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Local Genetic Correlation Gives Insights
into the Shared Genetic Architecture
of Complex Traits

Huwenbo Shi,1,* Nicholas Mancuso,2 Sarah Spendlove,4 and Bogdan Pasaniuc1,2,3

Although genetic correlations between complex traits provide valuable insights into epidemiological and etiological studies, a precise

quantification of which genomic regions disproportionately contribute to the genome-wide correlation is currently lacking. Here, we

introduce r-HESS, a technique to quantify the correlation between pairs of traits due to genetic variation at a small region in the genome.

Our approach requires GWAS summary data only and makes no distributional assumption on the causal variant effect sizes while

accounting for linkage disequilibrium (LD) and overlapping GWAS samples. We analyzed large-scale GWAS summary data across 36

quantitative traits, and identified 25 genomic regions that contribute significantly to the genetic correlation among these traits. Notably,

we find 6 genomic regions that contribute to the genetic correlation of 10 pairs of traits that show negligible genome-wide correlation,

further showcasing the power of local genetic correlation analyses. Finally, we report the distribution of local genetic correlations across

the genome for 55 pairs of traits that show putative causal relationships.
Introduction

Genomic regions that harbor variants contributing to mul-

tiple traits provide valuable insights into the underlying

biological mechanisms with which genetic variation im-

pacts complex traits.1–7 Therefore, both de novo discovery

of such regions as well as the quantification of the correla-

tion in effect sizes at known shared regions are important

to epidemiological and etiological studies. For example, ge-

netic variants associated with multiple traits in genome-

wide associations studies (GWASs) can be used as instru-

mental variables in Mendelian randomization analyses to

suggest causal relationships among complex traits.7–10 Un-

fortunately, many risk variants are left undetected by exist-

ing GWASs due to a combination of high polygenicity (i.e.,

many variants of small effects) and sample sizes which

limits the power to detect genetic variants of small ef-

fect.11 To improve accuracy at sub-GWAS significant re-

gions, recent works1,2 proposed to utilize the posterior

probability of two traits sharing a causal variant at a given

risk region to detect genetic overlap. Although powerful in

detecting shared genetic risk variants, the posterior proba-

bility does not convey the direction or magnitude of the

genetic effect at the overlapped genomic regions.1,2 Alter-

native approaches have used genetic correlation (i.e., cor-

relation of the genetic components of two traits), that

summarizes both direction and magnitude of effects, to

gain insights into genetic overlap of complex traits.12–14

Traditional methods to estimate genetic correlation are

hindered by the lack of availability of large-scale individ-

ual-level data due to privacy concerns as they require indi-

vidual genotype and trait measurements on the same set of
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individuals.12,14,15 More recent works have shown that

