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Abstract

A fundamental challenge in cognitive neuroscience is to develop theoretical frameworks that 

effectively span the gap between brain and behavior, between neuroscience and psychology. Here, 

we attempt to bridge this divide by formalizing an integrative cognitive neuroscience approach 

using dynamic field theory (DFT). We begin by providing an overview of how DFT seeks to 

understand the neural population dynamics that underlie cognitive processes through previous 

applications and comparisons to other modeling approaches. We then use previously published 

behavioral and neural data from a response selection Go/Nogo task as a case study for model 

simulations. Results from this study served as the ‘standard’ for comparisons with a model-based 

fMRI approach using dynamic neural fields (DNF). The tutorial explains the rationale and 

hypotheses involved in the process of creating the DNF architecture and fitting model parameters. 

Two DNF models, with similar structure and parameter sets, are then compared. Both models 

effectively simulated reaction times from the task as we varied the number of stimulus-response 

mappings and the proportion of Go trials. Next, we directly simulated hemodynamic predictions 

from the neural activation patterns from each model. These predictions were tested using general 

linear models (GLMs). Results showed that the DNF model that was created by tuning parameters 

to capture simultaneously trends in neural activation and behavioral data quantitatively 

outperformed a Standard GLM analysis of the same dataset. Further, by using the GLM results to 

assign functional roles to particular clusters in the brain, we illustrate how DNF models shed new 

light on the neural populations’ dynamics within particular brain regions. Thus, the present study 

illustrates how an interactive cognitive neuroscience model can be used in practice to bridge the 

gap between brain and behavior.

1. Introduction

Although great strides have been made in understanding the brain using data-driven methods 

(Smith et al., 2009) to understand the brain’s complexity, human neuroscience will need 

sophisticated theories (Gerstner, Sprekeler, & Deco, 2012). But what would a good theory of 
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brain function look like? Addressing this question requires theories that bridge the disparate 

scientific languages of neuroscience and psychology.

Turner et al. (2016) described three categories of approaches to this issue using model-based 

cognitive neuroscience that bridge the gap between brain and behavior by bringing together 

fMRI data and cognitive models (Turner, Forstmann, Love, Palmeri, & Van Maanen, 2016). 

The first approach uses neural data to guide and inform a behavioral model, that is, a model 

that mimics features of responses such as reaction times and accuracy. One example of this 

approach is the Leaky Competing Accumulator model by Usher and McClelland (Usher & 

McClelland, 2001). This is a mechanistic model for evidence accumulation, which 

incorporates well-known properties of neuronal ensembles such as leakage and lateral 

inhibition. The model provides a good fit for a range of behavioral data, for example, time-

accuracy curves and the effects of the number of alternatives on choice response times. 

Unfortunately, as remarked by Turner et al., this mechanistic approach stops short of 

establishing any direct connection to the dynamics of particular neural circuits or brain 

areas.

The second type of approach uses a behavioral model and applies it to the prediction of 

neural data. One example of this approach is Rescorla and Wagner’s (1972) model of 

learning conditioned responses. In this model, the value of a conditioned stimulus is updated 

over successive trials according to a learning rate parameter. The model produces trial-by-

trial estimates of the error between the conditioned and unconditioned stimuli. This measure 

can then be used in general linear models to detect patterns matching the model predictions 

within fMRI data. The method potentially allows one to identify neural processes that are 

not directly measureable through behavioral results (Davis, Love, & Preston, 2012; Mack, 

Preston, & Love, 2013; Palmeri, Schall, & Logan, 2015). However, a drawback of this 

model-based fMRI approach is that it does not explain cognitive states encoded by patterns 

of activation distributed over multiple voxels in the brain.

The last, and most difficult approach is an integrative cognitive neuroscience approach 

where a model simultaneously predicts behavioral and neural data. That is, the model 

explains what the brain is doing in real-time to generate specific patterns of fMRI and 
behavioral data. Turner et al. acknowledge that there are relatively few examples in this 

category. For instance, they highlight recent papers that use cognitive architectures such as 

ACT-R (‘Adaptive Control of Thought – Rational’) to capture simultaneously fMRI and 

behavioral data (Anderson, Matessa, & Lebiere, 1997; Borst & Anderson, 2013; Borst, 

Nijboer, Taatgen, Van Rijn, & Anderson, 2015). Although we agree that this approach has 

immense potential, this is a relatively limited example of an integrative cognitive 

neuroscience approach because ACT-R is not a neural process model. Thus, ACT-R does not 

capitalize on constraints regarding how real brains actually work.

An alternative approach that does capitalize on neural constraints was proposed by Deco et 

al (Deco, Rolls, & Horwitz, 2004). These researchers used integrate-and-fire attractor 

networks to simulate neural activity from a ‘where-and-what’ task. The model includes 

several populations of simulated neurons to reflect networks tuned to specific objects, 

positions, or combinations thereof. The authors then define a local field potential (LFP) 
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measure from each neural population by averaging the synaptic flow at each time step. To 

generate a BOLD response, they convolved the LFP measure with an impulse response 

function. Although one version of the model was able to approximate single neuron 

recordings from a prior study, as well as a measured fMRI pattern in dorsolateral prefrontal 

cortex, other fMRI patterns from the ventrolateral prefrontal cortex were not modeled. 

Moreover, comparisons to fMRI data were made qualitatively via visual inspection. No 

attempt was made to quantitatively relate the measures. Finally, behavioral data from this 

study were not a central focus. Such issues are relatively common when modeling relies on 

biophysical neural networks due to the immense computational challenges of simulating 

such networks. Appropriate partitioning of the parameter space and estimation of model 

parameters are, in general, difficult steps of this approach (see Anderson, 2012; Turner et al., 

2016).

Inspired by this work, Buss, Wifall, Hazeltine, and Spencer (2014) adapted this approach to 

simultaneously model behavioral and fMRI data from a dual-task paradigm (Buss, Wifall, 

Hazeltine, & Spencer, 2013). They first constructed a dynamic neural field (DNF) model of 

the dual-task paradigm reported by Dux and colleagues (Dux et al., 2009). The model 

quantitatively fit a complex pattern of reaction time changes over learning, including the 

reduction of dual-task costs over learning to single task levels. These researchers then 

generated a LFP measure from each component of the neural model and convolved the LFPs 

with an impulse response function to generate BOLD responses from the model. The DNF 

model captured key fMRI results from Dux et al., including the reduction of the amplitude 

of the hemodynamic response in inferior frontal junction in dual-task conditions over 

learning. Moreover, Buss et al. contrasted competing predictions of the DNF model and 

ACT-R, showing that changes in hemodynamics over learning predicted by the DNF model 

matched fMRI results from Dux et al., while predictions from ACT-R did not.

It is important to highlight several key points achieved by Buss et al. (2013). First, the DNF 

model simulated neural dynamics in real time. The dynamics created robust ‘peaks’ of 

activation that were directly linked to behavioral responses by the model, and these 

responses quantitatively captured a complex pattern of reaction times over learning. Second, 

the same neural dynamics that quantitatively fit behavior also simulated observed 

hemodynamics measured with fMRI. Finally, Buss et al. demonstrated the specificity of 

these findings by contrasted predictions of two theories. Thus, their work constitutes a 

notable example of an integrative cognitive neuroscience approach using a neural process 

model that capitalizes on constraints regarding how brains work.

The current paper builds on the above example, by formalizing an integrative cognitive 

neuroscience approach using dynamic neural fields. Our paper is tutorial in nature, walking 

the reader through each step of this model-based cognitive neuroscience framework. We 

extend the work of Buss et al. (2013) by (1) formalizing several steps regarding the 

calculation of LFPs from dynamic neural fields and the generation of BOLD predictions; (2) 

adding new methods to quantitatively evaluate BOLD predictions from dynamic neural field 

models using general linear models (GLM), inspired by other model-based fMRI 

approaches; and (3) adding new methods to identify model-based functional networks from 
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group-level GLM results. These methods allow for effectively identifying where particular 

neural patterns live in the brain, as well as specifying their functional roles.

The paper proceeds as follows. We begin with a brief introduction to dynamic field theory. 

This places our model-based approach within a broader context for readers who might be 

less familiar with this theoretical approach. Next, we introduce the particular case study we 

will use throughout the paper, that is, the particular behavioral and fMRI data set that serves 

as the basis for the tutorial. We then discuss the DNF model that we used to capture 

simultaneously behavioral and neural data from this study, explaining where this model 

comes from and how we approached the simulation case study. The presentation will 

highlight key issues that theoreticians face when adopting an integrative cognitive 

neuroscience approach. Next, we present behavioral fits of the data and discuss strengths and 

limitations of the DNF model at this level of analysis.

After considering the behavioral data, we introduce a step-by-step guide to generating 

hemodynamic predictions from dynamic neural field models. We then discuss how to 

evaluate these predictions using general linear modeling (GLM). We first evaluate the model 

predictions at the individual level. We then move to the group level, showing how our 

approach can be used to identify model-based functional networks. To evaluate these 

networks, we compare our approach to standard fMRI analyses, highlighting examples 

where the DNF model sheds interesting light on the functional roles of particular brain 

regions. The tutorial concludes with a general evaluation of our model-based approach, 

highlighting strengths, weaknesses, and future directions.

2. Overview of Dynamic Field Theory

The present report introduces a tutorial on an integrative model-based fMRI approach using 

Dynamic Field Theory (DFT). Thus, for clarity, before explaining the integrative cognitive 

neuroscience approach, we start by giving a brief introduction to DFT. Readers are referred 

to the DFT Research Group (2015) for a thorough treatment of these ideas.

DFT grew out of the principles and concepts of dynamical systems (Gregor Schöner et al., 

2015) theory initially explored in the ‘motor approach’ pioneered by Gregor Schöner, Esther 

Thelen, Scott Kelso, and Michael Turvey (Kelso, Scholz, & Schoner, 1988; Schöner & 

Kelso, 1988; Turvey, 1995). The goal was to develop a formal, neurally-grounded theory that 

could bring the concepts of dynamical systems theory to bear on issues in cognition and 

cognitive development (for discussion, see Spencer & Schoner, 2003). DFT was initially 

applied to issues closely aligned with the cognitive aspects of motor systems such as motor 

planning for arm and eye movements (Erlhagen & Schöner, 2002; Kopecz & Schöner, 

1995). Subsequent work extended DFT, capturing a wide array of phenomena in the area of 

spatially-grounded cognition, from infant perseverative reaching (Smith, Thelen, Titzer, & 

McLin, 1999; Thelen, Schöner, Scheier, & Smith, 2001) to spatial category biases to 

changes in the metric precision of spatial working memory from childhood to adulthood 

(Schutte, Spencer, & Schöner, 2003; Simmering, Peterson, Darling, & Spencer, 2008). In the 

last decade, DFT has been extended into a host of other domains including visual working 

memory [VWM] (Johnson, Hollingworth, & Luck, 2008; Johnson, Spencer, Luck, & 

Wijeakumar et al. Page 4

J Math Psychol. Author manuscript; available in PMC 2017 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Schöner, 2009; Schneegans, Spencer, Schöner, Hwang, & Hollingworth, 2014), retinal 

remapping (Schneegans & Schöner, 2012), preferential looking and visual habituation 

( Perone, Spencer, & Schöner, 2007; Perone & Spencer, 2008), spatial language (Lipinski, 

Spencer, & Samuelson, 2010), word learning (Samuelson, Jenkins, & Spencer, 2015), 

executive function (Buss & Spencer, 2008), and autonomous behavioral organization in 

cognitive robotics (Sandamirskaya & Schöner, 2010).

The dynamic field framework was initially developed to understand brain function at the 

level of neural population dynamics. Evidence suggests that local neural populations move 

into and out of attractor states, reliable patterns of activation that the neural population 

maintains in the context of particular inputs. For instance, when presented with visual input, 

neural populations in visual cortex create stable ‘peaks’ of activation that indicate that 

something is on the left side of the retina (Erlhagen, Bastian, Jancke, Riehle, & Schöner, 

1999; Markounikau & Jancke, 2008). These local decisions—peaks—then share activation 

with other neural populations—other peaks—creating a macro-scale brain state. Thinking, 

according to DFT, is the movement into and out of these states. Behaving is the connection 

of these states to sensorimotor systems. Learning is the refinement of these patterns via the 

construction of localized memory traces and connectivity between fields. Development is the 

shaping of neural activation patterns step-by-step through hours, days, weeks, and years of 

generalized experience.

