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Abstract

Background and Aims—Chronic alcohol use is associated with lower gray matter volume, and 

we recently reported that alcohol use showed negative associations with widespread gray matter 

(GM) volume even among young adults. The current study aimed to test the strength of 

association between (1) alcohol use and GM volume; (2) alcohol use and white matter (WM) 

integrity; (3) cannabis use and GM volume; and (4) cannabis use and WM integrity among adults 

and adolescents.

Design and Setting—General linear models within large pooled cross-sectional samples of 

adolescents and adults who had participated in studies collecting substance use and neuroimaging 

data in the southwestern United States.

Participants—The current analysis included adults ages 18–55 years (N=853) and adolescents 

ages 14–18 years (N=439) with a range of alcohol and cannabis use.

Measurements—The dependent variable was GM volume or WM integrity, with key predictors 

of alcohol use (AUDIT score) and cannabis use (past 30-day use).

Findings—Alcohol use showed large clusters of negative associations (ηp
2=.028 to .145, p<.001) 

with GM volume among adults, and to a lesser extent (one cluster; ηp
2=.070, p<.05) among 

adolescents. Large clusters showed significant associations (ηp
2=.050 to .124, p<.001) of higher 

alcohol use with poorer WM integrity, whereas adolescents showed no significant associations 

between alcohol use and WM. No associations were observed between structural measures and 

past 30-day cannabis use in adults or adolescents.

Conclusions—Alcohol use severity is associated with widespread lower gray matter volume and 

white matter integrity in adults, and with lower gray matter volume in adolescents.
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Introduction

Neuroimaging studies provide strong evidence of deleterious effects of chronic alcohol use 

on brain structure in adults and adolescents [1–2]. Chronic alcohol consumption is 

associated with lower gray matter (GM) volume globally [3–5] and in specific cortical 

structures [6–7]. Results of our recent large-scale study support a negative correlation 

between alcohol use severity and global GM volume in adults as young as 18 years [8]. 

Studies among adolescents suggest regional reductions in frontal [9–11], temporal and 

parietal [10], and cerebellar volume [12], or differences localized to specific structures such 

as the hippocampus [13]. Recent longitudinal research has reflected that even minor or 

moderate alcohol use may have teratogenic effects [14]; and further, that initiation of regular 

drinking in late adolescence dose-dependently disrupts GM development [15–16]. These 

findings support potential alcohol-associated GM reductions in widely distributed brain 

areas among adults and adolescents.

Similarly, widespread regional associations are found between alcohol and white matter 

(WM) measures in adults, although findings are less consistent among adolescents. Reduced 

WM integrity has been demonstrated in adult alcohol users compared to age-matched low or 

non-drinkers [1, 17–18] in frontal and temporal tracts, cortico-striatal tracts, and corpus 

callosum [18–21]. Among adolescents, some studies suggest reduced WM integrity in 

drinkers in long-range tracts spanning posterior to frontal regions [14, 22–23], while others 

have suggested small areas of increased WM integrity [24]. However, it remains unclear 

whether areas of positive association reflect premorbid risk or a causal association with 

alcohol use [24–25].

In contrast with the neuroimaging literature on alcohol consumption, studies present 

inconsistent recreational or chronic cannabis use associations with structural brain measures 

[26]. Much of the extant research employed region of interest analyses, and contradictory 

results can be found in orbitofrontal cortex, hippocampus, and amygdala [27–31]. In some 

cases, cannabis-using and non-cannabis-using groups differed on alcohol use [31]. Studies 

of WM integrity and cannabis use are likewise inconsistent. Where deficits are reported, 

their locations vary [32–34]. Adolescent literature on the relationship between GM or WM 

and cannabis use is sparse, partly due to frequent use of alcohol and cannabis in this age 

group [35–36]. Researchers therefore tend to include control groups who either use alcohol 

alone or are substance-naïve [25, 37–39]. Results suggest that combined cannabis- and 

alcohol-using adolescents exhibit GM and WM differences compared to alcohol-only and 

substance-naïve controls [25, 37–39], but the regions of difference vary among studies, and 

generally do not match adult findings. While these studies often employ sizable samples, it 

remains difficult to distinguish relative impacts of alcohol and cannabis in group-based 

analyses, and when considered overall, cannabis findings in GM average to a null effect 

[40].

