for positive, 

negative and general symptoms of SCZ.

In addition to these four clinical trials, three additional clinical trials--designed to investigate 

the effects of IN OT on social cognition in SCZ--also measured changes in psychosis as a 

secondary measure. Gibson, et al. (38) gave either six weeks of twice daily IN OT or IN 

placebo, and found no improvement in PANSS positive scale scores.

Building on OT’s potential as a “cognitive/plasticity enhancer,” (39) two studies have 

investigated the benefits of OT added to a potent psychosocial treatment. Cacciotti-Salja, et 

al. tested the addition of twice daily IN OT or IN placebo to six weeks of social cognitive 

training in patients with early psychosis and found IN OT did not confer any advantage for 

positive symptoms (measured with the Scale for the Assessment of Positive Symptoms, 

SAPS) beyond the social cognition training alone (40). Davis et al. gave IN OT to SCZ 

patients just before twice weekly sessions of a 6-week social cognitive training and did not 

detect improvement in BPRS (41).

In summary, animal studies consistently support a pharmacological effect of OT predictive 

of therapeutic effects on positive symptoms: inhibition of excessive mesolimbic dopamine 

and central hypoglutamatergia. Additionally--at a symptom level--OT’s ability to enhance 

trust toward strangers (potentially through shifting attributional biases) provides a 

compelling psychological mechanism for mitigating a clinically disabling positive symptom: 

paranoid delusions. Three out of four clinical studies carried out primarily to measure the 
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effects of IN OT on psychosis in SCZ patients reported that OT reduced positive symptoms. 

Three others designed to test OT’s ability to improve social cognition or its ability to 

enhance social cognitive training, however, did not detect an OT-improvement of positive 

symptoms.

Negative Symptoms

Negative symptoms refer to collection of deficit features often seen in patients with SCZ (as 

described above). These symptoms are often seen in the prodromal phase of the illness 

preceding acute positive symptoms, and are predictive of long-term functioning (42).

Preclinical Studies of OT’s Effects on Negative-Like Symptoms

To date, preclinical studies of OT’s potential therapeutic effects on negative symptoms have 

been limited to animal models of social withdrawal. These studies suggest that acute OT 

administration increases social interaction (see Table 1 for a summary of OT preclinical 

studies with relevance to the negative symptoms of SCZ). For example, Lee et al. (43) 

reported that a single infusion of OT into the central nucleus of the amygdala reversed PCP-

induced social interaction deficits in male rats. Likewise, other studies employing a variety 

of paradigms in rodents and non-human primates have demonstrated that single dose (44–

46) as well as subchronic (47–49) IN OT treatment facilitates social interaction. These 

findings, together with evidence of pro-social effects following acute IN administration of 

OT in humans, (50) (vide infra) has fueled enthusiasm that OT or an OT analog could 

effectively ameliorate asociality, a hallmark negative symptom. Though acute OT effects on 

social behavior in animals appeared promising, several recent studies investigating chronic 

OT administration in animals failed to produce the acute OT-induced pro-social effects and 

in one case even had the opposite effect (46, 51, 52), but see Calcagnoli et al. (53, 54). 

Although these negative findings using chronic OT have somewhat tempered enthusiasm 

that OT can be used to treat social motivation deficits in SCZ patients, it is important to note 

that OT was administered to “normal” animals without social impairments and/or signaling 

deficits. Therefore, these studies may not adequately model the effects of chronic OT in a 

clinical population. In that regard, it is notable that, Penagarikano et al 2015, (55) recently 

reported that chronic OT treatment restored social functioning and enhanced OT production 

in the brains of Cntnap2 KO mice: a strain that exhibit social deficits and diminished OT 

signaling.

The effects of OT in animal models of non-social domains of negative symptoms have not 

been reported. That said, many animal models exist that would enable investigators to test 

the potential efficacy of OT against non-social negative symptoms. For example, 

Probabilistic Learning, a task used to measure cross-species reinforcement learning (56), and 

could be used to test the effects of OT in an animal model with relevance to anhedonia (45). 

A Progressive Ratio Breakpoint Schedule of Reinforcement--commonly used to assess the 

reinforcing properties of food or drugs--could be used to test the effects of OT on motivation 

and hedonic states (57, 58). Exploring the effects of OT in animal models such as these 

could provide very valuable information relevant to OT’s potential to modulate non-social 

negative symptoms.
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Exogenous OT effects on Negative Symptoms

Within the last five years, six of seven published double-blind randomized clinical trials 

examining the effects of 2 – 6 weeks of IN OT added to stable doses of atypical APDs in 

SCZ patients have reported evidence that IN OT improved negative symptoms (see Table 3). 