Formally, dynamic neural field models are in a class of bi-stable neural networks first 

developed by Amari (Amari, 1977), and then studied theoretically and computationally by 

many research groups over last two decades (Bressloff, 2001; Coombes & Owen, 2005; 

Curtu & Ermentrout, 2001; Ermentrout & Kleinfeld, 2001; Jirsa & Haken, 1997; Laing & 

Chow, 2001; Wilson & Cowan, 1973; Wong & Wang, 2006). Activation in these networks--

called ‘cortical fields’--is distributed over continuous dimensions—space, movement 

direction, color, and so on. Importantly, patterns of activation can live in different “attractor” 

states: a resting state; an input-driven state where input forms stabilized “peaks” of 

activation within a cortical field, but peaks go away when input is removed; and a self-

sustaining or working memory state where activation peaks remain stable even in the 

absence of input. Movement into and out of these states is assembled in real-time depending 

on a variety of factors including inputs to a field. Critically, though, activation patterns can 

“rise above” the current input pattern via recurrent interactions: activation can be in a stable 

“on” state where subsequent inputs are suppressed. That said, the “on” state is still open to 

change: in the presence of continued input, the network might “update” its decision to focus 

on one item over another. This points toward flexibility—how activation patterns can go 

smoothly and autonomously from one stable state to another.

To date, several strengths of DFT are evident. First, DFT provides a predictive language to 

understand both brain and behavior. DFT has been used to test specific predictions about 

early visual processing, attention, working memory, response selection, and spatial cognition 

at behavioral and brain levels using multiple neuroscience technologies (Johnson, Spencer, 

Luck, & Schöner, 2009; Valentin Markounikau, Igel, Grinvald, & Jancke, 2010; Schneegans 

et al., 2014; Schutte et al., 2003). Second, DFT scales up. Across several papers, we have 

demonstrated, for instance, that ‘local’ theories of attention, working memory, and response 
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selection can be integrated in a large-scale neural model that explains and predicts how 

humans represent objects in a visual scene - see Schoner, Spencer & the DFT Research 

Group, 2015. Third, DFT is well positioned to bridge the gap between brain and behavior, 

simultaneously generating real-time neural population dynamics and responses that mimic 

behavior, often in quantitative detail (Buss et al., 2013; Erlhagen & Schöner, 2002).

The neural grounding of DFT has been investigated using both multi-unit neurophysiology 

(Bastian, Riehle, Erlhagen, & Schöner, 1998; Erlhagen et al., 1999) and voltage-sensitive 

dye imaging (Markounikau, Igel, Grinvald, & Jancke, 2010). Data from these studies 

demonstrate that DFT can capture the details of neural population activation in the brain and 

generate novel, neural predictions (Bastian, Schöner, & Riehle, 2003; Markounikau et al., 

2010). Thus, the neural grounding of DFT extends beyond mere analogy. Rather, DFT 

implements a set of formal hypotheses about how the brain works that can be directly tested 

using neuroscience methods. It was the success of this framework at capturing the details of 

neural population dynamics in the brain that encouraged us to consider the mapping between 

neural population dynamics and the BOLD signal measured with fMRI. The integrative 

cognitive neuroscience approach detailed here is a critical step in this new direction.

3. Introduction to the case study

To illustrate the model-based approach to fMRI using DFT, we have to select a specific case 

study. This anchors the modeling approach to a specific task, a specific set of behaviors, and 

a specific fMRI data set. Here, we use as case study the neural and behavioral dynamics that 

underlie response selection. Response selection has been studied using DFT for almost two 

decades at both behavioral (Christopoulos, Bonaiuto, & Andersen, 2015; Erlhagen & 

Schöner, 2002; Klaes, Schneegans, Schöner, & Gail, 2012; McDowell, Jeka, Schöner, & 

Hatfield, 1998, 2002; Schutte & Spencer, 2007) and neural levels (Bastian et al., 1998; 

Erlhagen et al., 1999; McDowell et al., 2002). Thus, there is a rich history to build on. 

Furthermore, the last decade has seen an explosion of research examining the behavioral and 

neural bases for response selection and inhibition using fMRI. This stems, in part, from the 

clinical relevance of this topic: poor performance on response selection tasks has been linked 

to performance deficits in atypical populations (Kaladjian et al., 2011; Monterosso et al., 

2005; Pliszka, Liotti & Woldorff, 2000).

In a recent paper (Wijeakumar et al., 2015), we contributed to this fMRI literature by 

examining whether response selection and inhibition areas in the brain are active primarily 

on inhibitory trials as some researchers have claimed (Aron, Robbins, & Poldrack, 2014), or, 

alternatively, whether response selection and inhibition areas are active when salient events 

occur, regardless of whether these events require inhibition per se (Erika-Florence, Leech, & 

Hampshire, 2014; Hampshire & Sharp, 2015). To contrast these views, we had participants 

complete a set of classic inhibitory control tasks in an MRI scanner. We varied whether 

events were excitatory (i.e., required a motor response) or inhibitory, and whether events 

were frequent or infrequent. We were particularly interested in the brain response on 

infrequent, excitatory trials. The inhibitory network view suggests that key areas of a fronto-

cortical-striatal network should show a weak response on these trials because no inhibition is 
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required. The salience network view suggests the opposite--that there should be a robust 

fronto-cortical-striatal network response because infrequent events stand out as salient.

We used the data from Wijeakumar et al. (2015) as our case study in the present report. We 

do this for two reasons. First, this is a convenient choice because we have the full dataset, we 

are aware of all the processing details, and so on. Second, although there are numerous other 

studies we could have picked, this one has some unique features. Most notably, the study of 

Wijeakumar et al. has parametrically manipulated several factors in the same task. This is 

good fodder to probe the potential of our model-based approach because there is a lot of 

systematic patterning in the data to capture.

In the present report, we focus on data from one of the tasks from Wijeakumar et al. (2015)--

a Go/Nogo (GnG) task. Participants were asked to press a button (Go) when they saw some 

stimuli and withhold (Nogo) their response when another set of stimuli were presented. 

Stimuli varied in color but not in shape. Go colors were separated from Nogo colors by 60 

degrees in a uniform hue space such that directly adjacent colors were associated with 

different response types.

Each trial started with a fixation cross presented at the center of the screen for 2500 ms, 

followed by the stimulus presentation at the center of the screen for 1500 ms (see Figure 1). 

The participants were advised to respond to the visual stimuli as fast as possible. If a 

response was not detected on the Go trials, then a message saying ‘No Response Detected’ 

was presented on the screen for 250 ms. Inter-trial intervals were jittered between 1000, 

2500 or 3500 ms presented on 50%, 25% or 25% of the trials respectively.

Two parametric manipulations were carried out – a Proportion manipulation and a Load 

manipulation. For the Proportion manipulation (at Load 4), the number of Go and Nogo 

trials were varied as follows. In the 25% condition, 25% of the trials were Go trials and 75% 

of the trials were Nogo trials. In the 50% condition, 50% of the trials were Go trials and 

50% of the trials were Nogo trials. In the 75% condition, 75% of the trials were Go trials 

and 25% of the trials were Nogo trials.

For the Load manipulation, 50% of the trials were Go trials and the rest were Nogo trials. In 

the Load 2 condition, one stimulus (color) was associated with a Go response and another 

with the Nogo response. In the Load 4 condition, two stimuli were associated with a Go 

stimulus and two other stimuli with a Nogo response. In the Load 6 condition, three stimuli 

were associated with the Go response and three stimuli with a Nogo response. Participants 

completed five runs in the fMRI experiment: Load 2, Load 4 (also called Proportion 50), 

Load 6, Proportion 25 and Proportion 75. Each run had a total of 144 trials. The order of the 

runs was randomized.

fMRI data were collected using a 3T Siemens TIM Trio magnetic resonance imaging system 

with a 12-channel head coil. An MP-RAGE sequence was used to collect anatomical T1-

weighted volumes. Functional BOLD imaging was acquired using an axial 2D echo-planar 

gradient echo sequence with the following parameters: TE=30 ms, TR=2000 ms, flip angle= 

70°, FOV=240Å~240 mm, matrix=64Å~64, slice thickness/gap=4.0/1.0 mm, and 

bandwidth=1920 Hz/pixel.
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The task was presented to the participant inside the scanner through a high-resolution 

projection system connected to a PC using E-prime software. The timing of the stimuli being 

presented was synchronized to the MRI scanner’s trigger pulse. Head movement was 

prevented by inserting foam padding between the particpants’ heads and the head coil. 

Participants’ responses were obtained through a manipulandam strapped to the participants’ 

hand.

Data were analyzed using Analysis of Functional NeuroImages (AFNI) software (http://

afni.nimh.nih.gov/afni). DICOM images were converted to NIFTI images. Voxels containing 

non-brain tissue were stripped from the T1 structural image. The T1 structural image was 

aligned to the Talaraich space. Then, EPI data was transformed to align with the T1 

structural scan in the subject-space. Transformation matrices across both these steps were 

concatenated and applied to the EPI data to move it from subject-space to Talaraich space. 

Six parameters for head movement were estimated X, Y, Z, pitch, roll, and yaw directions) 

for use as regressors to account for variance in the BOLD signal associated with motion. 

Spatial smoothing was performed on the functional data using a Gaussian function of 8mm 

full-width half-maximum.

Results showed a robust neural response in key areas of the fronto-cortical-striatal network 

on infrequent trials regardless of the need for inhibition (Wijeakumar et al., 2015). 

Interestingly, the number of stimulus-response (SR) mappings modulated the neural signal 

across multiple brain areas, with a reduction in the BOLD signal as the number of SR 

mappings increased. We suggested that this might reflect competition among associative 

memories of the SR mappings as the SR load increased, consistent with recent proposals 

(Cisek, 2012) and modeling work by Erlhagen and colleagues (Erlhagen & Schöner, 2002).

In the next section, we present an overview of a dynamic neural field model designed to 

capture both the behavioral and neural dynamics that underlie performance in this study. 

Note that we use the model primarily in a tutorial fashion--to illustrate the model-based 

fMRI approach using dynamic neural fields. Critically, we make no claims that this is an 

optimal model of response selection. There are other more comprehensive models of 

inhibitory control in the literature. For instance, Wiecki and Frank’s model of response 

inhibition unifies many findings from the inhibitory control literature and has simulated key 

aspects of neural data from both neurophysiology and evoked-response potentials (Wiecki & 

Frank, 2013). We think our model has some interesting strengths relative to Wiecki and 

Frank’s model that we highlight below, but it also has some interesting limitations that we 

also highlight. These strengths and limitations are useful in a tutorial style paper like this to 

illustrate the range of issues one must consider when pursuing an integrative cognitive 

neuroscience model.

4. A dynamic neural field model of response selection

A key question one must ask when modeling even the most basic of tasks is what perceptual, 

cognitive, and motor processes one should try to capture in the model and what aspects 

should be left out in the interest of simplicity. In mathematical psychology, such issues are 

central given that model simplicity versus complexity--often indexed by the number of free 
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parameters--is a key dimension along which models are compared. The GnG task is 

relatively simple; thus, we can articulate the set of possibilities. One could consider 

modeling the following: (1) the early visual processes that perceive and encode colors 

presented in the visual field; (2) the attentional processes that selectively attend to the 

presented color; (3) the memory and visual comparison processes that identify whether the 

presented color is from the Go or Nogo set; (4) the response selection processes that 

compete to drive a Go or Nogo decision; (5) the motor planning processes that are activated, 

either partially or wholly by the response selection system; and (6) the motor control 

processes that do the job of pushing the response button in the event of a Go decision 

(whether correct or not).

In cognitive modeling of the GnG task, models typically focus on the heart of this list--the 

response selection processes. Classic race-horse models (Boucher, Palmeri, Logan, & Schall, 

2007; Logan, Yamaguchi, Schall, & Palmeri, 2015), for instance, capture many aspects of 

reaction time (RT) distributions from the GnG task using an elegant set of simple equations. 