GWAS summary data (i.e., effect sizes and standard errors

at all variants typed in the study) are sufficient to estimate

genome-wide genetic correlation under a polygenic trait

architecture by aggregating information across all typed

variants in the study.16,17

In this work, we investigate the correlation between

traits due to typed genetic variants from a small region in

the genome (i.e., local genetic correlation) as means to

identify genomic regions that contribute disproportion-

ately to the genetic sharing between traits. We introduce

methods that estimate the local genetic correlation from

GWAS summary data while allowing for overlapping

GWAS samples and linkage disequilibrium (LD) among

variants. We partition the genome-wide genetic sharing

across approximately independent LD regions of 1.6 Mb

in width on average.18 To allow for a broad range of causal

effect sizes, our approach makes no distributional assump-

tions on the causal effect sizes by treating them as fixed

quantities. Our method can be viewed as a natural exten-

sion to pairs of traits of recently proposed methods that

quantify local SNP heritability from GWAS summary data

under a fixed-effect model.19

We illustrate the utility of local genetic correlation

through an analysis of GWAS summary data of 36 quantita-

tive complex traits. We identify 25 genomic regions that

show significant local genetic correlation across 27 pairs

of traits; e.g., region chr2: 21M–23M that harbors APOB

(MIM: 107730) shows a significant genetic correlation

for the pair of traits high-density lipoprotein (HDL) and

triglycerides (TG). Notably, 6 (out of the 25) regions

show significant local genetic correlation although the
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Figure 1. Examples of Two Different Dis-
tributions of Local Genetic Covariances
that Result in the Same Total Genetic
Covariance
Covariances shown at the top of each bar;
total genetic covariance (rg;total ¼ 0.05). In
the left example, the total genetic covari-
ance is a summation of a large positive
local genetic covariance at region 1 and
two smaller negative local genetic covari-
ances at region 2 and region 3 (e.g., regions
2 and 3 impact traits through a different
pathway than region 1). In the right
example, the total genetic covariance is a
summation of small positive local genetic
covariances (e.g., all three regions impact
both traits through the same pathway).
Positive local genetic covariance can be in-
terpreted as a locus driving a pathway that
regulates two traits in the same direction,
and negative local genetic covariance the
opposite direction.
genome-wide genetic correlation is not significantly

different from0; e.g., region chr6: 134M–136M shows a sig-

nificant in local genetic correlation for mean cell volume

(MCV) and platelet count (PLT) although the genome-

wide genetic correlation MCV-PLT is negligible (0.02, 95%

CI [�0.04, 0.07]). This shows that these traits are correlated

at a local level (e.g., due to pleiotropy and/or shared path-

ways) that are not reflected in the genome-wide correlation

(due to balancing effect of other loci; e.g., positive correla-

tion partially canceling a negative correlation, see Figure 1).

Regions with significant local genetic correlations can also

be used to identify new risk loci. For example, although

the region chr8: 9.2M–9.6M shows a significant local ge-

netic correlation between HDL and LDL, it does not harbor

GWAS variant for HDL and LDL. Finally, we explore puta-

tive causal relations between all the 36 studied traits using

a recently proposed approach2 and report 55 instances of

pairs with putative causality. For most of these pairs, we

show that the local genetic correlation ascertained for

GWAS signals specific to each trait is consistentwith the pu-

tative causal relation while providing a directly interpret-

able quantity of the magnitude of effect.
Material and Methods

Overview of Methods
Genetic covariance measures the similarity between a pair of

traits driven by genetic variations and enjoys wide applications

in understanding relations between complex traits.13,20,21 Ge-

netic covariance is traditionally estimated as a single measure

across the entire genome to capture the genome-wide contribu-

tion of genetic variations to the correlation between phenotypes.

Here, we introduce local genetic covariance, the similarity be-

tween pairs of traits driven by genetic variations localized at a

specific region in the genome (e.g., one LD block), as a principled
738 The American Journal of Human Genetics 101, 737–751, Novem
way to partition the shared genetic risk between traits. For

example, a high genome-wide genetic covariance can be driven

by one genomic region containing a shared risk variant or by a

large number of regions, each with a small contribution reflecting

putative causal relations (where all risk variants for one trait are

risk variants for the other trait) and/or pleiotropy (risk variants

contributing to both traits through shared pathways) (see

Figure 1). Whereas genetic covariance quantifies the magnitude

of co-variation of the genetic components of two traits in their

original scale, genetic correlation quantifies co-variation in a

standardized scale and is therefore comparable across pairs of

traits and/or genomic regions for which magnitude of effect

size may differ. As a motivating example, consider two traits

modeled by f ¼ x1b1 þ x2b2 þ e and j ¼ x1g1 þ x2g2 þ d, where

x1 and x2 represent two independent SNPs. In the special case

where g is proportional to b by a factor of a, i.e., g ¼ ab, the

genetic covariance between the two traits is aðb21 þ b22Þ and is

governed by a. However, the genetic correlation between the

two traits is always 1 for positive a (�1 for negative a) regardless

of the magnitude of a.

We start by defining local genetic covariance under the fixed ef-

fect model, making a distinction between genetic covariance and

covariance of the causal effects, b and g (see below). We then

describe methods to estimate genetic covariance followed by an

approach to standardize the local genetic covariance to estimate

local genetic correlation.

Local Genetic Covariance under Fixed-Effect Model
Let f ¼ xubþ e and j ¼ xugþ d be two traits measured at an

individual, standardized so that E ½f� ¼ E ½j� ¼ 0 and Var½f� ¼
Var½j� ¼ 1, where b;g˛Rp are the fixed effect size vectors for the

two traits; x˛Rp, the genotype vector of the individual at p SNPs,

standardized so that E ½x� ¼ 0, and Var½x� ¼ V, the LD matrix;

and e; d, random environmental effects independent of x, b, g,

with E ½e� ¼ E ½d� ¼ 0, Var½e� ¼ s2e , Var½d� ¼ s2d , and Cov½e; d� ¼ re.