Feifel et al. (34), Modabbernia et al. (36) and Gibson et al. (38) all reported that twice daily 

IN OT for 3 - 6 weeks significantly decreased the PANSS negative subscale and Pederson et 

al. (35) found that twice daily IN OT for 2 weeks produced a nearly significant reduction in 

this subscale (P<0.08). Two studies using the SANS, on the other hand, had mixed results. 

Lee et al. (37) reported an improvement in scores in a subset of patients after twice daily IN 

OT, whereas Cacciotti-Salja et al. (40) discovered that although daily OT added to social 

cognition training did not add to the improvement in SANS scores, volume of OT but not 

placebo, administered IN by patients with SCZ was positively correlated with reduction in 

negative symptoms as measured by the Scale for Assessment of Negative Symptoms 

(SANS). In contrast, Davis et al. (41) did not detect any improvement in Clinical 

Assessment Interview for Negative Symptoms (CAINS) scores when a single dose of IN OT 

was given twice a week prior to a session of social skills training.

It is notable that these clinical studies reveal promising effects of chronic daily OT on 

negative symptoms, in contrast with animal studies (46, 51, 52, 59), which revealed no 

benefit –and potential worsening--of social interaction in rodents after chronic OT 

administration.

Cognitive Deficits

Exogenous OT effects on cognitive deficits in preclinical and clinical studies are briefly 

described in Table 1 and Table 3 respectively. For a more detailed description and 

interpretation of these studies, please see supplemental information.

The Endogenous OT System and Positive Symptoms, Negative Symptoms 

and Cognitive Deficits

Text and associated table are included in supplemental information.

Conclusions

In a time of flagging innovation and investment in drug discovery, patients and their families 

desperately need more effective treatments for the broad range of impairments seen in the 

SCZ-spectrum disorders. The convergent findings described in this review--from preclinical 

investigations, studies of the OT system in patients with SCZ, and from the recent small 

randomized double-blind placebo controlled add-on clinical trials—though, not consistently 

positive, are nevertheless encouraging. They suggest that OT may alleviate positive 

symptoms and more importantly, that OT may also reduce the debilitating (and to-date 

treatment resistant) negative symptoms and social cognitive deficits. Importantly, across all 

clinical studies, IN OT was well tolerated and produced no notable adverse effects. 
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Notwithstanding these encouraging preliminary findings, the potential of OT or OT-

mimetics to alleviate symptoms of SCZ-spectrum disorders remains an open question.

Several significant factors have limited the clinical trials conducted thus far from adequately 

testing the therapeutic potential of OT for SCZ. These clinical trials have each been small 

and have each only tested one OT dose (range 48 – 80 IU / day) as an add-on therapy to 

stable regimens of APDs and as a result the optimal therapeutic OT dose, dosing regimen, 

and time course of OT treatment for each of the three SCZ domains remain to be identified. 

These limitations are likely driven by a confluence of financial and safety concerns. With 

regards to the add-on design, few IRB’s will sanction an outpatient placebo-controlled 

monotherapy trial of an investigational drug in SCZ subjects, especially one with an 

unproven mechanism of action and it has been the norm for APD monotherapy trials to 

mandate hospitalization of subjects during the drug washout phase as well as the initial 

phase of study drug treatment (89). Studies designed in this way are costly and historically 

have almost exclusively been conducted by pharmaceutical entities seeking regulatory 

approval for a proprietary agent. In this context, the add-on studies of OT in SCZ that have 

been conducted represent a pragmatic compromise.

Unfortunately, add-on trials, by their nature, have significant limitations (see (90, 91)). The 

most serious of these limitations is that they do not test the hypothesis that the added drug is 

an effective treatment for the clinical disorder in question; rather only whether the add-on 

drug plus the primary drug is more effective than the primary drug alone. In some studies, 

OT was administered adjunctive to non-pharmacological interventions in addition to stable 

regimens of APDs making the inherent effect of OT even more obscure.