These models have also generated interesting neural predictions. More complex models have 

also considered aspects of the memory and visual comparison processes that underlie 

performance in this task (Wiecki & Frank, 2013). The Wiecki and Frank model, for instance, 

used a set of SR associations in a complex neural network to implement these memory and 

visual comparison processes. This added complexity was justified because their goal was to 

mimic properties of the neural systems that underlie response selection.

Our goal in the present report was to build a neural dynamic model of response selection that 

captures the processes that underlie the GnG task from perception to decision--to create an 

integrated neural architecture to capture processes 1–4 in the list above. (Links to motor 

planning and control systems have been studied extensively with DFT, but we opted for 

simplicity on this front; for discussion, see Schöner et al., 2015; Bicho & Schöner, 1997.) 

We did this for two central reasons. First, we have proposed and tested models that capture 

the full sweep of processes 1–4 in the domain of VWM; thus, we wanted to examine 

whether the processes that underlie performance in VWM tasks might also play a role in 

response selection. This is important theoretically, because it probes the generality of a 

theory--can a theory instantiated in a particular architecture and designed to capture data 

from one domain, quantitatively capture data from a different domain of study? If so, this 

suggests that the model has the potential to integrate findings across domains provided, of 

course, that the model is constrained and unable to capture findings that are not present in 

those domains. Note that answering this question requires deep study of the theory in 

question. We do not do that work here; rather, the present paper is merely a first step in this 

direction.

The second reason stems from Buss et al. (2013) where we used a dynamic neural field 

model to simulate fMRI data from a dual-task paradigm. In that project, we discovered that 

non-neural inputs to the model--for instance, a perceptual input applied directly to a higher-

level processing area--often dominated the neural activation patterns, thereby dominating the 

model-based MRI signals as well. This suggests that it is important to embed the neural 

processes of interest within a fully neural system if you want to capture neural dynamics in a 

reasonable way. Concretely, this means that we had a priori reasons for simulating early 
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perceptual and attentional processes in the model, even though most models do not do this in 

the interest of simplicity.

4.1 Conceptual overview and model architecture

With that background in mind, Figure 2 shows the architecture of the model. This model is 

an integration of several models developed to simulate findings from VWM tasks (Johnson 

et al., 2009; Johnson et al., 2009; Schneegans et al., 2014; Schöner et al., 2015), consistent 

with our goal of asking whether a model of VWM can generalize to a response selection 

task. We describe the architecture in detail below, pointing out links to prior work to justify 

why we have used this particular architecture here. Note that each element in Figure 2 is a 

dynamic neural field. We provide the full mathematical specification of a dynamic neural 

field in the next section.

The model has a visual field in the lower right panel that mimics properties of early visual 

cortical fields (Markounikau, Igel, Grinvald & Jancke, 2008). The visual field is composed 

of neural sites receptive to both color (hue) and spatial position. Inputs into this field build 

localized ‘peaks’ of activation in the two-dimensional field that specify the color of the 

stimulus and where it is located. These peaks, in turn, drive activation--in parallel--in the 

fields along a ventral feature pathway shown in the bottom row of Figure 2 (see fAtn, con, 

wm) and in a dorsal pathway in the top right panel (see sAtn). Two of these fields are 

‘winner-take-all’ attentional fields that selectively attend to the color of the presented item 

(feature attention or fAtn) or its spatial position (spatial attention or sAtn). These fields do 

not have much to do in the GnG task because only a single item is presented centrally in the 

visual field; they are included here for continuity with previous models (Schneegans et al., 

2014; Schöner et al., 2015) and to pass neurally-realistic inputs to the other cortical fields.

The more interesting fields are ‘higher up’ in the ventral pathway, where the model must 

decide whether the presented color is from the Go set or the Nogo set. This requires some 

form of memory--the system has to remember the details of the Go and Nogo set (see Logan 

et al., 2015 for evidence that the Nogo set is remembered)--and some form of visual 

comparison--the system has to visually compare the hue value of the presented color to the 

memorized options. The reciprocally inhibitory architecture instantiated in the working 

memory (wm) and contrast (con) fields implements this visual comparison process (see 

Johnson et al., 2009; Johnson et al., 2009). This piece of the architecture has been tested in 

several previous studies including tests of novel behavioral predictions (see Johnson et al., 

2009). Moreover, this core approach to visual comparison has been generalized to visual 

comparison tasks in infancy as well (Perone & Spencer, 2013; Perone & Spencer, 2013, 

2014). To this, we add a memory trace mechanism that remembers the colors previously 

consolidated in working memory (mem_wm) and the colors previously identified as 

‘contrasting’ with the go set in the contrast field (mem_con) (Lipinski, Schneegans, 

Sandamirskaya, Spencer, & Schöner, 2012; Perone, Simmering, & Spencer, 2011; Schutte & 

Spencer, 2002).

The final piece of the architecture implements the decision process. Here, we have 

implemented two dynamical nodes--localized neural populations (Schöner et al., 2015) -- 

that compete in a winner-take-all manner to make a Go or a Nogo decision. The go node 
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receives the summed activation from the working memory layer. Conceptually, if the 

working memory layer detects a match between the remembered set of Go colors (in the 

memory trace) and the current color detected in the feature attention and visual fields, this 

layer will build a peak of activation, consolidating the item in working memory and passing 

strong activation to the go node (Figure 3A). Alternatively, if the contrast layer detects a 

match between the remembered set of Nogo colors--the items that contrast with the Go set--

and the current color detected in the feature attention and visual fields, this layer will build a 

peak of activation and send strong activation to the nogo node (Figure 3B). Conceptually, the 

winner in the race between Go and nogo nodes would then drive activation in the motor 

system (which we do not implement here).

In the section below, we provide a more formal treatment of the dynamic neural field model. 

We also walk through an example to illustrate the neural population dynamics in the model 

that give rise to an in-the-moment decision to make a Go decision or to inhibit responding 

via a Nogo decision.

4.2 Formal specification of the model and exemplary simulations

The model consists of several dynamic neural fields (DNFs) that compute neural population 

dynamics uj according to the following equation (Amari, 1977; Ermentrout, 1998):

(4.1)

The activation uj of each component is modeled at high temporal resolution (millisecond 

timescale) with time constant τe. It assumes a resting level hj and depends on lateral (within 

the field) and longer range (between different fields) excitatory and inhibitory interactions, cj 

* gj(uj) and cjk * gk(uk) respectively. These are implemented by convolutions between field 

outputs g(u(x,t)) and connectivity kernels c(x) with the latter defined either as a Gaussian 

function or as the difference of two Gaussians (“Mexican hat” shape). The temporal 

dynamics of the neural activity is also influenced by external inputs sj and it is non-

deterministic due to noise ηj

The activation u(x,t) is distributed continuously over an appropriate feature space x such as 

color or spatial position (Figure 2 – blue curves). Then the field output, g(u(x,t)), is 

computed by the sigmoid (logistic) function g(u) = 1/(1 + Exp[−βu]) with threshold set to 

zero and steepness parameter β (Figure 2 – red curves). Therefore, g(u) remains near zero 

for low activations; it rises as activation reaches a soft threshold; and it saturates at a value of 

one for high activations. Excitatory and inhibitory coupling, both within fields and among 

them, promote the formation of localized peaks of activation in response to external 

stimulation. In our model, any above-the-threshold activation peak is interpreted as an 

experimentally detectable (via neural recordings) response of that particular neural field to a 

stimulus.

The architecture of the dynamic neural field model includes the seven fields shown in Figure 

2. (For details on field equations and parameter values, see Appendix A.) A time snapshot of 
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the dynamics of the DNF model during a Go/Nogo task is shown in Figure 3. (The time 

instance t̃ is approximately 500 ms after stimulus onset, and it is indicated on the graph by a 

black arrow).

Figure 3A illustrates the network state of the DNF model at time t ̃ during the Go task. The 

parameter values used in simulations are listed in Appendix A (Model 1 for Load 2 

condition). Shortly, when a Go color is presented (duration of stimulus is 1500 ms), an 

activation peak is built in the visual field, vis. This induces a peak in the working memory 

field, wm, and a weak peak in the feature attention field, fAtn (curves in blue). Then, the 

peak in wm leads to an increase in activation of the go node (Figure 3A; in green). In 

addition, due to inhibition from wm that dominates excitation received from vis, the activity 

of the contrast field, con, is lowered at the location of the Go color. At some time between 

400 and 500 milliseconds after stimulus onset, the activity of the go node crosses the 

threshold, that is, its output function is greater than 0.5 (see left panel; in green). This is 

caused by the formation of a strong peak in wm. In addition, the peak in fAtn becomes 

stronger and a sub-threshold hill forms in con as well. In the interval of time between the 

response (reaction time RT~ 450 ms) and end of the trial (1500 ms), the activity peaks in vis, 

fAtn, con and wm stabilize. Importantly, the hill in con remains sub-threshold. Also, note 

that the activity of the go node reaches saturation.

Figure 3B shows the network state of the DNF model at time t ̃ during the Nogo task. In this 

case, the Nogo color induces activation of the visual field, vis. This, in turn, increases 

activation in the contrast field, con, at the corresponding color coordinate along the feature 

space. A sub-threshold hill in fAtn forms as well, and wm is locally inhibited. Then, later 

during the trial (e.g. at time t̃), the activation of the nogo node has crossed its threshold. The 

peak in con becomes stronger and stabilizes, and field fAtn shows supra-threshold activity. 

At the Nogo color location in wm, the activity is inhibited. Approaching the end of the trial, 

the activity stabilizes in vis, fAtn, con and wm, the peak in wm remaining sub-threshold. 

Note that the nogo node stays ‘on’, while the go node remains inactive.

5. Simulating behavior with the dynamic neural field model

When contrasted with cognitive models, the dynamic neural field model in Figure 2 is 

complex. Each field has several parameters that need to be ‘tuned’ appropriately to get the 

model to perform in a manner that is consistent with our hypotheses about how response 

selection works. When contrasted with biophysical neural network models, however, the 

dynamic neural field model is relatively simple--there are fewer neural sites and far fewer 

free parameters. Along this dimension of complexity, therefore, DFT sits somewhere in the 

middle. That is by design. We contend that using neural process models is critical in 

psychology and neuroscience because this opens the door to important constraints for theory 

from both behavioral and neural measures--constraints readily apparent when one tries to 

construct integrative cognitive neuroscience models. In our view, these constraints justify the 

complexity. At the same time, we think it is important to add just the right amount of 

complexity. Data from neurophysiology suggest to us that perception, cognition, and action 

planning live at the level of neural population dynamics, and not at the biophysical level per 

se (for discussion, see (Gregor Schöner et al., 2015). Thus, we contend that the added detail 
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from biophysical models is not critical if the goal is to bridge the gap between brain and 

behavior.

Of course, the downside to the added complexity introduced by dynamic neural field models 

is that fitting data to behavioral and neural data becomes harder and a bit more subjective in 

nature. This is not to say that DFT cannot achieve quantitative fits--that is certainly still a 

goal. Rather, the subjective sense of DFT comes from the fact that it is rarely possible to 

search the full parameter space of a dynamic neural field model. Consequently, many of the 

issues that are central to mathematical psychology and many of the tools that are used to 

evaluate model fits (Turner et al., 2016) are difficult, if not impossible, to apply to dynamic 

neural field models (Samuelson et al., 2015).

Critically, however, fitting dynamic neural field models to data is not an unconstrained free-

for-all. Rather, constraints come from multiple sources. First, the neural dynamics in the 

model must reflect our understanding of how brains work. Thus, we would rule out 

parameters that give rise to pathological neural states. For instance, if excitatory neural 

interaction strengths in one of the cortical fields are too strong, input to the field will build a 

peak that grows out of control--the model has a seizure. By contrast, if excitatory neural 

interaction strengths are too weak, no peaks will build--the model will remain in a sub-

threshold state.