Under these assumptions, one can decompose the phenotypic

covariance, r, between f and c into a summation of genetic

covariance and environmental covariance, as
ber 2, 2017



Figure 2. Distribution of Simulated Genetic Covariance and
Causal Effect Covariance across 100 LD-Independent Regions
on Chromosome 1 Binned by Average LD between Causal
Variants
The red lines represent the average local genetic covariance in each
bin. For each region, we simulated 2 traits, each with 3 causal var-
iants with effect sizes set to 0.01, and with no shared causal vari-
ants (see Figure S1 for the case where the two traits share causal
variants). Genetic covariance varies with respect to LD whereas
causal effect covariance is always 0 (horizontal dotted line). Since
genetic covariance can be thought as an upper bound of predic-
tion accuracy using causal effects from one trait to another, a
positive genetic covariance indicates that non-zero prediction ac-
curacy could be attained by virtue of LD tagging.
r ¼ Cov½f;j� ¼ E ½fj� � E ½f�E ½j� ¼ E
h
ðxubþ eÞðxugþ dÞu

i
¼ E ½ðxubÞðxugÞ� þ E ½ed� ¼ Cov½xub;xug� þCov½e; d�

¼ buE ½xxu�gþCov½e; d� ¼ buVgþ re;

(Equation 1)

where rg ¼ Cov½xub;xug� ¼ buVg is the genetic covariance be-

tween the two traits (i.e., covariance between the genetic compo-

nents of the two traits, xub and xug), and re the environmental

covariance (i.e., covariance between the environmental effects of

two traits, e and d). Themagnitude and sign of local genetic covari-

ance can be interpreted as the effect and direction of the local ge-

netic component of one trait on that of the other. Thus, given the

true effect size vectors, b, g, and the LD matrix V, one can obtain

rg by plugging in these quantities.
bb
Genetic Covariance versus Covariance of the Causal

Effects
An alternative approach to the covariance of the genetic

components of the traits is to quantify the covariance of

the causal effects (i.e., rg;causal ¼ bug). In the special case where

there is no LD (i.e., V ¼ I, the identity matrix), genetic

covariance and covariance of the causal effects coincide,

rg ¼ buVg ¼ buIg ¼ bug ¼ rg;causal. However, in general genetic

covariance is different from covariance of the causal effects as

function of the LD between the causal variants. More importantly,

high local genetic covariance does not necessarily imply high

covariance of the causal effects. In fact, high genetic covariance

can be attained even when causal variants are different between

the traits. To illustrate the difference, consider an example
The American
involving two SNPs. Let b ¼ ð1;0Þ and g ¼ ð0;1Þ be the causal ef-

fect vectors of the two traits, i.e., the two traits have two distinct

set of causal variants. And let

V ¼
�
1:0 0:9
0:9 1:0

�
be theLDmatrixbetween the SNPs. In this example, the covariance

of the causal effects is rg;causal ¼ bug ¼ 0, whereas the genetic

covariance is rg ¼ buVg ¼ 0:9. Thus, at a region where the causal

variants are distinct for the two traits, covariance of the causal ef-

fects is always zero, whereas genetic covariance may be non-zero

dependingon theLD (see Figure2). The twodefinitionsmeasurege-

netic sharing at different levels of resolution. Local genetic covari-

ance measures sharing at regional level, giving a measure of how

similar the regional genetic components are between the two traits,

and has applications in predicting the regional genetic component

of one trait from that of the other. In contrast, local causal effect

covariance measures sharing at an individual SNP level, giving a

measure of how similar the causal effects are between the two traits.

Consider a scenario where two traits are each driven locally by a

different SNP in the same gene. In this case, the local causal effect

covariance is zero since the two traits shareno causal SNP.However,

the local genetic covariance is non-zero if the two SNPs are in LD,

which induces similarity in the genetic component of the two traits

and is an indication of the gene being shared across the two traits.