We aimed to test the strength of association between (1) alcohol use and GM volume; (2) 

alcohol use and WM integrity; (3) cannabis use and GM volume; and (4) cannabis use and 

WM integrity among adults and adolescents. We examined general linear models (GLM) in 

GM and WM that included terms for alcohol and cannabis use, with follow up cannabis 
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models comprising participants reporting weekly or greater cannabis use. Based on our 

previous work [8], we hypothesized that negative associations between alcohol use and GM 

would be observed in adults throughout frontal and parietal regions and cerebellum, and 

similar but less widespread associations would be observed in adolescents. We also expected 

that alcohol use would show widespread negative association with WM integrity among 

adults, and to a lesser extent among adolescents. Finally, based on previous work [40], we 

expected that no significant associations between GM or WM and cannabis use would 

emerge in adults or adolescents.

Methods

Design

The current study was cross-sectional and pooled data from existing studies that recruited 

substance-using adults, particularly alcohol, and collected neuroimaging data [41–42]. Data 

for adolescents were pooled from two existing neuroimaging studies among high-risk 

adolescents who were recruited to participate in a sexual health intervention [44–46]. 

Importantly, subsamples within the pooled dataset have been reported upon previously [8, 

42], and were included here to maximize sample sizes and include a wide range of substance 

use. Key predictors of alcohol and cannabis use were treated as continuous measures, and 

participants with a wide range of use were included to test strengths of associations in GLM.

Sample and Procedures

Adult Participants—Participants were recruited from a southwestern metropolitan region 

of the United States through print and radio advertisements and online media. Exclusionary 

criteria across studies included traumatic brain injury with loss of consciousness >5 minutes, 

history of bipolar disorder or a psychotic disorder, or MRI contraindications (e.g., a positive 

pregnancy test, irremovable metal implants or piercings, claustrophobia). Subjects were 

asked to stop drinking 24 hours and abstain from smoking cigarettes 2 hours before 

scanning, and had to demonstrate a blood alcohol concentration of 0 prior to participation. 

Written informed consent, approved by the participating Institutional Review Board, was 

obtained from all participants.

Adolescent Participants—Research assistants recruited adolescents from juvenile 

justice partner programs to participate in interventions targeting risky health behaviors. All 

participants were assented and parental/legal guardian consent was obtained prior to study 

participation. Participants were between the ages of 14–18 years, and had no MRI 

contraindications. The participating Institutional Review Board approved the study and a 

federal certificate of confidentiality was obtained. Participants completed behavioral 

measures and a single neuroimaging session prior to participation in interventions.

Final Samples—Data were included for all available participants with complete measures 

needed for analyses. Among adult samples, 914 participants had anatomical neuroimaging 

data, and 904 participants had complete data for main variables across questionnaires. 

Following exclusions during initial processing, the final sample of adult participants for 

VBM models was N=853. Fewer participants completed diffusion tensor imaging (DTI), 
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such that 850 participants had completed both a DTI scan and questionnaire data. Following 

exclusions during initial processing (n=37), N=813 adults were included in DTI models.

Among adolescent samples, 526 participants completed an anatomical scan, but n=66 were 

missing substance use data. An additional n=21 participants were excluded during initial 

processing, for a total sample of N=439 adolescents in VBM models. Similar to adults, 

fewer participants had available diffusion tensor imaging (n=406), and n=3 participants were 

excluded during initial processing for a total sample size of N=403 in DTI models.

Measures

In addition to demographic information, participants responded to substance use 

questionnaires. All participants in both the adult and the adolescent studies completed the 

Alcohol Use Disorders Identification Test (AUDIT) [47–48] to assess alcohol use severity. 

Cannabis use was derived from the Time-line Follow-back (TLFB) [49], and was computed 

as days of use out of the past 30 days for both adult and adolescent samples. Both AUDIT 

score and days of cannabis use were subjected to square root transformation (i.e., due to 

positive skew) prior to inclusion in statistical analyses.

Image Acquisition

MRI was performed on a 3T Siemens Trio (Erlangen, Germany) whole body scanner with a 

12-channel radio frequency coil. A high-resolution T1-weighted structural image was 

acquired with a 5-echo multi-echo MPRAGE sequence with TE=1.64, 3.50, 5.36, 7.22, and 

9.08 ms, TR=2.53 s, TI=1.20 s, flip angle=7°, NEX=1, slice thickness=1 mm, 192 sagittal 

slices, FOV=256×256 mm, resolution = 256×256×176, voxel size=1×1×1 mm, and pixel 

bandwidth=650 Hz.