Second, parameters must be tuned such that the neural dynamics reflect our conceptual 

theory of how the model should behave in the task. Concretely, this means that the right 

sequence of peaks emerges during the course of a trial to give rise to the right type of 

behavior (in this case, the generation of a Go or Nogo decision). Formally, this means that 

the sequence of bifurcations in the model must be correct. For instance, the following should 

hold: (1) peaks in the working memory and contrast fields should not build spontaneously 

from a memory trace; (2) peaks in the working memory and contrast fields should be 

influenced by the formation of peaks in feature attention (that is, the parallel input from the 

visual field should not be too strong); and (3) the Go and Nogo competition should be 

influenced by sub-threshold activation in the working memory and contrast fields as 

decision-making unfolds.

The third category of constraint comes, of course, from the details of behavioral data. In the 

GnG task, these constraints are relatively modest since the participant only responds on Go 

trials. Nevertheless, if one considers RT distributions rather than just means, this can be 

relatively constraining. For instance, Erlhagen and Schoner fit the details of response 

distributions from several response selection paradigms (Erlhagen & Schöner, 2002). This is 

possible with dynamic neural field models because such models are stochastic, and they 

generate measurable behaviors on every trial (e.g., the formation of a stable Go or Nogo 

decision). Moreover, relatively complex models as the one used here generate complex non-

linear patterns through time--for instance, a sequence of peak states across fields, which can 

amplify stochastic fluctuations leading to macroscopic behavioral differences across 

conditions. Further behavioral constraints emerge when one considers response distributions 

from multiple studies. Here, the goal would be to capture the quantitative details of 

behavioral responses from multiple studies, ideally without any modification to model 
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parameters. This has been achieved in several notable cases (Buss & Spencer, 2014; 

Erlhagen & Schöner, 2002; A.R. Schutte & Spencer, 2002).

Here, our goals were more modest--we did not optimize the quantitative fit to the behavioral 

data. Rather, we pursued a more iterative parameter fitting approach. First, we fit the mean 

reaction times with the dynamic neural field model, and made sure the variance in the model 

was in the right ballpark. We refer to this as Model 1 (see Appendix A). As readers will see, 

our fits to the standard deviations could have been better; however, we did not optimize the 

model on this front. Rather, we pushed forward to evaluate the quantitative fMRI fits first. 

Data from these fits revealed that Model 1 did not quite outperform the quantitative fit 

provided by a Standard GLM analysis -- the ‘gold standard’ statistical model we set a 

priori. We then examined the model’s neural data, focusing on the ways in which the 

model’s neural dynamics differed from the neural dynamics evident in the fMRI data (see 

Wijeakumar et al., 2015). This led to new insights into how we had the model parameters 

‘tuned’ and prompted a second round of behavioral fits targeting more competitive neural 

interactions. This resulted in a second set of parameters--Model 2 (see Appendix A)--that fit 

the behavioral data relatively well and fit the fMRI data better than Model 1. This illustrates 

how an interactive cognitive neuroscience approach can be used in practice to bridge the gap 

between brain and behavior.

5.1 Simulation methods

Before turning to the details of the behavioral fits, we provide a few more details about the 

simulation method. All numerical simulations were performed using the COSIVINA 

simulation package (available at www.dynamicfieldtheory.org). This package allows one to 

construct dynamic neural field architectures relatively quickly, along with a graphic user 

interface that enables evaluation and ‘tuning’ of the model in real time (see Figures 2–3). 

The same simulator can then be run in ‘batch’ mode to iterate the model across many trials, 

recording responses that can be evaluated relative to empirical data. The COSIVINA 

package also includes a new toolbox for generating local field potentials directly from the 

model at the same time that the model is simulating the experimental task. Thus, the model 

is truly an integrative cognitive neuroscience model, generating behavioral and neural data 

(with millisecond precision) simultaneously.

5.1.1 Parameter fitting in Model 1—We adopted the following approach when tuning 

model parameters to arrive at Model 1. First, we made a simplification of the model. Initial 

simulations with a dynamic memory trace in both the working memory and contrast fields 

showed that the memory trace dynamics conformed to expectations based on previous work 

(Buss et al., 2013; Erlhagen & Schöner, 2002; Lipinski et al., 2010). In particular, memory 

traces were stronger in the Load 2 condition and weaker in the Load 6 condition. This occurs 

because each color is presented more often over trials in Load 2. Similarly, memory traces 

were stronger for Go stimuli in the Proportion 75% condition and weaker in the 25% 

condition. Again, this mimics the frequency of stimulus presentation. Although these 

memory trace--or learning--dynamics are fundamentally interesting, they also make 

simulation work more complex because one must simulate a variety of stimulus presentation 

orders to obtain robust estimates of learning effects. Given that such learning effects--in both 
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behavioral and fMRI data--were central to our previous work using an interactive model-

based fMRI approach (Buss et al., 2013), we opted to simplify the learning dynamics here. 

Thus, instead of simulating memory traces dynamically over trials, we used static memory 

traces, that is, the memory trace inputs were fixed for each condition to reflect the properties 

revealed by these initial simulations (see equation A.17 and Table A.4.1 in Appendix A, for 

details).

The next objective was to find a set of parameters that quantitatively captured data from the 

Load 2 condition. We started with parameters from Schöner, Spencer and the DFT Research 

Group (2015; Chapter 8), and adjusted the model parameters to approximate the right 

behavior from the Load 2 condition. For instance, connection strengths between the go node 

and wm field and nogo node and con field were tuned. The strength of the memory trace 

inputs into the wm and con fields for Go and Nogo trials respectively, were tuned as well.

Once the model captured the reaction times for Go trials at Load 2, the next step was to 

capture reaction times for the Load 4 and Load 6 conditions. Here, we hypothesized that 

increasing the Load in the task would increase competition among memory traces, slowing 

down the time it takes to build a peak in the working memory and contrast fields and 

yielding slower reaction times (Erlhagen & Schöner, 2002), Hence, we adjusted the strength 

of the memory trace inputs in both wm and con fields without modifying any other 

parameters. (See Table A.4.1 in Appendix A; third column shows how the strength of the 

memory trace inputs for wm and con is varied across different conditions.) We then tested 

whether the model was able to capture the increase in reaction times observed as memory 

Load increased.

For the Proportion manipulation, Proportion 50% corresponded to Load 4 and so its 

parameters were used as an anchor to fit the reaction times from Proportion 25% and 

Proportion 75%. Here, we hypothesized that as the number of Go trials increased, the 

strength of the memory trace for Go trials would also increase. Likewise, as the number of 

Go trials decreased, the strength of these memory traces would decrease. (Table A.4.1 in 

Appendix A).

To generate quantitative data from the model, we ran 144 trials per model and 20 identical 

models (to reflect the number of participants in the original study) for each of the Load and 

Proportion manipulations. Mean and standard deviations were calculated across reaction 

times and compared to the empirical data (Figure 4).

5.1.2 Parameter fitting in Model 2—To identify parameters for Model 2, we proceeded 

as follows. After discovering that Model 1 did not meet our quantitative criterion for fits to 

the fMRI data, we examined the neural predictions from the model across conditions relative 

to fMRI results from Wijeakumar et al. (2015). A central effect in Wijeakumar et al. was that 

regions of the fronto-cortical-striatal network showed greater activation on infrequent trials, 

regardless of whether an infrequent stimulus appeared on a Go or Nogo trial (Wijeakumar et 

al., 2015). For instance, brain areas responded strongly on infrequent Go trials. Quantitative 

fMRI predictions from Model 1 did not show this pattern. Given that local field potentials 

are positively influenced by both excitatory and inhibitory interactions, we hypothesized that 
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a strong response on infrequent Go trials might be most likely to occur when there is a 

strong memory of frequent Nogo responses and strong competition between the working 

memory and contrast fields (and vice versa on infrequent Nogo trials). To examine this 

possibility, we added a new element to the model--a memory trace to the go and nogo nodes 

(implemented by modulating the gain on self-excitation across conditions, see Table A.2.1 in 

Appendix A) and we increased competition between the wm and con fields (Table A.3.1). 

We also balanced the parameters across the go and Nogo systems, setting the reciprocal 

connections between nogo node and con field so they were equal to the parameters 

connecting go node and wm field (Table A.3.1).

Our examination of the model’s neural dynamics also revealed that differences across 

conditions were relatively modest. We realized that this was influenced by the trial duration 

we were simulating. Decisions in the model--and decisions by participants--occur within the 

first 500ms; for the remaining 1000ms, the model simply sits in a neural attractor state, 

maintaining peaks across all fields (because the stimulus remains ‘on’). Because the BOLD 

signal reflects the slow blood flow response to all of these events, the ‘final’ attractor states 

of the model dominate the hemodynamic predictions and the more interesting cognitive 

processes--the neural interactions leading to the decision--have relatively less impact. This 

does not accurately reflect neural systems; rather, neurophysiological data suggest that 

neural attractor states stabilize, but are then suppressed once a stable decision has been made 

(Annette Bastian et al., 2003). To implement this, we added a ‘condition of satisfaction’ 

node (CoS), building off recent work by Sandamirskaya and colleagues (Sandamirskaya & 

Schöner, 2008; Sandamirskaya, Zibner, Schneegans, & Schöner, 2013; Gregor Schöner et 

al., 2015). This node receives input from both the go and nogo nodes. When either becomes 

active, the ‘CoS’ node becomes active, signalling that the conditions for a stable decision 

have been satisfied. The CoS node then suppresses the working memory and contrast fields, 

globally inhibiting these fields. Consequently, the stable decision made by the go or nogo 

node remains active throughout the 1500ms trial, but peaks in the wm and con fields are 

suppressed once the decision is made. Conceptually, this frees up these systems to move on 

to other interesting events that might (but don’t) occur in the visual field.

5.2 Quantitative behavioral results

Here, we present the results of the behavioral fits for Models 1 and 2 alongside the reaction 

times from the actual behavioral data. Both DNF models provide reasonable fits to the trends 

in reaction times shown by the behavioral data in response to manipulating Proportion and 

Load (see Figure 4A and 4B). Root Mean Squared Error (RMSE) for reaction times for 

Model 1 with respect to the Standard GLM analysis = 10.58ms and RMSE for reaction times 

for Model 2 with respect to the Standard GLM analysis = 27.02ms. For the Load 

manipulation, reaction times increased as the number of SR mappings increased. For the 

Proportion manipulation, increasing the frequency of Go trials from 25% to 75% resulted in 

a decrease in reaction times. Although there were some variations in the standard deviations 

across the 20 simulations for both models (as shown in Figure 4C and 4D), the trends across 

the conditions were qualitatively correct.
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6. Generating local field potentials and hemodynamics from the DNF model

To simulate the hemodynamics for this study, we adapted the model-based fMRI approach 

from Deco et al. (2004). Specifically, we created an LFP measure for each component of the 

model during each condition and tracked the LFPs in real time as the model simulated 

behavioral data. Then, we convolved the simulated LFPs with a gamma impulse response 

function to generate simulated hemodynamics, and as a result, regressors for each 

component and condition.

6.1. Definition of the DNF model-based LFP

To illustrate the procedure, we explain below the computation of the LFP for the contrast 

field neural population (con field in Figures 2–3). The LFPs for all other neural fields in the 

GnG DNF model (e.g. Model 1; see Figure 1) follow an identical approach.

Consider the dynamic field equation (4.1) with appropriate input neural fields and 

connections that contribute to the dynamics of the neural population in the con field. This 

equation is defined by (A.4) in Appendix A or, more explicitly, by

where f * h denotes the convolution f * h(y,t) = ∫f(y − y′)h(y′,t)dy′.

Here scon(y) specifies the stationary sub-threshold stimulus to the con field (“the memory 

trace”), spatially tuned to Nogo colors. The spatially correlated noise ηcon is obtained by 

convolution between kernel ccon,noise and vector ξ of white noise. Local connections include 

both excitatory and inhibitory components, Ccon = Ccon,E − Ccon,I. All kernels are Gaussian 

functions of the form  with positive parameters a except acon,wm 

< 0. Note that, whenever Model 2 is used in simulations, an additional term associated with 

feedback projections from the condition of satisfaction node (CoS) appears in ucon.