A second inherent problem in add-on study designs is that the inclusion criterion for such 

trials requires recruitment of subjects with--at best--an incomplete response to the primary 

treatment (in this case an APD) and--at worst--a non-response to it. Incomplete responders 

have a limited dynamic range to reveal improvement to the add-on therapy compared to 

untreated patients due to reduced symptoms at baseline. Non-responders belong to a select 

subset of patients whose symptoms are inherently resistant to APD treatment and thus 

statistically less likely, than average SCZ patients, to respond to any drug treatment. Given 

these limitations, it is not surprising that drugs that have been tested as monotherapy as well 

as add-on treatments, exhibit smaller benefit effect sizes in the add-on role (e.g., (92)).

While OT may ultimately be best suited as an add-on to established APDs, the most direct 

way to conduct a proof-of-concept study for OT’s putative efficacy against SCZ--and to 

discern the extent of the ability to ameliorate positive, negative and cognitive symptoms--is 

by conducting a conventional dose-ranging, monotherapy investigation of OT in APD-free 

patients with SCZ. Even before conducting such a study, certain gaps in our knowledge 

about the drug properties of OT should be elucidated and we have discussed these 

knowledge gaps in a previous paper (93).

In light of the reduced effect size associated with add-on studies, an adequately powered test 

of OT’s efficacy adjunctive to APDs would require a larger sample size than an OT 

monotherapy trial. Given the commercial limitations associated with developing OT, a non-
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proprietary hormone, it is unlikely that funding for such a monotherapy clinical trial will be 

forthcoming. With these concerns in mind, one could view the extant clinical studies of OT 

against the core symptoms of SCZ from a hopeful vantage. That is, one could argue that 

given the abovementioned limitations inherent in their add-on design, and given their small 

sample sizes and utilization of only one OT dose, it is actually impressive that 3 out of 4 

clinical trials designed to specifically test OT’s anti-psychotic effects (versus social 

cognition effects) have been positive (34–37). That three more recent studies designed to 

evaluate OT’s effect on social cognition did not find evidence of improvement in positive or 

negative symptoms is not surprising.

Several OT add-on studies in SCZ are currently underway (clinicaltrials.gov). Though some 

of them may continue to produce positive findings, given their modest subject recruitment 

goals and the resulting modest statistical power, in light of the above discussion, they are 

likely to deliver additional mixed results. Future mixed or predominately negative results 

from ongoing add-on OT SCZ studies run the risk that potential for stakeholders in this line 

of research will erroneously conclude that the proposition that OT has novel therapeutic 

effects for SCZ will have been proven untrue, halting further investigation of what might be 

an important new treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Putative brain circuits implicated in oxytocin’s effects on 3 domains of schizophrenia. 

Colored regions in each figure represent brain regions implicated in this symptom domain. 

Single asterisk represents areas putatively expressing OXTR in humans (based on (106)). 

Although Loup used older technology to identify OXTR positive brain regions, this is one of 

only two studies we are aware of that has reported on the localization of OXTR expression 

in specific human brain nuclei. In the second study, Boccia et al. 2013 (107) did not test their 

OXTR antibody for specificity in the human brain making their data potentially unreliable. 

The Loup methodology has been superceded by new molecular biological techniques that 

have been applied to detecting OXTR expression in rhesus monkey brain (108). Double 

asterisk signifies brain regions hypothesized to be modulated by single-dose IN OT (in 

normal controls, and a single imaging study in schizophrenia) in human functional imaging 

studies. For references, see (85, 86 109–121).

Inset depicts two modes of central oxytocinergic communication: 1) direct transmission via 

OT neurons; 2) volume transmission via exocytosis and diffusion in the extracellular fluid 

and cerebrospinal fluid (122–124).

Abbreviations: ACC, anterior cingulate cortex; AMY, amygdala; DS, dorsal striatum; HC, 

hippocampus; NAc, nucleus accumbens; PFC, prefrontal cortex (including medial prefrontal 

cortex and orbitofrontal cortex); PVN, paraventricular nucleus; SN, substantia nigra; SON, 

supraoptic nucleus; VTA, ventral tegmental area
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Table 1

Preclinical studies: therapeutic-like effects of OT on positive-like symptoms, negative-like symptoms and 

cognitive-like deficits

Authors Model/Parameter Main Findings Implication

Positive-Like Symptoms

Sarnyai et al. 1990 (18), 
Kovacs et al. 1990 (19)

Cocaine-induced hyperactivity 
Cocaine-induced DA turnover

SC OT blocked cocaine-induced 
hyperactivity and blocked cocaine-
induced increase in NAC but not 
caudate DA turnover