Although in this work we focus on genetic covariance, for

completeness we discuss an estimator for covariance of the causal

effects (rg;causal) in Appendix A.
Estimating Local Genetic Covariance from GWAS

Summary Data
In two GWASs involving n1 individuals for trait 1 (f), n2 individ-

uals for trait 2 (c), and ns shared individuals, we assume�
f

fs

�
¼
�
Y
Xs

�
bþ

�
e
es

�
;

�
c
cs

�
¼
�

Z
X0

s

�
gþ

�
d

ds

�
; (Equation 2)

where ðf;fsÞ˛Rn1 and ðc;csÞ˛Rn2 are the standardized trait

values of all individuals in each GWAS; ðY ;XsÞ˛Rn13p and

ðZ;X0
sÞ˛Rn23p, column standardized genotype matrices of all indi-

viduals in each GWAS, where Xs and X0
s represent the genotype

matrices for the same set of individuals and SNPs but standardized

differently in each GWAS; and ðe; esÞ˛Rn1 and ðd; dsÞ˛Rn2 are

environmental effects of all individuals in each GWAS. We

use the subscript s to represent individuals shared by both

GWASs. We further assume that E ½e� ¼ E ½d� ¼ E ½es� ¼ E ½ds� ¼ 0,

Var½e� ¼ Var½es� ¼ s2e I, Var½d� ¼ Var½ds� ¼ s2dI , Cov½e; d� ¼ 0, and

Cov½es; ds� ¼ reI .

In a traditional GWAS, we obtain marginal effect size estimates,bbgwas and bggwas, as

gwas¼
1

n1

�
Yu Xu

s

�" f

fs

#
¼ 1

n1

�
YuY þXu

s Xs

�
bþ 1

n1

�
YueþXu

s es
�

bggwas¼
1

n2

�
Zu X0u

s

�" c

cs

#
¼ 1

n2

�
ZuZ þX0u

s X0
s

�
gþ 1

n2

�
ZudþX 0u

s ds
�
:

(Equation 3)

Assuming individuals in both GWASs are drawn from the same

population with LD matrix V, we have bbgwas � N

�
Vb;

s2e
n1

V

	
,

bggwas � N

�
Vg;

s2d
n2

V

	
. We also find
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Cov
hbbgwas; bggwas

i
¼ E

hbbgwasbgu
gwas

i
� ðVbÞðVgÞu

¼ re

n1n2

E
�
Xu

s X 0
s

� ¼ rens

n1n2

V;
(Equation 4)

where the last equality follows from Isserlis’ theorem.22

Under infinite sample sizes, Var½bbgwas� ¼ Var½bggwas� ¼
Cov½bbgwas; bggwas� ¼ 0, and we have b ¼ V�1bbgwas, g ¼ V�1bggwas.

Thus, local genetic covariance, rg;local, can be computed as

rg;local ¼

bbu

gwasV
�1
�
V
�
V�1bggwas

� ¼ bbu

gwasV
�1bggwas: (Equation 5)

However, when sample sizes are finite, from bilinear form the-

ory,23 the covariance between bbgwas and bggwas creates bias, result-

ing in

E
hbbu

gwasV
�1bggwas

i
¼ buVgþ re

n1n2

trðVÞ ¼ buVgþ p
�
r� rg;local

�
ns

n1n2

:

(Equation 6)

Correcting for bias, we arrive at the unbiased estimator

brg;local ¼
n1n2

bbu

gwasV
�1bggwas � nspr

n1n2 � nsp
: (Equation 7)

For rank-deficient LD matrix V, one replaces V�1 with the

pseudo-inverse (Vy) and pwith q ¼ rankðVÞ, yielding the unbiased
estimator

brg;local ¼
n1n2

bbu

gwasV
yggwas � nsqr

n1n2 � nsq
: (Equation 8)

Thus, in order to obtain an unbiased estimate of genetic covari-

ance between a pair of traits, one needs to know their phenotypic

covariance. When phenotypic covariance is not available, one can

obtain an estimate from genome-wide summary association data

using cross-trait LD Score regression,16

E
�
zf;jzj;j j lj

� ¼ ffiffiffiffiffiffiffiffiffiffi
n1n2

p
rg

p
lj þ rnsffiffiffiffiffiffiffiffiffiffi

n1n2

p ; (Equation 9)

where zf;j and zj;j are the Z-scores of SNP j in the two traits, and lj
the LD score of SNP j. Cross-trait LD Score regression regresses the

product of Z-scores at each SNP against its LD score, lj, and ac-

counts for bias generated by overlapping samples through the

intercept term, rnsffiffiffiffiffiffiffiffi
n1n2

p ,16 from which one can obtain an estimate

of phenotypic covariance, r.