To generate an LFP for the contrast field, we sum the absolute value of all terms contributing 

to the rate of change of activation within the field, excluding the stability term, −ucon(y,t), 
and the neuronal resting level, hcon. The resulting LFP equation for the con field is given by:

(6.1)
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Several observations about this calculation need to be made. First, since both excitatory and 

inhibitory communication require active neurons and, biophysically, generate positive ion 

flow, we need to sum both in a positive way toward predictions of local activity; thus, we 

take the absolute value of all excitatory and inhibitory contributions. Second, given that field 

activities in the calculation of the LFP measure may span different dimensions, we 

normalize them. In this way, we can maintain a balance among their contributions. We do 

that by dividing each field contribution by the number of units in it (e.g., in equation (6.1) 

certain field contributions were divided by n or n ×m where n is the feature dimension and rn 
is the space dimension). Third, due to correlated noise in each field of the model, small-scale 

variations in the signal occur (especially evident in the second component), as well as 

overall variation in reaction times. Indeed, for same initial conditions, the DNF model yields 

relatively different LFP measures (see Figure 5A).

Each component in the model has a different network of interactions that drives a different 

response pattern. Consequently, individual LFP measures are created for each model 

component, that is, for each of the 7 fields shown in Figure 2. Figures 5A and 5B depict LFP 

simulations from fAtn and go node in Model 2, over three and four trials, respectively.

6.2. Canonical predicted LFPs per experimental condition

Note that, in some components, the LFP level is similar across conditions with minor 

differences in timing (fAtn). In others (go node), different conditions (Go trial versus Nogo 

trial) lead to larger differences in the LFP (Figure 5B). This contrast is key to the model-

based approach because it allows components to have unique signatures on both the scale of 

the individual trial as well as larger scale signatures across task conditions.

To account for this variance, we run many repetitions of each condition (i.e. we start from 

same initial values in the model; therefore, the variability will be a direct consequence of 

noise only). The number of repetitions is chosen usually to reflect the number of trials 

undertaken by the subjects in the actual experiment. (For example, if in the experiment, each 

of 20 subjects underwent 72 Go trials for Load 4, we will run 20 sets of 72 repetitions 

(simulations) of Model 2 with the corresponding parameters for stimulus strength from 

Table A.4.1.) We then average the generated LFP time series over repetitions of the same 

condition to determine what we call the canonical predicted LFP signal per condition. Figure 

6 depicts examples of such canonical LFP predictions for two fields, fAtn (in blue) and go-

node (in green). The first 1500 ms in Figure 6 shows the canonical LFP predictions for Load 

4, Go trials (e.g., as seen repeated in Figure 5A). The last 1500 ms shows the canonical LFP 

predictions for Load 4 Nogo trials.

6.3. Construction of the long-form LFP template

Another concern that we aimed to address was placing the simulated canonical LFP values 

in an appropriate context. Much like the measurement of fMRI data, we take a baseline 

measurement from the model as follows. We use the same LFP calculations as described 

above, but we compute a “resting level” by simulating the model in the absence of external 

stimuli. We average these readings (across all time points and repetitions) to obtain an 

Wijeakumar et al. Page 18

J Math Psychol. Author manuscript; available in PMC 2017 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



average resting value. Then, this value is subtracted out of our predictions to express the 

change in LFP activity relative to the resting value.

Once we have calculated a canonical baselined LFP for each model component and 

condition type, we proceed to construct long-form, averaged LFP templates. The latter are 

long-scale (tens of minutes) model-generated LFP predictions for each subject in the 

experiment. The structure of the long-form LFP templates, for all components of the DNF 

model, is determined by the order and timing of trials that particular subject experienced 

during the experimental block(s).

To do this, we first create a zero-valued time series the length of the entire experiment (i.e. a 

zero-valued long-form LFP template). We then use trial onset timings from the experiment 

to anchor the trial canonical baselined LFP prediction, for each corresponding trial type. For 

example, if a trial of a certain condition (e.g. Load 4, Nogo trial) has an onset time of 

7500ms after the start of the experiment, then the canonical LFP for that trial is inserted to 

the long-form template-LFP starting at the same onset time (see Figure 7). Once this 

iterative process is completed (across all trials) and the algorithm is applied to all DNF 

model components, we have constructed experiment-based, subject-specific LFP time series 

for each component of the DNF architecture. These time series reflect predicted differences 

in neural activation based on the processes at work within each field.

6.4. Generating hemodynamics from the DNF model

fMRI data does not measure neural activity directly. It measures changes in blood flow as 

the neurovascular system responds to resource demands of active neurons. Consequently, 

there is a delay between neural activity and the measured BOLD signal. To account for this, 

we use a standard hemodynamic response function,

to describe the expected response pattern in the BOLD signal, for a given amount a neural 

activity. By convolving HRF(t) with the long-form LFP templates ( ), we are able to 

generate predicted BOLD activity patterns that are directly comparable to the measured data.

Note that time variable in HRF(t) and  has different units, seconds (former) and 

milliseconds (latter). Also, note that we used a mapping of 1 model time-step to 1 ms in the 

experiment to simulate the details of each trial. Thus, care should be taken to bring these 

time units on the same scale, before the convolution  is 

computed. Figure 8 shows two examples of BOLD predictions obtained as described above.

Next, we address the question of comparing model units for the numerically generated 

BOLD signal to those derived from the fMRI data. We again take guidance from the 

treatment of fMRI data: we normalize each predicted BOLD signal by its average value over 
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time across the entire experiment-length time series. This takes us away from model-based 

units to an abstract percentage scale relative to the mean.

Then we turn these normalized BOLD signal predictions into regressors for the statistical 

analysis of the fMRI data. Care should be taken at this step, again, given that the calculations 

require matching the sampling rate of the time series to that of the data (down sampling to 

match the temporal resolution (TR) from the fMRI data). Figure 9 shows the normalized 

BOLD signals resulting from those shown in Figure 8, as well as the discrete sequence of 

points retained from the numerically generated BOLD signal after down sampling.

Note that in the analysis of the GnG task, we decided to create split regressors for Go and 

Nogo trials (see following section for details). To split the trials, two long-form LFPs (again, 

for each subject and each component) were created based on only Go or Nogo trial onsets 

instead of all trials together. The proceeding steps from long-form LFP to regressor follow 

identically.

7. Testing model-based predictions with GLM

In the previous section, we generated a linking hypothesis that allows us to specify a local-

field potential for each field in a dynamic neural field model. We also detailed the steps 

required to transform these LFPs into hemodynamic predictions that are tailored to each 

individual participant. The next step is to evaluate whether these individually-tailored 

hemodynamic predictions are, in fact, good predictions relative to the fMRI data from each 

individual.

We used GLM to evaluate this question. In particular, we used the individually-tailored 

hemodynamic predictions described above as regressors in a GLM for each individual 

participant’s fMRI data. This provides quantitative metrics with which we can evaluate the 

model’s goodness of fit. In particular, we examined the following metrics from each 

individual GLM: (1) the number of voxels where the model-based GLM captured a 

significant proportion of variance, and (2) the average R2 value across all significant voxels. 

Note that, because the R2 values were not normally distributed, we z-transformed the data. 

An average z-value was calculated across the mask of voxels that were significant. The z-

transformation was then undone using R = atanh(z), where z is the average z-value. Finally, 

the R-value was adjusted using

where N = number of time points across runs and p =1.

Although the GLM approach gives us quantitative metrics, we need a way to assess whether 

the fit of the model is any good. As Turner et al. discuss, the optimal approach here would 

be to quantitatively compare the fit of the DNF model relative to a competing model (Turner 

et al., 2016). For instance, in Buss et al., they compared hemodynamic predictions of the 

DNF model to hemodynamic predictions of ACT-R (A. T. Buss et al., 2013). Here, we 
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pursue an alternative approach that was motivated by a recent model-based fMRI study of 

VWM. In that study, we did not have a second cognitive model from which to generate 

competing fMRI predictions. Instead, we compared the GLM-based fit of a DNF model to 

Standard GLM fMRI analyses. This is useful because, at present, Standard GLM fMRI 

analyses are the gold standard in the functional neuroimaging literature and such analyses 

can be performed in all cases. Thus, we can treat the Standard GLM analysis as a baseline 

and ask whether the DNF-based GLM quantitatively outperforms this baseline.

The next question is, of course, which metric to use. One option is to analyze voxel counts; 

however, several studies have highlighted the limitations of this approach (Bennett & Miller, 

2010; Cohen & DuBois, 1999). An alternative is to compare the mean R2 values across 

models. The problem here is that the DNF-based GLM might capture significant variance in 

some voxels, while the Standard GLM analysis might capture significant variance in 

different voxels. The overall mean R2 value does not take this into effect. Thus, we used an 

alternative approach: we created an intersection mask that defined voxels where the DNF-

based GLM and the Standard GLM analysis both captured a significant proportion of 

variance and then statistically compared these intersection R2 values. This provides a direct 

head-to-head comparison of the two models in the same voxels, asking which model does a 

better job fitting the brain data. Our objective was to see whether we could tune the DNF 

model parameters such that it significantly outperformed the Standard GLM analysis on this 

comparison metric.

We struggled with two final issues. First, the degrees of freedom of the DNF-based GLM 

and Standard GLM analysis were not the same. The Standard GLM analysis of data from 

Wijeakumar et al. (2015) had 10 regressors: 5 conditions (Proportion 75%, Proportion 25%, 

Load 2, Load 4, Load 6) × 2 trial types (Go, Nogo). By contrast, the DNF model had 7 

regressors--one for each component (vis, sAtn, fAtn, con, wm, go, nogo; see, for instance, 

Figure 9) – see section 6 for the steps leading up to the creation of regressors from the DNF 

components. Second, we discovered when running the DNF-based GLM that several 

regressors were collinear which can make beta estimates unstable. This was not terribly 

surprising: the most collinear fields were vis, sAtn, and fAtn, and all three fields basically 

serve the same function in the GnG task.

To resolve both issues, we created a 10-regressor DNF-based GLM model by (1) reducing 

the number of model components to the 5 least collinear fields (fAtn, con, wm, go, nogo), 

and (2) including separate model-based regressor for Go and Nogo trials.

Figure 10 illustrates the DNF-based GLM approach with numerical results from Model 2. 

Figure 10A shows examples of HDRs and LFPs for Load 4 Go and Nogo trials in the fAtn 

field and go node--the same fields used for illustration in Figures 5–9. As above, differences 

in the HDR amplitude between Go and Nogo trials are evident in the go node but not in the 

fAtn field. Maximum HDRs across the five DNF components included in the GLM (fAtn, 

con, wm, go, nogo) and across Load and Proportion manipulations are displayed in Figure 

10B. These bars reveal differences in the model-based predictions across components and 

conditions. Note, for instance, that fAtn shows comparable hemodynamic predictions across 

go and nogo trials, while the go and nogo nodes show different patterns with, for instance, 
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greater activation in the Prop25 condition on go trials, and greater activation in the Prop75 

condition on nogo trials. This reflects one of the key hemodynamic patterns evident in the 

fMRI data: some brain areas showed a strong response on infrequent trials, regardless of 

whether those trials required inhibition (a nogo trial in the Prop75 condition) or not (a go 

trial in the Prop25 condition).

Figure 10C shows go and Nogo trial regressors for each component of the model, 

constructed by inserting the condition-specific HDR at the onset of each trial in the same 

order that was presented to each participant. An example predictor for one participant – a 

regressor in the GLM model – is shown in the inset in Figure 10C. This time course was 

created by inserting the predicted hemodynamic time course from the Nogo component 

(similar to those from Figure 10A) for each trial type at the appropriate start time in the time 

series and then summing these predictions. If there is a brain region involved in the 

generation of a Nogo decision, the model predicts that this brain area should show the 

particular pattern of BOLD changes over time shown in the inset. The GLM results can be 

used to statistically evaluate such predictions.