Suggests OT can inhibit 
excessive mesolimbic DA 
consistent with (21, 94–99)

Feifel and Reza 1999 (22) PPI SC OT blocked PPI deficits induced by 
indirect DA agonist (Amphetamine) but 
not direct DA agonist (apomorphine) 
SC OT blocked PPI deficits induced by 
NMDA antagonist (dizocilpine)

First demonstrated therapeutic-
like effect of OT on a SCZ 
phenotype Suggest OT inhibits 
presynaptic not postsynaptic 
DA function Indicates OT 
counteracts hypoglutamatergia 
– profile more similar to SGA 
than FGA

Qi et al. 2008 (21) MAP-induced hyperactivity Methamphetamine hyperactivity dose 
dependently inhibited by SC OT

Similar to (18)

Caldwell et al. 2009 (30) PPI Mice lacking OT gene exhibited 
enhanced PPIdeficits after PCP but not 
amphetamine

Suggests endogenous OT has 
protective effect against 
hypoglutamatergia 
(endogenous APD)

Negative-Like Symptoms

Cushing and Carter 2000(47) Partner preference Subchronic peripheral (3 consecutive 
daily injections) but not acute OT 
facilitated partner preference in female 
prairie voles

OT treatments may enhance 
social bonding. May be 
therapeutic for asociality.

Bowen et al. 2011 (48) Social Interaction 10 days of daily OT PND 33–42 (early 
adolescence) enhanced social 
interaction on PDN 55 in rat

Subchronic OT during 
adolescence has an enduring 
effect on improving social 
interaction. OT may be 
developmental treatment for 
asociality

Lukas et al. 2011 (44) Social preference OT antagonist reduced social 
exploration in rats and mice Loss of 
social preference after single social 
defeat restored by ICV OT

Supports critical role of 
endogenous OT in mediating 
social preference deficits

Chang et al. 2012 (45) Affiliation test Inhaled OT increased the frequency of 
prosocial choices associated with 
reward in rhesus monkeys

Supports OT improving 
asociality

Huang et al. 2012 (46) Social interaction Single IN OT treatment facilitated --
and chronic IN OT disrupted -- social 
behaviors in mice and reduced OXTR 
throughout the brain

Does not support chronic OT 
improving social interaction; 
suggests difference between 
acute and chronic treatment.

Bales et al. 2013 (52) Partner preference test Single IN OT treatment enhanced 
social behavior in male voles, whereas 
chronic IN OT exacerbated social 
behavior

Similar to (46, 52)

Rault et al. 2013 (59) Social interaction Chronic OT produced less social 
contact in pigs (59)

Similar to (46, 52)

Teng et al. 2013 (49) Social interaction Intermittent OT administration (4 doses 
separated by 2 days) improved 
sociability in C58/J and BALB/c mice

Intermittent OT treatment may 
improve social deficits

Bales et al. 2014 (51) Social interaction Chronic IN OT in voles produced no 
effects on reciprocal social interactions 
or social approach

Similar to (46, 52)
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Authors Model/Parameter Main Findings Implication

Calcagnoli et al. 2014 (54) Resident intruder test Chronic OT via osmotic pump 
enhanced social interaction in male rats

Supports chronic OT facilitates 
social interaction

Meziane et al. 2014 (100) Social interaction OT reversed social interaction deficits 
in MAGEL2 KO adult mice

Suggests OT given in early life 
can improve social interaction 
in adulthood

Penagarikano et al. 2015 (55) Social interaction OT improved social deficits and 
enhanced endogenous OT production in 
the brains of CNTNAP2 KO mice with 
social deficits. OT antagonist blocked 
rescue of social deficits

Supports OT improving social 
interaction

Keebaugh et al. 2015 (101) Partner Preference Test Knockdown of OXTR by RNA 
interference in the nucleus accumbens 
produced disrupted partner preference 
formation in female prairie voles

Supports OXTR expression in 
this brain region plays a 
critical role in social 
attachment

Cognitive-Like Deficits

Popik et al. 1991 (62) Social recognition OT infusion into the rat medial preoptic 
area facilitated social recognition

Supports OT improving social 
recognition

Ferguson et al. 2000, Winslow 
et al. 2000 (63, 102)

Social recognition OT KO mice failed to recognize 
familiar conspecifics; OT rescued 
deficits

OT necessary for social 
recognition

Ferguson et al. 2001 (66) Social recognition Infusion of OT into medial preoptic 
area restored social recognition in OT 
KO mice

Similar to (62)

Takayanagi et al. 2005 (67) Social recognition OXTR KO mice exhibited social 
recognition deficits

OXTR necessary for social 
recognition

Crawley et al. (65) Social recognition vs. novel 
object recognition

Two lines of OT KO mice exhibited 
deficits in social recognition but not 
novel object recognition

Supports specificity of OT-
dependent social recognition 
deficits

Lee et al. 2008 (68) Social recognition Conditional OXTR KO and forebrain 
specific OXTR KO males exhibited 
impaired social memory for female 
mice.