In the special case when bbgwas and bggwas are obtained for

the same trait on the same set of individuals (i.e., bbgwas ¼ bggwas,

n1 ¼ n2 ¼ ns, r ¼ 1), Equation 7 reduces to the local SNP-herita-

bility estimator.19 When ns ¼ 0 (i.e., no shared individuals be-

tween the GWASs), the unbiased estimator is simply brg;local ¼bbu

gwasV
�1bggwas. An interpretation for this simple formula is that

in the absence of sample overlap, the covariance in the noise, e

and d, is 0 and does thus not introduce bias into the estimate of

rg;local.

Following bilinear form theory,23 we can estimate the variance

for brg;local as
Var

�brg;local

� ¼ � n1n2

n1n2 � nsp

	2
"�

prens

n1n2

	2

þ s2
e s

2
dp

n1n2

þ s2
dh

2
gf;local

n2

þ s2
e h

2
gj;local

n1

þ 2
nsrerg;local

n1n2

#
:

(Equation 10)
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For rank deficient LD matrix with rankðVÞ ¼ q, one replaces

p with q in Equation 10.

Accounting for Statistical Noise in LD Estimates
Limited sample size of external reference panels creates statistical

noise in the estimated LD matrix that biases our estimates.

Following our previous work,19 we apply truncated-SVD regulari-

zation24 to remove noise in external reference LD. We note thatbbu

gwasV
ybggwas ¼

Pq
i¼1si ¼

Pq
i¼1

1

wi
ðbbu

gwasuiÞðbgu
gwasuiÞ, where wi and

ui are the eigenvalues and eigenvectors of the LD matrix V and

q ¼ rankðVÞ. We use bsi ¼ 1bwi
ðbbu

gwas
buiÞðbgu

gwas
buiÞ to denote the

counterpart obtained from external reference LD matrix bV . We

show through simulations that the bulk of bbu

gwasV
ybggwas comes

from si where i � q and that sizbsi for i � q, thus justifying

truncated-SVD as an appropriate regularization method when

only external reference LD ( bV ) is available.

Let gðbbgwas; bggwas; kÞ ¼
Pk

i¼1
bsi ¼Pk

i¼1
1bwi

ðbbu

gwas
buiÞðbgu

gwas
buiÞ be the

truncated-SVD regularized estimates for bbu

gwasV
ybggwas, then it can

be shown that

E
h
g

bbgwas; bggwas; k

�i
¼ nsk

�
r� rg

�
n1n2

þ
Xk
i¼1

bwi

�
bu bui

�ðgu buiÞ:

(Equation 11)

Assuming bwi ¼ wi and bui ¼ ui for i � k, Equation 11 is a biased

approximation of rg;local, with bias
nskðr�rg Þ

n1n2
. Correcting for the bias,

we arrive at the estimator

brg;local ¼
n1n2g


bbgwas; bggwas; k
�
� nsrk

n1n2 � nsk
; (Equation 12)

which has variance

Var
�brg;local

� ¼ � n1n2

n1n2 � nsk

	2
"�

krens

n1n2

	2

þ s2
e s

2
dk

n1n2

þ s2
dh

2
gf;local

n2

þ s2
e h

2
gj;local

n1

þ 2
nsrerg;local

n1n2

#
:

(Equation 13)

Extension to Multiple Independent Regions
For genome partitioned into m regions, let

f ¼ xu
1 b1 þ/þ xu

mbm þ e

j ¼ xu
1 g1 þ/þ xu

mgm þ d
(Equation 14)

denote the phenotype measurements of two traits at an individ-

uals, where we assume that SNPs in different pairs of regions are

independent, i.e., E ½xikxil� ¼ 0 for all isj, k˛f1;/; pig, and

l˛f1;/; pjg, where pi and pj are the number of SNPs in region i

and j. Under these assumptions, we decompose the phenotypic

covariance, r, between f and c, into a summation of per-region

genetic covariance and environmental covariance

r¼Cov½f;j�¼E
h�
xu
1 b1 þ/þ xu

mbm þ e
��
xu
1 g1 þ/þ xu

mgm þ d
�ui

¼ E
��
xu
1 b1

��
xu
1 g1

��þ/þ E
��
xu
mbm

��
xu
mgm

��þ E½ed�
¼
Xm
i¼1

Cov
�
xu
i bi;x

u
i gi

�þCov½e; d� ¼
Xm
i¼1

bu
i V igi þ re

;