8. Model evaluation: Individual-level GLMs

We ran 3 sets of GLM models (using afni_proc in AFNI) for each participant: a 10-regressor 

DNF-based GLM for Model 1; a 10-regressor DNF-based GLM for Model 2; and a 10-

regressor Standard GLM analysis. All GLM analysis also included regressors for motion 

and drifts in baseline. Figure 11 shows portions of the 10 regressor design matrices from the 

three models we investigated. Note in particular that the Standard GLM analysis employs a 

separate regressor for each trial type and condition. In contrast, the DNF model-based 

method only separates trials based on trial type (go and Nogo trials). For this reason, the 

model-based method generates more constrained predictions because the relationship 

between trial conditions (variations in Load and Proportion) is determined a priori and not 

allowed to vary independently as with the Standard GLM analysis method. As well, the 

model-based method employs different predictions for each model component, allowing us 

to identify effects indicative of specific functions.

In each case, we report the total number of significant voxels and the mean R2 value across 

those voxels (see below). We then intersected the images as per the model pairs and 

identified voxels that were significant for both Model 1 and the Standard GLM analysis, and 

voxels that were significant for both Model 2 and the Standard GLM analysis. Then, we 

calculated the mean intersection R2 value for each model for each participant and compared 

these values using a paired-samples t-test.

Overall voxel counts across models were the following: Model 1 = 3964 voxels, Model 2 = 

4762, Standard GLM analysis = 3978 voxels. Overall, both models were comparable but 

Model 2 captured significant variance in more voxels. The overall R2 values were the 

following: Model 1 = 0.139, Model 2 = 0.135, Standard GLM analysis = 0.130, so both 

DNF models captured more variance, though neither represents a significant improvement 

relative to the Standard GLM analysis when we compare the average values computed 

across all voxels (p=0.20 and p=0.43, respectively).
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The important metric in this evaluation between the DNF-based GLM and the Standard 

GLM analysis is the intersection R2 values across model pairs. The intersection R2 was 

0.153 for Model 1 and 0.141 for the Standard GLM analysis across 1616 intersected voxels; 

Model 1 performed better than the Standard GLM analysis but this effect did not reach 

significance (t(19) = 0.199, p=0.086). On the other hand, the intersection R2 was 0.150 for 

Model 2 and 0.131 for the Standard GLM analysis across 1507 intersected voxels, with 

Model 2 performing significantly better than the Standard GLM analysis (t(19) = 0.427, p=.

006). When both DNF models were compared against each other, intersection R2 values 

across 1615 intersected voxels were not significantly different, but Model 2 performed 

quantitatively better than Model 1 (Model 1 = 0.148 and Model 2 = 0.149, t = 0.01, p=0.18). 

In summary, Model 2 significantly outperforms the Standard GLM analysis and 

quantitatively performs better than Model 1. Thus, at the group level analysis, we only 

compared results between Model 2 and the Standard GLM analysis.

9. Model evaluation: Group-level GLMs

9.1 Overview of the approach

The betamaps from the Standard GLM analysis were input into two 2-factor ANOVAs, a 

Load ANOVA and a Proportion ANOVA (run using 3dMVM). The Load ANOVA consisted 

of Type and Load as factors and the Proportion ANOVA consisted of Type and Proportion as 

factors. The main effect and interaction maps from both sets of ANOVAs were thresholded 

and clustered based on family-wise corrections obtained from 3dClustSim (α = .05). The 

main effect of Type from the Proportion and Load ANOVAs were pooled together and called 

the ‘Type main effect’ image. The ‘Other effects’ image consisted of the pooled effects from 

the Load main effect, Proportion main effect, Load × Type interaction, and Proportion × 

Type interaction.

The DNF-based GLM (Model 2 only) also yielded betamaps for each of the ten regressors. 

These betamaps were input into an ANOVA with regressor as the only factor. The main 

effect of regressor obtained from this ANOVA was corrected for family wise errors using 

3dClustSim as described above. A one-sample t-test was conducted within the spatial 

constraints of this clustered main effect image to ascertain the contribution of each regressor 

to the main effect. These t-test results for each regressor were corrected for family wise 

errors again, identifying which model components were significant predictors for each 

voxel. At this point, we collapsed effects across trial type for each regressor. For instance, 

voxels that showed an effect of the wm field for Go trials and/or for Nogo trials were pooled 

together as wm areas. Consequently, the final image consisted of voxels that showed unique 

and combined contributions from five fields in the DNF model -- fAtn, con, wm, go node 

and nogo node. This map was intersected with the Type effect and Other Effects maps from 

the Standard GLM analysis to establish whether the two GLM analyses identified similar 

brain regions and whether effects in each cluster were comparable.

It is important to note that the DNF-based approach not only identifies where the brain 

responded in a way predicted by the model, but also which function(s) operates within that 

brain region. Thus, in the section that follows, we examine the functional networks identified 
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by the DNF model and then compare the spatial overlap between the DNF-based GLM and 

the Standard GLM analysis.

9.2 Group-level Results

Figure 12 shows those DNF model predictors that produced statistically significant clusters 

within the brain regions showing a main effect of component. Overall, the DNF-based GLM 

revealed patterns of activation consistent with the model-based predictions in cortical and 

sub-cortical networks of the brain that included the cerebellum, putamen, insula, caudate, 

supplementary motor area (SMA), as well as parts of the occipital cortex and the cingulate 

cortex.

Unique contributions from the wm field recruited the largest numbers of regions (accounting 

for 1738 voxels). Critically, key parts of the insular-thalamic-putamen network were 

assigned to a working memory function, consistent with claims by Hampshire and 

colleagues (Erika-Florence et al., 2014) that working memory and attention processes may 

underlie response selection. Clusters that showed combined effects from more than one 

component accounted for 965 voxels. Importantly, all of these voxels included a common 

wm component. Looking at the model predictions from Figure 10B, two patterns likely 

explain the predominance of the wm field predictions: (1) there is a reduction in wm 

activation as Load was increased, and (2) there is a larger modulation of wm activation 

across the Proportion manipulation on Go trials relative to Nogo trials. As discussed in 

Wijeakumar et al. (2015), both patterns were pervasive in the fMRI data.

The DNF-based GLM approach also identified regions that laid outside of the network 

obtained from the Standard GLM analyses approach. The wm field recruited parts of the left 

fusiform gyrus, left cuneus and left superior temporal gyrus. The lingual gyrus and fusiform 

gyrus also reflected neural predictions of a combination of the wm, go, and nogo fields. This 

is consistent with previous findings suggesting that the lingual gyrus plays a role in visual 

memory as well as visual classification decisions (Mechelli, Humphreys, Mayall, Olson, & 

Price, 2000). Our results also assign the same functional role to the fusiform gyrus which is 

functionally connected to the lingual gyrus and plays a central role in visual processing and 

visual comparison (Mechelli et al., 2000). Another result is the recruitment of parts of the 

left middle frontal gyrus (not shown) by the wm field and a combination of the wm field and 

go and nogo nodes (Johnson, Hollingworth, & Luck, 2008; Johnson, Spencer, Luck, & 

Schöner, 2009; Simmering, Peterson, Darling, & Spencer, 2008). The wm field plays a very 

important role of maintaining memory traces in the DNF model of VWM in adulthood and 

development. Furthermore, the middle frontal gyrus has been implicated to be involved in 

maintenance of goals and abstract representations during VWM processing (Aoki et al., 

2011; Barbey, Koenigs, & Grafman, 2013; Haxby, Petit, Ungerleider, & Courtney, 2000; 

Jonides et al., 1998; Munk et al., 2002; Pessoa, Gutierrez, Bandettini, & Ungerleider, 2002; 

Pessoa & Ungerleider, 2004).

The next question we examined was how these results from the DNF-based GLM 

overlapped with results from the Standard GLM analysis. Table 1 shows voxel counts for 

common and unique effects between these GLM results. Figure 13 shows the spatial 

distribution of these clusters for the unique and common effects. The Type main effect from 
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the Standard GLM analysis overlapped with 534 voxels that were also significant in the 

DNF-based GLM (Figure 13; yellow). In addition, the ‘Other effects’ from the Standard 

GLM analysis overlapped with 116 voxels that were also significant in the DNF-based GLM 

(shown in brown in Figure 13). We focus on these overlapping effects below because they 

provide a way to evaluate our model-based fMRI results relative to findings discussed in 

Wijeakumar et al. (2015).

Tables 2 and 3 show clusters that overlapped between the DNF-based GLM and the Type 

main effect and Other effects respectively. For each overlapping cluster, we identify the 

fields that were significant in the DNF-based GLM.

Critically, there was overlap between the areas recruited by the wm field and the Type main 

effect in parts of the insular-thalamic-putamen network. As noted above, this is consistent 

with claims by Hampshire and colleagues that working memory plays a central role in 

response selection via activation of anterior insular and frontal operculum network (Erika-

Florence et al., 2014; Hampshire & Sharp, 2015). Overlap between combinations of the wm 

field and other components and the Type main effect was also observed in parts of the 

cerebellum and SMA. It is interesting that activation elicited by the DNF components 

seemed more localized as compared to the activation from the Type main effect (see yellow 

regions embedded in red regions in Figure 13). This is an encouraging sign for future work, 

suggesting that the DNF model might identify functional networks that are more precisely 

localized than what is typically revealed by Standard GLM analyses.

The Other effects activation maps contained the effects of Proportion and Load and 

interactions of these two manipulations with Type of trial. Once again, the greatest degree of 

overlap was with the wm field, including portions of the cerebellar regions and also the 

insula and putamen. In our previous work, this insular network has been implicated in 

detecting salient or infrequent events (Wijeakumar et al., 2015). In the model, the wm field 

is responsible for associating and retrieving the appropriate SR mappings to both frequent or 

non-salient and as well as infrequent, salient events. As noted above, the wm field showed 

two key effects that were pervasive in the Standard GLM analysis results: a reduction in 

activation over Load and a larger modulation of wm activation across the Proportion 

manipulation on Go trials relative to Nogo trials. This likely explains the overlap between 

predictions from the wm field and the Other effects.

10. General Discussion

The objective of the current paper was to formalize an integrative cognitive neuroscience 

approach using DFT. To this effect, we adopted a tutorial-style approach wherein we first 

introduced DFT and its applications to readers who might be less familiar with this 

modeling approach. Then, we used data from a response selection paradigm as an exemplar 

case study to explain the steps and rationale involved in building DNF models that could 

capture behavioral and neural data and the challenges in bridging brain and behavior using 

these methods. The central goal of this approach was to generate hemodynamic predictions 

from DNF models and evaluate these predictions at the individual and group levels using 

GLM by making comparisons to Standard GLM analyses.
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Two DNF models captured behavioral data from the task reasonably well; however, only one 

of the DNF models outperformed the Standard GLM analysis when comparing adjusted R2 

values within the same regions of the brain. Interestingly, this model architecture was 

developed by tuning the first model parameters to capture competitive neural interactions 

first and then simultaneously capturing behavioral data as well. This suggests that iterative 

modeling using this approach might be most effective. Model 2 was then advanced to the 

group level analyses to look at spatial distributions of DNF components and how these 

distributions overlapped with effects observed in the Standard GLM analysis from our 

previous work.

The DNF model engaged a large cortico-sub-cortical network that included parts of the 

cerebellum, SMA, insula, putamen, thalamus, caudate and parts of the occipital cortex. In 

particular, unique contributions from the wm field accounted most of spatial distributions. 

The rest of the contributions were from a combination of effects between the wm field and 

other components in the DNF model. This finding is in line with Hampshire and colleagues 

who argue that response selection and inhibition is a property of spatially distributed 

functional networks that support a general class of working memory and attentional 

processes (Erika-Florence et al., 2014).

These spatial distributions also overlapped with effects from the Standard GLM analysis. 

Findings from the Cisek lab might provide some evidence that are in line with our findings 

on the recruitment of a host of cortical and sub-cortical regions by the wm field that 

overlapped with areas showing a difference between Go and Nogo responses in the Standard 

GLM analysis (Cisek, 2012). These authors presented evidence that action selection emerges 

through a distributed consensus across many levels of representation, which in the current 

case would represent multiple SR mappings. According to this theory, cortical and 

subcortical regions compete through inhibitory interactions when individuals are faced with 

multiple potential actions. So, it is possible that the BOLD signal reduction reported in our 

previous work is related to the inhibitory competition between the Go and Nogo responses.