OXTR necessary for social 
recognition

Parr et al. 2013 (69) Social perception IN OT significantly reduced monkeys' 
attention to negative facial expressions, 
but not neutral social or nonsocial 
images

First to demonstrate an effect 
of IN-OT on social perception 
in monkeys

Feifel et al. (Unpublished) Social recognition OT restored social recognition in BN 
rats with natural deficits in this area

Supports OT improving social 
recognition deficits

Feifel et al. 2012 (74) PPI OT, but not carbetocin (a long-acting 
OT analogue), facilitated PPI

Supports OT facilitating 
natural sensory motor gating 
deficits

Feifel et al. (Unpublished) PPI IN OT facilitated PPI in a dose 
dependent manner in male and female 
BN rats up to 30 min after treatment

Supports OT facilitating 
natural sensory motor gating 
deficits in both male and 
female rats

Tomizawa et al. 2003 (70) Spatial memory OT improved long-lasting spatial 
memory through a MAP kinase cascade

OT also enhances spatial 
memory

Wu et al. 2004 (71) Spatial learning OT infused into the rat nucleus basalis 
of Meynert inhibited spatial learning

OT effects on spatial memory 
isbrain region dependent

Feifel et al. 2014 (72) Latent inhibition OT facilitated LI in BN rat Support for OT improvement 
in cognitive-like deficits

Huang et al. 2012 (46) PPI Chronic OT had no effect on PPI in 
male mice

Does not support chronic OT 
facilitating PPI (single-dose 
OT not tested)

Meziane et al. 2014 (100) Social recognition, spatial 
learning

OT restored social recognition and 
spatial learning in MAGEL2 KO mice

Supports OT improving social 
recognition and spatial 
learning
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Authors Model/Parameter Main Findings Implication

Havranek et al. 2015 (103) Novel object recognition Seven days ICV OT in rat increased 
exploration of a novel versus familiar 
object

Supports OT facilitation of 
visual memory

Domain Not Specified

Uvnas-Moberg et al. 1992} 
(104)

APD effects on pOT Amperozide and clozapine--but not 
haloperidol--elevated pOT level

Supports activation of 
endogenous OT by SGA but 
not FGAs

Kiss et al. 2010 (105) APD-induced IEG activation Olanzapine and clozapine--but not 
haloperidol or risperidone--upregulated 
IEG expression in the PVN and SON

Supports endogenous OT 
activation by certain SGAs but 
not FGAs

Abbreviations: APD, antipsychotic drug; BN, Brown Norway; CEA, central amygdaloid nucleus; DA, dopamine; FGA, first generation 
antipsychotic drug; ICV, intracerebroventricular; IEG, immediate early gene; IN, intranasal; KO, knockout; LI, latent inhibition; MAGEL2, 
melanoma antigen family L2; MAP, mitogen-activated protein kinase; NAc nucleus accumbens; NMDA, N-methyl-D-aspartate OT, oxytocin; OTA, 
oxytocin antagonist; pOT, plasma oxytocin; PPI, prepulse inhibition; PVN, paraventricular nucleus; SC, subcutaneous; SGA, second generation 
antipsychotic drug; SON, supraoptic nucleus
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2Several decades ago, investigators in the USSR published two letters {Bujanow, 1972 #23117;Bujanow, 1974 #23116} describing 
open-label experience using OT to treat patients with “SCZ” and a small randomized study {Bakharev, 1984 #23115} of OT in “SCZ” 
subjects. These reports suggested that OT had therapeutic effects. However, these reports contain clinical descriptions and terminology 
that do not correspond to contemporary concepts of SCZ. Furthermore, the rigor of methodology and reporting is well below accepted 
current standards. These shortcomings significantly limit the value of these early reports to shed light on the effects of OT in SCZ
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