DTI scans were acquired using a single-shot spin-echo echo planar imaging (EPI) sequence 

with a twice-refocused balanced echo to reduce eddy current distortions. Sequence 

parameters were: FOV=256×256 mm, 128×128 matrix, slice thickness=2 mm, NEX=1, 

TE=84 ms, and TR=9000 ms. A 12-channel radiofrequency (RF) head-phased array coil was 

used, with GRAPPA (X2), 30 gradient directions, and b=800 s/mm2.

Voxel-Based Morphometry

Voxel-based morphometry (VBM) analyses were performed using FMRIB’s Software 

Library’s (FSL; v5.0.1) [50] FSLVBM analysis pipeline following standard automated 

processing [51–52], as in other publications [40, 53]. This pipeline uses modulation to 

incorporate the volumetric changes during normalization in the analysis for optimized VBM. 

The raw T1-weighted images were brain-extracted (i.e., removal of non-brain tissue and 

skull) using the FSL default BET brain extraction process. The resulting GM images were 

aligned to Montreal Neurological Institute (MNI) standard space using the affine registration 

tool FMRIB’s Linear Image Registration Tool (FLIRT), followed by nonlinear registration 

using FMRIB’s Nonlinear Image Registration Tool (FNIRT). Automated calculations for 

exclusion due to motion were used to accommodate the large sample sizes of pooled data. 

For T1 data, participants were excluded if the correlation between the spatially normalized 

image and the MNI template was <.93. Remaining images were then averaged into a study-
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specific template (separate templates for adolescents and adults). Native GM images were 

then non-linearly re-registered to this template using FNIRT. The registered partial volume 

images were then modulated by dividing the Jacobian of the warp field. The modulated 

segmented images were then smoothed with an isotropic Gaussian kernel with a sigma of 3, 

yielding full-width half-maximum (FWHM) 3×2.3 mm = 6.9 mm.

Tract-Based Spatial Statistics

For DTI data, motion exclusion for a single volume occurred if motion was greater than 

4mm of root mean square displacement, and a participant was not considered for further 

analysis if more than 10% of gradient directions were dropped [42]. DTI data were 

preprocessed using FSL’s Diffusion Toolbox [54]. Data were corrected for eddy current 

distortion and then all images were registered to a b=0 s/mm2 image using 6 degrees of 

freedom affine transformation using FSL’s linear registration algorithm (FLIRT). Diffusion 

tensor and index maps were calculated using Dtifit.

Fractional anisotropy (FA) and mean, axial, and radial diffusivity (MD, AD, and RD, 

respectively) values were obtained using FSL Tract-Based Spatial Statistics (TBSS) [55]. A 

nonlinear registration algorithm (FNIRT) aligned each FA image to Montreal Neurological 

Institute (MNI) standard space. All transformed FA images were merged into a single 4D 

image file, and a mean image was created and then skeletonized (separate skeletons for 

adolescents and adults). Finally, a threshold value of 0.2 was applied to the mean skeleton 

image, and all aligned FA data were projected onto the mean skeleton for use in voxelwise 

statistics. The nonlinear warps and projection vectors from the FA processing were then 

applied to AD, RD, and MD images to obtain a single skeletonized 4D image for each 

diffusivity index.

Data Analyses

GLMs conducted using FSL’s Randomise program [56] evaluated relationships between 

brain structure (i.e., dependent variables of GM volume or WM integrity) and key predictors 

of AUDIT score and TLFB-derived cannabis use days (e.g., in order to examine each 

predictor while controlling for the other), with additional covariates for age, sex, and study 

cohort, as well as intracranial volume (ICV) in VBM models. Multiple comparison 

correction used voxelwise thresholding applied through FSL’s Randomise permutation-

based non-parametric testing with Monte Carlo simulations. A total of 5000 simulations 

were run for each permutation test, and threshold-free cluster enhancement [57] was used to 

identify clusters of significant association. Clusters are reported of sizes ≥1000 contiguous 

voxels in VBM models and ≥200 contiguous voxels in DTI models. In order to obtain partial 

eta squared values for each cluster, average values were extracted for inclusion in univariate 