(Equation 15)
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where rg;local;i ¼ Cov½xu
i bi;x

u
i gi� ¼ bu

i V igi is the local genetic

covariance between the pair of traits attributed to genetic variants

at region i. Following strategies outlined in previous sections, we

arrive at the estimator for genetic covariance at the ith region,

brg;local;i ¼
n1n2g


bbgwas;i; bggwas;i; k
�
� ns



r�

Xm

j¼1;jsi
brg;local;j

�
ki

n1n2 � nski
;

(Equation 16)

which defines a system of linear equation involving m unknown

variables and m equations. Following bilinear form theory, we

obtain variance estimate for brg;local;i as
Var

�brg;local;i

� ¼ � n1n2

n1n2 � nski

	2
"�

kirens

n1n2

	2

þ s2
e s

2
dki

n1n2

þ s2
dh

2
gf;local;i

n2

þs2
e h

2
gj;local;i

n1

þ 2
nsrerg;local;i

n1n2

#

þ
Xm

j¼1;jsi

�
nskj

n1n2 � nski

	2

Var
�brg;local;j

�
;

(Equation 17)

which also defines a system of linear equations with m equations

and m variables. In the special case where there is no sample

overlap (ns ¼ 0), brg;local;i reduces to gðbbgwas; bggwas; kÞ with

Var½brg;local;i� ¼ s2e s
2
d
ki

n1n2
þ s2

d
h2
gf;local;i

n2
þ s2e h

2
gj;local;i

n1
z

s2e s
2
d
ki

n1n2
, i.e., both the local

genetic covariance and its variance can be estimated independent

of all other windows.

When k1 ¼ / ¼ km ¼ k, i.e., all regions use the same number

of eigenvectors in the truncated-SVD regularization, summing

over i on both sides of Equation 16 yields
brg ¼
X
i¼1

brg;local;i ¼
n1n2

n1n2 � nsk

Xm
i¼1

g

bbgwas;i; bggwas;i; k

�
� kns

n1n2 � nsk

Xm
i¼1

 
r�

Xm
j¼1;jsi

brg;local;j

!

¼ n1n2

n1n2 � nsk

Xm
i¼1

g

bbgwas;i; bggwas;i; k

�
� kns

n1n2 � nsk

Xm
i¼1

�
r� brg þ brg;local;i

�
¼ n1n2

n1n2 � nsk

Xm
i¼1

g

bbgwas;i; bggwas;i; k

�
þ knsm� kns

n1n2 � nsk
brg �

knsmr

n1n2 � nsk
:

(Equation 18)
Solving for brg yields

brg ¼
n1n2

Xm

i¼1
g

bbgwas;i; bggwas;i; k

�
� knsmr

n1n2 � knsm
; (Equation 19)

which has variance

Var
�brg

� ¼ � n1n2

n1n2 � knsm

	2Xm
i¼1

Var
h
g

bbgwas;i; bggwas;i; k

�i
:

(Equation 20)

Thus, if k is chosen such that ðn1n2 � knsmÞ is small (i.e., n1n2
n1n2�knsm

large), the estimate of total genetic covariance will have large stan-

dard error. To reduce standard error in the estimates (at the cost of

some bias), we recommend choosing k such that n1n2

n1n2�knsm
is less

than 2. When testing for statistical significance, we assume that
The American
the estimates of local and genome-wide genetic covariance and

correlation follow a normal distribution.

Standardizing Local Genetic Covariance
We estimate the local genetic correlation for the ith region as

br g;local;i ¼ brg;local;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibh2

gf;local;i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibh2

gj;local;i

q ; (Equation 21)

where bh2

gf;local;i and
bh2

gj;local;i denote the local SNP heritability of

trait f and c at the ith region. In some cases, this estimator of local

genetic correlation may yield an estimate with magnitude greater

than 1, and we cap the estimate at �1 or 1. In simulations, we

show that br g;local;i is approximately unbiased when both traits

are heritable at the ith region. In practice, however, the termsbh2

gf;local;i and
bh2

gj;local;i can be close to zero, greatly inflating the stan-

dard error of brg;local;i. Thus, we recommend estimating local genetic

correlation only at regions with significant local SNP heritability.