The wm field also engaged regions in the occipital cortex, an insular ‘salience’ network, and 

the cerebellum. Collectively taken, we suggest that wm field is involved in processing visual 

information from the stimuli, to associating and retrieving the appropriate SR mappings to 

both frequent or non-salient and as well as salient events, before activating the motor 

planning and execution centers of the brain. These findings show a departure of our DNF 

model from typical integrative modeling approaches, as emphasized by Turner and 

colleagues (Turner et al., 2016). As these researchers underline, integrative models require a 

strong commitment to both the underlying cognitive process and where this process is 

executed in the brain. The DNF model does not fall into this category. The DNF model does 

show a strong commitment to specifying the cognitive and neural processes that underlie the 

behaviors in questions; however, our approach remains open to where in the brain these 

neural dynamics live. This is an important observation – remember, neurons do not always 

act like modules. Neurons can switch their allegiance, thus coding for multiple dimensions. 

So allowing for flexibility in the integrative modeling approach may be beneficial when 

mapping theories to cognitive processes in the brain. In the next section, we critically 
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evaluate this modeling approach with an eye towards future efforts to optimize model 

performance and further DFT applications.

10.1 Evaluating the model-based approach

This tutorial has meticulously walked through explaining the background to DFT, previous 

applications, the rationale for developing DNF models, construction of the components of 

the fields of DNF models, and comparing quantitative fits to the behavioral and neural data 

to Standard GLM analyses. This raised several issues we summarize here in our efforts to 

formalize an integrative cognitive neuroscience approach.

Choosing parameters for DNF models—We obtained reasonable behavioral fits for 

both DNF models using parameters grounded by previous work (Erlhagen & Schöner, 2002) 

and our experience with learning dynamics. That said, it is possible that different sets of 

parameters could provide similar quantitative behavioral fits. Future work will be needed to 

explore a broader range of parameters, asking two key questions: (1) are there parameters 

that provide a better fit to the behavioral and neural data, and (2) do we see the same 

qualitative behavioral and neural outcomes from the model across a range of parameters, 

without dramatic violations of the behavioral and neural patterns. The former question 

examines the goodness-of-fit of the model; the latter question probes the generality of the 

model. We think an iterative approach to model exploration would be most fruitful here, 

stressing the important constraints gained by modeling two data sets simultaneously from a 

single neural process model.

Constraining the model—Despite not testing a multitude of parameters, there are still 

many points in this modeling approach where constraints have been placed. To begin, the 

architecture was heavily constrained by using components that have a history in explaining 

working memory processes (Johnson, Spencer, & Schöner, 2008; Johnson et al., 2009; 

Simmering & Spencer, 2007). This was done to place emphasis on the generalization of 

these components across different executive functions. Next, we constrained the model to 

account for both behavioral and neural data -- the key strength of adopting an integrative 

cognitive neuroscience approach. Concretely, constraints here come from the direct mapping 

of neural activation patterns in the model to LFPs to simulated BOLD data. Finally, in future 

work, constraints can also be applied when mapping from one model to the next with a goal 

to integrate across DNF architectures.

Model Complexity—When contrasted with other cognitive models, DNF models seem 

rather complex. They are composed of several fields and parameters that require fine-tuning 

to generate good fits to both behavioral and neural data. However, this added level of 

complexity is to be expected if one tries to bridge non-linear patterns of brain activity and 

macroscopic behavioral responses. We contend that bridging brain and behavior requires 

models that take into account how neural systems actually work. DFT does this by faithfully 

capturing many known properties of neural population dynamics and how neural populations 

are recurrently connected across multiple cortical fields to give rise to complex behaviors 

(Bastian, Riehle, Erlhagen, & Schöner, 1998; Bastian et al., 2003; Erlhagen et al., 1999).
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That said, it is also important to note that DFT does not consider other known aspects of 

neural function such as the details of neurotransmitter action, the biophysical properties of 

individual neurons, and so on (Garagnani, Wennekers, & Pulvermüller, 2008; Markram et 

al., 2015). In this sense, DFT provides a limited view of neural function. To the extent that 

these details matter, even more complex biophysical models will be required if we want to 

bridge brain and behavior. Our claim, however, is that many of these low-level biophysical 

details are not necessary when capturing fMRI data because fMRI provides on a low-pass 

filter on neural activity. Future work will be needed to evaluate this conjecture. Critically, 

however, the approach described here facilitates that work by providing a formal method to 

test whether neural population dynamics are sufficient to capture the details inherent in 

fMRI.

Exploratory versus confirmatory modeling approaches—Turner et al. argue that 

integrative models are confirmatory by nature because fits to brain networks and behavioral 

patterns are constrained. We agree with this outlook (Turner et al., 2016). However, in the 

current case study, there is also an exploratory component. For instance, one of our central 

questions here was exploratory in nature: can components from previous working memory 

models capture brain and behavioral patterns in response selection? Once we have a model 

that does this, we can move into the confirmatory phase. A refined approach at this stage 

would be to design conditions in the task that de-correlate the fields of the DNF model. For 

instance, if we find that decreasing the proportion of go trials resulted in different LFP 

patterns in the wm field as compared to the go node, then a range of proportion of trials can 

be tested to determine the point at which collinearity between those two regressors would be 

at the lowest, whilst still preserving the integrity of the DNF model. Further, one could test 

the efficiency of multiple design matrices constructed from such regressors. After this 

confirmatory phase, one could optimally test the model across a range of scenarios. Indeed, 

the ideal scenario is one in which the confirmatory phase enables contrasts with other 

theories that make different predictions for both brain and behavior.

We note, however, that doing this requires having comparable theoretical approaches such as 

two integrative cognitive neuroscience models. At present, this is difficult given that there 

are relatively few integrative approaches (but see, Buss et al., 2013). One alternative is to 

contrast two different models from the same theoretical framework. We did a variant of this 

in the current study, contrasting Model 1 with Model 2. A more conceptually intriguing 

variant of this approach would be to contrast two different dynamic field architectures 

(rather than testing the same architecture under different parameter settings). When 

contrasted at the levels of both brain and behavior, this might enable one to eliminate 

candidate models based on the fit to data.

Difficulty of implementation—Developing a dynamic field model and fitting the model 

to data is a complex enterprise. However, the recent book from the DFT group unpacks this 

complexity, providing the background to DFT including the underlying rationale. The book 

also offers multiple examples of implemented models that can help foster the development 

of new models. Further, the COSIVINA simulation environment allows researchers to build 

entire DF models using a few lines of code making implementation easy. We note that we 
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have added a neuroimaging toolbox to this framework; thus, creating the LFPs described 

herein is quite easy (see www.dynamicfieldtheory.org/software/).

Uncovering the ‘ground truth’ amongst models—An important issue to address in 

future work would be the nature of spatial neural patterns in the cortex that are revealed by 

the DNF-based approach relative to Standard GLM analyses. Most critically, when the two 

approaches disagree, which approach reveals the ‘ground truth’? One interesting avenue to 

explore this question would be to carefully introduce different types of synthetic data into an 

fMRI dataset. For instance, one could effectively insert neural patterns consistent with the 

DNF model, inconsistent with the model, or unbiased to either approach. One could then use 

Standard GLM analysis and DNF approaches to fish out these activation patterns. In this 

case, one knows the ‘ground truth’ and it is easier to evaluate which method outperforms the 

other. Then one could explore the overlap (or lack thereof) across spatial distributions 

between approaches to better understand the discrepancies.

Although future work in this direction will be needed, we note that compared to Standard 

GLM analyses, DNF models are grounded in a formal theory that specifies how neural 

populations dynamics give rise to behavioral patterns. In this sense, the fact that the DNF-

based GLM reported here outperformed the Standard GLM analysis on key quantitative 

metrics is important. Nevertheless, we recognize that there is often an inherent mistrust with 

formal models and empirically-oriented researchers will likely gravitate toward Standard 

GLM analyses to provide the ‘ground truth’. This is certainly a reasonable approach until the 

DNF-based integrative cognitive neuroscience approach proves its worth across multiple 

projects.
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Appendix A

A.1. Dynamic Field (DNF) Model for Go/Nogo Paradigm

The dynamic field (DNF) model for the Go/Nogo paradigm consists of 7 coupled neuronal 

sub-networks as illustrated in Figure 2: the visual field (vis); spatial attention field (sAtn); 
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feature attention (fAtn); contrast field (con); working memory (wm); and the “decision 

system” consisting of two nodes (go and Nogo). The DNF Model 1 is therefore defined by a 

system of five integral-differential equations (A.1) – (A.5) and two ordinary differential 

equations (A.6) – (A.7), as listed below.

Each equation is described by a sum of several components. The first three terms correspond 

to the local field interactions, while local noise is modeled by the function η. All terms that 

depend on two distinct indices are associated with long-range, inter-field coupling. Applied 

stimulus, when appropriate, is given by function s. Excitatory coupling takes positive values, 

while inhibitory coupling is negative. The functional topography assumes local excitation 

and lateral inhibition, and it is modeled by a difference of two Gaussians resulting in a 

Mexican-hat connectivity. The dot in u̇ represents the derivative of neuronal activity u with 

respect to time t. Detailed definitions of each coupling term are included in Sections A.2–A.

4, and the set of parameters used in the simulation of this DNF model are listed in Tables A.

2.1, A.3.1 and A.4.1.

We start by describing the equation for the visual field. Besides local neuronal population 

interactions, the visual field receives excitatory connections from the spatial attention and 

the feature attention fields via convolutions cvis,s,Atn * gsAtn(usAtn) and cvis,f,Atn * 

gsAtn(ufAtn). It is also subject to external stimulus svis(x,y).

(A.1)

The spatial attention field receives two excitatory inputs: projections csAtn,vis * gsAtn(uvis) 

from the visual field, and a sub-threshold bump activity ssAtn(x). The latter is centered at the 

position of stimulus presentation and it simulates the response of the network during the 

fixation stage of the task.

(A.2)

The feature attention field receives excitatory inputs from the visual, contrast and working 

memory fields:

(A.3)
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The contrast field receives feedforward excitatory connections from the visual and feature 

attention fields; inhibitory connections from the working memory field; and excitatory 

feedback from the nogo node. To account for learning during the pre-task instruction step, a 

sub-threshold input scon(y) with activity bumps localized at the Nogo colors is also included.

(A.4)

Similarly, the working memory field receives feed-forward excitatory connections from the 

visual and feature attention fields; inhibitory connections from the contrast field; and 

excitatory feedback from the go node. In addition, we include a sub-threshold input swm(y) 

of activity bumps localized at the Go colors which simulates learning during the pre-task 

instruction step,

(A.5)

The go and nogo nodes are coupled by mutual inhibition. In addition, feed-forward 

excitation is projected from the working memory field to the go node, and from the contrast 

field to the nogo node respectively.

(A.6)

(A.7)

A.2. Local Field Interactions

All parameters associated with local interactions in the DNF model above are listed in Table 

A.2.1.

Wijeakumar et al. Page 36

J Math Psychol. Author manuscript; available in PMC 2017 November 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The Gaussian interaction kernel that determines the spread of activation inside a given field 

to neighboring units (see parameters σj,E and σj,I in Table A.2.1) with strengths determined 

by the amplitude parameters aj,E, aj,I and aj,global is defined by

(A.8)

Here the variable z = x or z = y spans either the spatial dimension (x ∈ S) or the feature 

(color) dimension (y ∈ F), while the index j ∈ {sAtn, fAtn, con, wm} corresponds to the 

neural field spatial attention, feature attention, contrast field or working memory, 

respectively. The gain output function g normalizes the field activation, and is assumed to be 

the sigmoidal

(A.9)

with threshold set to zero and steepness parameter β. Consequently, activation levels lower 

than the threshold contribute relatively little to neural interactions, while positive activation 

levels (higher than the threshold 0) contribute strongly to neural interactions.

Each neural network is subject to spatially correlated noise ηj(z,t) defined as the convolution 

between a Gaussian kernel and white noise ξj(z,t)

(A.10)

Note that the variable ξj(z,t) takes random values from a normal distribution with zero mean 

and unit standard deviation (0,1) but has its strength scaled with .