GLMs in SPSS [58]. In order to further test possible associations between brain structure 

and cannabis use, the samples were restricted to participants who reported using cannabis at 

least once per week. Analyses were repeated but excluding the AUDIT predictor.
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Results

Sample Characteristics

Sample characteristics are presented in Table 1. Based on AUDIT score, adults reported a 

mild to moderate degree of alcohol problems on average, while adolescents reported alcohol 

use below clinical thresholds on average. Across substance use measures (alcohol use in last 

6 months, and cannabis use in last 30 days), 487 adult participants reported using only 

alcohol, 5 reported using only cannabis, and 28 reported using neither substance. Similarly, 

among adolescents, 113 participants reported using only alcohol, 35 reported using only 

cannabis, and 60 reported using neither substance. AUDIT score and TLFB cannabis use 

days were not correlated in adults [r(851)=.04], but were significantly correlated in 

adolescents [r(437)=.30, p<.01].

Alcohol Use Models

Consistent with previous results, AUDIT scores showed large clusters of negative 

association (ηp
2=.028–.145, p<.001) with GM volume among adults above and beyond 

cannabis use and covariates (see Table 2, Figure 1). Peak effects were observed in 

cerebellum, insula, caudate, and putamen. Among adolescents, negative association (ηp
2=.

070, p<.05) between GM and AUDIT score was observed in one large cluster, with peak 

effects in the cuneus, precuneus, and posterior cingulate gyrus (see Table 2, Figure 2).

A similar pattern was observed among WM indices in adults, such that large clusters showed 

significant associations (ηp
2=.050–.124, p<.001) of higher AUDIT scores with poorer WM 

integrity (i.e., negative association with FA and positive association with diffusivity; see 

Table 3 and Figures 3–4). In particular, higher AUDIT scores were associated with large 

clusters (i.e., up to 37% of the entire WM skeleton in a single cluster) of greater diffusivity 

(MD, AD, and RD) with peak effects observed in inferior, superior, and inferior fronto-

occipital fasciculi. Among adolescents, no associations were observed between WM and 

AUDIT score.

Cannabis Use Models

In adults and adolescents, no associations were observed between cannabis use and GM 

above and beyond other predictors, in either the full samples or when limited to weekly or 

greater users and excluding the AUDIT predictor. Further, among adults and adolescents, no 

associations were observed between cannabis use and WM indices above and beyond other 

model predictors, in either the full sample or restricted sample of weekly or greater cannabis 

users and excluding the AUDIT predictor.

Discussion

The current study sought to expand previous work on associations between alcohol use and 

GM structure [8] by further examining WM microstructure; and by examining these 

associations among adults and adolescents. Given the inconclusive prior evidence regarding 

the possible relationship between cannabis use and brain structure [26], we also tested 

associations between structural measures and recent cannabis use. Our previous results 
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suggested widespread negative associations of medium effect size between alcohol use and 

GM throughout the brain and cerebellum, above and beyond important confounding 

variables such as age. Negative associations between alcohol use and GM volume were 

observed even among the youngest age group of the sample (ages 18 to 25 years) [8]. The 

current study supported previous VBM results among adults, such that large clusters of 

negative association between problem drinking and GM volume (e.g., accounting for 

approximately 15% of variance) were observed. Further, a large cluster of similar effect as 

adults was observed among adolescents. Additionally, we examined similar models among 

adults and adolescents for WM. Similar to VBM results, very large clusters showed negative 

association between alcohol use severity and WM integrity among adults (e.g., accounting 

for approximately 12% of variance), although no WM associations were observed in 

adolescents. No significant associations were observed between cannabis use and structural 

measures across any sample, even when limited to participants reporting weekly or greater 

use and removing the influence of the alcohol predictor.

Negative associations between GM volume and alcohol use were expected among the adult 

sample, and are consistent with existing literature [4, 59–60]. In adolescents, the cluster of 

negative association was larger than expected, but did not survive increasing the significance 

threshold above p<.05. While no causal conclusions may be drawn, adolescents showed 

lower cuneus, precuneus, and posterior cingulate volume associated with alcohol use, with 

about 4 years of drinking on average. These regions are more commonly reported among 

adult alcohol use disorder (AUD) patients [6], but overall this finding is comparable to 

results from a large consortium project, in which adolescent drinkers showed smaller cortical 

volumes and thickness than nondrinkers [61]. Several longitudinal projects have been able to 