One can also estimate local genetic correlation at a set of regions.

For example, to estimate genetic correlation at regions indexed by

the index set C, one applies the formula

br g;C ¼
X

i˛C
brg;local;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i˛C
bh2

f;g;local;i

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i˛C
bh2

j;g;local;i

r : (Equation 22)

We estimate standard error of local genetic correlation at a single

region through a parametric bootstrap approach25 and local ge-

netic correlation at a set of regions through jackknife.

Simulation Framework
Starting from half (202 individuals) of the EUR reference panel

from the 1000 Genomes Project,26 we simulated genotype data
for 50,000 individuals at HapMap327 SNPs with minor allele

frequency (MAF) greater than 5% in 100 randomly selected LD-

independent regions defined in Berisa and Pickrell18 on chromo-

some 1 using HAPGEN2.27We used the other half of the EUR refer-

ence panel (203 individuals) to obtain external reference LD

matrices.

We simulated phenotypes from the genotypes according to the

linear model f ¼ Xbþ e and c ¼ Xgþ d, where X is the column-

standardized genotype matrix. We drew the effects of causal SNPs

(bC, gC) from the distribution

N

0BBBB@
�
0
0

�
;

266664
h2
gf

jC j I
rg

jC j I

rg

jC j I
h2
gj

jC j I

377775
1CCCCA; (Equation 23)
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where C is the index set of causal SNPs, and set the effects of all

other SNPs to be zero. We then drew (e, d) from the distribution

N

0@�0
0

�
;

24
1� h2
gf

�
I reI

reI


1� h2

gj

�
I

351A: (Equation 24)

Finally, we simulated GWAS summary statistics using methods

outlined in previous sections. For each b and g drawn from the

normal distribution, we simulated 1,000 sets of summary statistics

by varying e and d and applied r-HESS to estimate genetic covari-

ance and genetic correlation for each set of the simulated sum-

mary statistics.

Empirical Datasets
We obtained GWAS summary data for 36 quantitative complex

traits and diseases from 15 GWAS consortia or institutions (see

Table 1), all of which are based on individuals of European

ancestry and have sample size greater than 20,000. We

used approximately independent genomic regions previously

defined18 to partition the genome and restricted our analyses on

HapMap3 SNPs with minor allele frequency (MAF) greater than

5% in the European population in the 1000 Genomes data.26

We also removed stand-ambiguous SNPs prior to our analyses.

We follow the method previously outlined19 to estimate and re-

inflate lgc and to choose the number of eigenvectors to include

in estimating local genetic covariance and SNP heritability.

Local Genetic Correlation at Regions Ascertained for

GWAS Signals
Recent works leverage the difference in correlations of Z-scores at

genomic regions ascertained for GWAS signals specific to each

trait to prioritize putative causal models between pairs of com-

plex traits.2,3 We evaluated the local genetic correlation at re-

gions harboring GWAS signals specific to each trait across all

298 pairs of traits exhibiting significant genome-wide genetic

correlation. We estimate local genetic correlations only for pairs

of traits for which the number of loci harboring GWAS hits

specific to each trait is greater than 10. The confidence intervals

(1.96 times jackknife standard error on each side) of the ascer-

tained local genetic correlations (brg;local;trait1 and br g;local;trait2) do

not overlap; one of the confidence intervals overlap with 0 and

the other does not.
Results

Local Genetic Correlation Estimation in Simulations

We evaluated the performance of our approach (r-HESS)

through simulations across a wide range of disease archi-

tectures. We included cross-trait LDSC,16 an approach

that assumes a random-effect model, in the comparison

for completeness purposes. When LD is estimated in-sam-

ple, r-HESS provides an unbiased estimate of local genetic

covariance and nearly unbiased estimates of genetic cor-

relation (i.e., genetic covariance divided by the square

root of local SNP heritability, see Material and Methods)

(Figure S2). Next, we quantified the performance in the

more realistic case when in-sample LD is unavailable

and needs to be estimated from external reference panels.