Similar definitions are given for the visual field (j = vis) which spans two coordinates, the 

spatial and color representations. In this case, the convolution cvis * gvis(uvis) and the noise 

ηvis are two-dimensional functions so the Gaussian interaction kernel and the spatially 

correlated noise are defined by

(A.11)

and
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(A.12)

On the other hand, the go and nogo nodes with index j ∈ {go, nogo} are assumed to have 

global connectivity. Then their local field interactions are simply the product

(A.13)

between the gain function and constant aj. The noise function is defined by

(A.14)

A.3. Long Range (Inter-Network) Coupling

The coupling between two distinct fields of the neural network is defined by a Gaussian 

kernel as well. Thus, if field k receives input from field j then the connectivity function is the 

convolution ck,j(·) * gj(uj(·,t)) with kernel

(A.15)

In particular, if the coupling is a projection of the visual field (j = vis) into either of the fields 

spatial attention, feature attention, contrast or working memory (k), then the convolution is a 

double-integral over the two-dimensional set, S×F. The Gaussian kernel depends, however, 

only on one variable (for example, x) so the integration over the other variable (y) ultimately 

reduces to a summation of the output gain along the secondary dimension y.

If the coupling is a projection of the working memory (or contrast field) into the go (or nogo 
node), then the kernel of the convolution function reduces to a constant,

(A.16)

In addition, if the coupling is between the go and nogo nodes then the convolution is simply 

the product ck,j × gj(uj(t)) and, again, ck,j = ak,j.

Table A.3.1 summarizes all parameter values associated with long range coupling in the 

DNF model.
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A.4. Stimulus Functions

All parameters associated with stimuli in the DNF model appear in Table A.4.1. Stimuli sj to 

field j are modeled by normalized Gaussian inputs centered at particular position Zj,s in the 

neural field, and with spread parameter σj,s and amplitude aj,s. In particular, stimuli applied 

to the spatial attention, contrast and working memory fields induce local sub-threshold 

bump(s) of activity in the absence of the external stimulus svis(x,y).

(A.17)

The sub-threshold activity bump in the spatial attention field is assumed to form during the 

fixation stage and prior to application of the Go/Nogo stimulus svis(x,y). Similarly, sub-

threshold activity bumps in the contrast and working memory fields are assumed to form 

during the instruction stage when the subject learns the Go and Nogo colors, and again prior 

to application of the external stimulus svis(x,y). For example, Load 4 requires learning of 

two Go colors and other two Nogo colors. Therefore, during the numerical simulation time, 

two sub-threshold activity bumps centered at the Go colors are placed in the working 

memory field, and two sub-threshold activity bumps centered at the Nogo colors are placed 

in the contrast field.

Table A.2.1

Local field interactions: parameter values used in the simulation of the DNF model. See also 

Eqs. (A.1)–(A.5) and (A.8)–(A.14). Differences in parameter values between Model 2 
(shown in the table) and Model 1 are highlighted in red and should be read as follows: 

Model 1 does not include any “condition of satisfaction” so, for it, last column in the table 

should be ignored. In addition, in Model 1, the amplitude aj of all-to-all coupling for go and 

nogo nodes is fixed to aGo = 1 and aNoGo = 3 (see columns 8 and 9 in the table).

Symbol Meaning Parameter values for particular neural field j

Visual 
Field j 
= vis

Spatial 
Attention 
j = sAtn

Feature 
Attention 
j = fAtn

Contrast 
Field j = 

con

Working 
Memory 
j = wm

Go 
j = 
go

NoGo j 
= nogo

Cond. 
of 

Satis. 
j = 

CoS

τe Timescale 20 20 20 20 20 20 20 20

hj Neuronal resting level −5 −5 −5 −5 −5 −5 −5 −5

aj,E Amplitude of lateral 
excitation

0.44 0.64 0.80 1.20 1.20
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Symbol Meaning Parameter values for particular neural field j

Visual 
Field j 
= vis

Spatial 
Attention 
j = sAtn

Feature 
Attention 
j = fAtn

Contrast 
Field j = 

con

Working 
Memory 
j = wm

Go 
j = 
go

NoGo j 
= nogo

Cond. 
of 

Satis. 
j = 

CoS

aj,I Amplitude of lateral 
inhibition

−0.12 0 0 −0.32 −0.32

σj,E Spread of lateral excitation 5 5 5 5 5

σj.I Spread of lateral inhibition 10 10 10 10 10

aj, global Amplitude of global 
inhibition

−0.002 −1 −1 0 0

aj Amplitude all-to-all coupling 2, 
1 
or 
3*

2,3 or 1* 2

βj Steepness of the gain 
function

2 2 4 2 2 1 1 1

aj,noise Amplitude of correlated 
noise

0.40 0.40 1.60 1.60 1.60 1 1

σj,noise Spread of noise 1 1 1 1 1

x,x′ ∈ S Field size forspatial 
dimension S

101 101

y,y′ ∈ F Field size forfeature (color) 
dimension F

204 204 204 204

*
First value in Load 2/4/6, Second value in prop 25, Third value in Prop 75 (Model 2)

Table A.3.1

Long range (inter-network) coupling: parameter values used in the simulation of the DNF 

model. For all existing connections j to k where it makes sense, the spread of activation takes 

the value σk,j = 5. See also Eqs. (A.6)–(A.7) and (A.15)–(A.16). Differences in parameter 

values between Model 2 (shown in the table) and Model 1 are highlighted in red and 

should be read as follows: Model 1 does not include any “condition of satisfaction” so, for it, 

last row and last column in the table should be ignored. In addition, in Model 1, the bi-

directional coupling between wm and con is acon,wm = awm,con = −0.56 and the bi-directional 

coupling between con and Nogo is acon,nogo = anogo,con = 1.

Svmbol/Meaning Neural Fields

Input layer, j

vis sAtn fAtn con wm go nogo CoS

ak,j

Amplitude of 
the coupling 
from field j 
into field k

Output Layer k

vis 0.24 0.08

sAtn 0.16

fAtn 0.32 0.16 0 16

con 0 16 0.16 −0.60 0.27 −10

wm 0 16 0.16 −0.60 0.27 −10

go 0.28 −6

nogo 0.28 −6

CoS 4 4

*
Width/spread of all field → field connections is 5, except inhibitory wm ↔ con connections have width 60.
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Table A.4.1

Stimulus functions: parameter values used in the simulation of the DNF model. See also 

Eqs. (A.1), (A.2), (A.4), (A.5) and (A.17).

Condition Neural Field j Stimulus strength aj,s Spread of 
stimulation 

σj.s

Spatial 
coordinate(s) 
at the center 

of stimulus xj.s

Feature (color) 
coordinate(s) at 

the center of 
stimulus yj,s

Load 2 vis 5.4 3 51 Either of 18 or 52

sAtn 3 3 51

con 1.97 3 52

wm 1.97 3 18

Load 4 vis 5.4 3 51 Either of 18, 52, 
86 or 120

sAtn 3 3 51

con 1.87 3 52 and 120

wm 1.87 3 18 and 86

Load 6 vis 5.4 3 51 Either of 18, 52, 
86, 120, 154 or 

188

sAtn 3 3 51

con 1.78 3 52 and 120 and 
188

wm 1.78 3 18 and 86 and 154

Load 4 
proportion 
25/75 Go/
NoGo

vis 5.4 3 51 Either of 18, 52, 
86 or 120

sAtn 3 3 51

con 1.90 3 52 and 120

wm 1.84 3 18 and 86

Load 4 
proportion 
75/25 Go/
NoGo

vis 5.4 3 51 Either of 18, 52, 
86 or 120

sAtn 3 3 51

con 1.84 3 52 and 120

wm 1.90 3 18 and 86
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Figure 1. 
Experimental design for the GnG task.
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Figure 2. 
Architecture of the GnG DNF model. Seven sub-networks are included: (i) the visual field, 

vis; (ii) the spatial attention field, sAtn; (iii) the feature attention, fAtn; (iv) the contrast 

field, con; (v) the working memory field; wm; (vi) the go and (vii) nogo nodes. The neural 

fields are coupled by uni- or bi- directional excitatory (green) or inhibitory (red) 

connections. Within each field, the activation variable u(x,t) at a given time instance t = t̃ is 

plotted in blue. Field output g(u(x,t)) at t = f is in red. The range [−20,20] (horizontal axis 

for fAtn, con, wm), or [−15,15], [−15,30] (vertical axis for sAtn, go, Nogo) show values 

taken by activations and field outputs. Feature (color) and space dimensions have a span of 

204 units (vertical axes in the lower panels) and 101 units (horizontal axes in upper and 

lower right panels) respectively.
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Figure 3. 
Network state of the DNF model at time instance t̃ approximately 500 ms after stimulus 

onset, during: (A) Go task and (B) Nogo task (only vis, fAtn, con, wm are shown). Time 

evolution of the output of go (in green) and Nogo (in red; left panel) nodes is also shown. 

Time t̃ is indicated by the black arrow. Simulations used parameters from Appendix A (see 

Model 1 and Load 2 condition).
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Figure 4. 
(A–B) Mean reaction times computed for the DNF model (Model 1 shown in light grey and 

Model 2 shown in dark grey) and behavioral data (shown in black) for the manipulation of 

the (A) Load and (B) Proportion. (C–D) Mean standard deviations of reaction times across 

simulations for the (Model 1 shown in light grey and Model 2 shown in dark grey) and 

behavioral data (shown in black) for the manipulation of (C) Load and (D) Proportion.
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Figure 5. 
DNF-model-based LFPs computed for two fields in Model 2: feature attention (fAtn; in 

blue) and go node (green). Different fields drive different response patterns. They are 

computed under the following conditions: (A) Three repetitions (1500ms long each) of Load 

4, Go trials, and (B) Sequence of four trials at Load 4 with order Go-Nogo-Go-Nogo. The 

variance between the repetitions is a consequence of the stochastic nature of the model.
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Figure 6. 
Canonical predicted LFPs computed for two fields in Model 2: feature attention (fAtn; in 

blue) and go node (green). Different fields drive different response patterns. They are 

computed under the following conditions: (left; first 1500 ms) Load 4, Go trials, and (right, 

last 1500 ms) Load 4, Nogo trials.
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Figure 7. 
Excerpted long-form LFP templates computed for two fields in Model 2: fAtn (blue) and go 

node (green). Depicted is an experimental block of four trials at Load 4, presented to a 

particular subject in the ordered sequence Go-Nogo-Go-Nogo.
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Figure 8. 
Excerpted BOLD predictions computed for two fields in Model 2: fAtn (blue) and go node 

(green). Same starting time point as in Figure 7 was used. Depicted is a sequence of seven 

trials at Load 4 with order Go-Nogo-Go-Nogo-Go-Nogo-Nogo.
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Figure 9. 
Excerpted normalized and downsampled BOLD predictions computed for two fields in 

Model 2: fAtn (blue) and go node (green). Circles indicate the 2-second resolution used to 

match the fMRI TR. The time range is the same as in Figure 8.
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Figure 10. 
Testing DNF model predictions with GLM (numerical results using Model 2): (A) Average 

HDR and LFP for Go (blue/cyan) and Nogo (green/red) Load 4 trials for the fAtn field and 

go node. (B) Predictions for five components of DNF model (fAtn, con, wm, go, nogo) 

across Load and Proportion manipulations; bars show signal change. (C) DNF regressors of 

a single subject and a sampling of the nogo node’s time course (at right).
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Figure 11. 
Excerpts from the 10-regressor design matrices for one subject from the three GLMs from 

the project. The excerpts are taken from part of the Load 6 and Load 4 experimental blocks 

for the given subject. Note that differences exist in the model regressors between 

components, but they are difficult to appreciate at this scale/resolution.
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Figure 12. 
Functional maps generated by DNF model. Colored regions represent cortical areas where a 

main effect of component was present.
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Figure 13. 
Overlap between DNF and the Standard GLM analysiss.
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Table 1

Voxel count of unique and common effects between the DNF-based GLM and Standard GLM analysis 

activation maps.

Voxel Count

Type Main Effect only 2610

Other Effects only 414

DNF Components only 2053

DNF Components and Type Main Effects 494

DNF Components and Other Effects 97
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