extend these findings to examine predictors of future alcohol use or structural changes over 

time, and results may suggest a dose-dependent relationship between alcohol use and 

changes in GM emerging even during adolescence. Future binge drinking was predicted by 

lower GM volume in superior frontal gyrus but greater GM volume in middle and precentral 

gyrus [63]. Further, in another longitudinal study [16], adolescents who progressed from 

negligible to heavy drinking over 3 years had smaller baseline volumes of anterior cingulate 

and inferior frontal gyrus, and reduced temporal gyri and subcortical volumes at follow up 

compared to non-drinkers. These volume reductions appeared to be dose dependent, in that 

they positively correlated with lifetime alcohol use [16]. Another study found that 

individuals who started drinking regularly at approximately 18 years of age exhibited over-

thinning of the middle frontal gyrus, an area key to executive processing, compared to non-

drinkers at follow up after 2 years [15]. Taken together, these results suggest that initiation of 

regular alcohol use in adolescence may disrupt typical GM development [15–16], which has 

been associated with important functional changes in risk taking and reward responding [62–

63].

Adult alcohol users consistently show lower WM volume and integrity compared to age-

matched low- or non-drinkers [1, 17–18, 59], which exceed normal age-related decline [61]. 

These impairments have been found in widespread brain regions, including frontal and 

temporal tracts, corticostriatal tracts, and corpus callosum [18–21]. The current results 

suggest a pervasive association between reduced WM integrity and alcohol use. Consistent 

with these results, a meta-analysis concluded that AUDs are associated with significant WM 
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deficits with a small-to-moderate effect size [65]. Among adolescent populations, however, 

associations between WM measures and alcohol use are less conclusive. Greater number of 

lifetime drinks was associated with smaller subcortical WM volume [61], but another study 

using the same sample found no differences in WM integrity measures between adolescent 

drinkers and non- or low-drinkers [66]. Several cross-sectional studies of adolescent alcohol 

use and WM measures have found lower FA in corpus callosum, corona radiata, inferior and 

superior longitudinal fasciculi [14, 22–23, 67]. Other studies found greater FA among 

adolescents with AUDs compared to their non-drinking peers in limbic tracts even when 

matching groups for age [24], or that a higher number of lifetime drinking occasions was 

associated with increased superior longitudinal fasciculus integrity in adolescents [67]. 

Similar to these findings, the results of the current study did not indicate any regions of 

negative association between WM integrity and heavy alcohol use, and longitudinal studies 

will be important for clarifying alcohol effects on brain structural development.

The current study did not observe any associations of past 30-day cannabis use with GM or 

WM among adults or adolescents beyond other model predictors. This is consistent with our 

previous work suggesting that regionally specific differences between cannabis users and 

non-users are often inconsistent across studies and that some of the observed associations 

may actually be related to comorbid alcohol use [40]. The present results are also consistent 

with a recent study from a large consortium project that found no relationship between 

cannabis use and cortical GM (N=466) [68] and a large twin study (N=483) that found the 

association between cannabis use and GM volumes was explained by genetics rather than 

cannabis use [69]. While the analyses reported herein are consistent with the effects reported 

in studies with large sample sizes, future longitudinal studies will be important to clarify the 

effects of cannabis and alcohol use on brain structure.

Several limitations should be considered when interpreting the current results. Participants 

were pooled from several studies to maximize sample size, and the current study used a 

similar model for VBM and AUDIT score as a previous paper [8]. The AUDIT was selected 

as the primary measure of alcohol use due to its inclusion across adult and adolescent 

studies, and because it provides an estimate of behavior for a slightly longer period than 

other available measures (i.e., 30 days via the TLFB). The AUDIT offers high reliability and 

validity in terms of measuring risk of alcohol problems [47], but does not provide a detailed 

history. This could lead to an underestimation of long-term alcohol effects, which is 

particularly relevant for older participants. Similarly, the TLFB is a limited measure of 

cannabis use, and lacks detailed information on history of cannabis use and quantity of 

consumption. It was selected as the only available common metric of cannabis consumption 

across adult and adolescent samples, and the average use of the current samples was 

relatively low. We attempted to address this limitation by examining potential associations 

within weekly or greater users and without the influence of an alcohol use predictor (i.e., as 

in many other studies in the existing literature), but results are still limited to recent use. 

Future prospective studies should carefully select measures of cannabis use representing 

history, frequency, and quantity of use. Finally, collecting comparable measures of substance 

use could enhance interpretability of findings.

Thayer et al. Page 8

Addiction. Author manuscript; available in PMC 2018 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In addition, the present analyses do not account for psychopathology (other than excluding 

participants with history of bipolar disorder or psychosis) or use of substances other than 

alcohol and cannabis. Studies have demonstrated GM reductions with tobacco smoking [70–

71], which has also been associated with exacerbated age-related brain atrophy [72–73]. 

Future studies primarily focusing on tobacco and cannabis use should control for alcohol use 

history [40]. Further, these data are cross-sectional, which prevents consideration of the 

contributions of preexisting conditions or causality. Although we do not believe the 

adolescents in this study represent a fundamentally different population than other 

adolescents given their justice involvement, the question of causality is particularly relevant 

for adolescents, and ongoing large consortium projects will inform whether any observed 

associations are likely premorbid or result from heavy alcohol use [74].

The current results extend previous findings on the significant, widespread associations 

between alcohol use severity and alterations in brain structure. These results were expected 

for GM [8], but the global nature of associations between alcohol use and WM integrity was 

surprising; even at an increased significance threshold, approximately 30% of voxels in the 

WM skeleton showed negative association between AUDIT score and WM integrity. WM 

damage in adult hazardous alcohol users may be partially reversed with extended abstinence 

[75–77], but the current results underline the importance of increasing efforts for early and 

effective treatments for AUDs. Further, identification of specific brain regions impacted by 

alcohol use throughout the lifespan may aid in the development of more efficacious 

pharmacological treatment options.
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Figure 1. 
Negative association (p < .001) between AUDIT score and gray matter volume among adults 

(N = 853). Peak voxels within each cluster are marked with red crosshairs (see Table 2; 

slices from top left: x = 38, 50, 62, 84, 110, and 130).
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Figure 2. 
Negative association (p < .05) between AUDIT score and gray matter volume among 

adolescents (N = 439). Peak voxel is marked with red crosshair (see Table 2; slices from top 

left: z = 74, 84, 94, and 104).
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Figure 3. 
Negative association (p < .001) between AUDIT score and white matter integrity among 

adults (N = 813). Mean diffusivity clusters (blue) overlaid on white matter skeleton (green); 

peak voxels marked with red crosshairs (see Table 3; slices from top left: x = 48, 65, 67, 

107, 121, and 125).
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Figure 4. 
Overlay of gray matter (light blue) and white matter mean diffusivity (dark blue, with mean 

white matter skeleton in green) associations with AUDIT score among adults (p < .001; 

slices from top left: z = 50, 60, 70, 80, 90, 100, 110, 120, and 130).
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Table 1

Sample Characteristics.

Adults Adolescents

Whole Sample
Weekly or Greater

Cannabis Users Whole Sample
Weekly or Greater

Cannabis Users

N 853 191 439 201

Ethnicity

  Caucasian 474 (56%) 111 (58%) 66 (15%) 29 (14%)

  Latino 136 (16%) 19 (10%) 285 (65%) 133 (66%)

  Native American 60 (7%) 13 (7%) 32 (7%) 17 (8%)

  African American 25 (3%) 7 (4%) 28 (6%) 11 (5%)

  Asian/Pacific Islander 10 (1%) 0 (0%) 6 (1%) 3 (1%)

  Mixed 120 (14%) 30 (16%) 21 (5%) 8 (4%)

  Unknown/Declined 28 (3%) 11 (6%) 1 (<1%) 0 (0%)

Females:Males 326:527 (62% Male) 64:131 (69% Male) 134:305 (69% Male) 52:149 (74% Male)

Age 31.64 (9.64) 28.81 (8.44) 15.97 (1.17) 16.00 (1.08)

AUDIT Total Score 13.14 (8.47) 14.00 (7.79) 6.39 (6.67) 8.48 (6.65)

TLFB Alcohol Drinking Days 12.78 (8.95) 13.81 (8.89) 2.17 (3.78) 3.39 (4.48)

TLFB Cannabis Smoking Days 4.33 (8.66) 18.19 (9.24) 9.69 (11.94) 20.60 (9.51)

AUDIT: Alcohol Use Disorders Identification Test; TLFB: Timeline Follow-Back (30 days).

Percentages approximate due to rounding error.
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