Although both cross-trait LDSC and r-HESS provide accu-
742 The American Journal of Human Genetics 101, 737–751, Novem
rate estimates of genetic correlation, we observe superior

accuracy with higher precision for r-HESS (Figures 3, S4,

S6, and S7). We attribute the lower standard error of

r-HESS to the truncated-SVD regularization of the LD

matrix which effectively reduces the degree of freedom

of the bi-linear form in Equation 7 (Figure S10). Different

genomic regions vary in their total amount of LD and we

observed that the accuracy of genetic correlation estima-

tion decreases with the total amount of regional LD

(Figure S11). This is expected as high LD regions lead to

high rank deficiencies in the LD matrix and small eigen-

values, thus increasing the level of statistical noise in the

estimation. We also evaluated the performance of local

genetic correlation estimation in simulations where we

varied the number of causal variants in each region. Over-

all, we observe that our estimator of genetic covariance

and correlation is not sensitive to the underlying polyge-

nicity (i.e., number of causal SNPs) (Figures 3, S5, S8,

and S9). Finally, we also evaluated the performance of

the estimator when causal variants are all drawn from

DHS regions48 and observed that the performance is not

sensitive to the uneven distribution of causal variants

(Figure S3).

Local Genetic Correlation across 36 Quantitative Traits

We analyzed GWAS summary data from 36 complex traits

to obtain local genetic correlations at 1,703 approximately

LD-independent regions in the genome (�1.6 Mb in width

on average).18 First, as a quality control step, we aggregated

the local estimates into genome-wide estimates of genetic

correlation (see Material and Methods) and compared to

the cross-trait LDSC estimates. Reassuringly, we find a

high degree of consistency with genetic correlations esti-

mated by cross-trait LDSC regression (R ¼ 0.77; Figures 4

and S13). Our estimator provides lower standard errors as

compared to cross-trait LDSC (likely due to the trun-

cated-SVD regularization procedure) and yields consis-

tently lower estimates for pairs of traits from the same con-

sortium where we conservatively assume full sample

overlap (see Discussion). Overall, we identify 298 pairs of

traits with significant genome-wide genetic correlation

(p < 0.05/630). These include previously reported correla-

tions, e.g., body mass index (BMI) and triglyceride (TG), as

well as complex traits that have not been studied before

using genetic correlation, e.g., red blood cell count (RBC)

and fasting insulin (FI) (Figure 4).

Next, we searched for genomic regions that dispropor-

tionately contribute to the genetic correlation of the 36

analyzed traits; we excluded the HLA region due to com-

plex LD patterns. We identify 25 genomic regions that

show both significant local genetic correlation (two-tailed

p < 0.05/1,703) as well as significant local SNP heritability

(one-tailed p < 0.05/1703) (see Table 2, Figures S14–S16).

For example, the estimate of local genetic correlation

between HDL and TG at chr11: 116–117 Mb is �0.82

(95% CI [�0.95, �0.69]), suggesting highly shared

genetic architecture at this region for HDL and TG.
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Table 1. A Summary of the 36 GWAS Summary Datasets Analyzed

Trait Name Abbreviation Consortium
# Gen Corr All
Consortium

# Gen Corr outside
Consortium Approx. Sample Size

Age at menarche28 AM REPROGEN 21 (4) 21 (4) 133K

Body mass index29 BMI GIANT 27 (17) 23 (14) 231K

Height30 HEIGHT GIANT 17 (2) 13 (1) 241K

Hip circumference31 HIP GIANT 23 (14) 19 (10) 144K

Waist circumference31 WC GIANT 26 (18) 22 (15) 153K

Waist-to-hip ratio31 WHR GIANT 27 (19) 23 (16) 143K

Haemoglobin32 HB HAEMGEN 21 (10) 18 (8) 51K

Mean cell haemoglobin32 MCH HAEMGEN 9 (1) 8 (1) 44K

MCH concentration32 MCHC HAEMGEN 6 (4) 2 (1) 47K

Mean cell volume32 MCV HAEMGEN 12 (3) 10 (1) 49K

Packed cell volume32 PCV HAEMGEN 18 (11) 14 (8) 45K

Red blood cell count32 RBC HAEMGEN 20 (10) 17 (8) 46K

Number of platelets33 PLT HAEMGEN 9 (1) 6 (1) 67K

Fasting glucose34 FG MAGIC 19 (9) 16 (8) 46K

Fasting insulin34 FI MAGIC 20 (12) 18 (12) 46K

HBA1C35 HBA1C MAGIC 19 (14) 18 (13) 46K

HOMA-B34 HOMA-B MAGIC 17 (11) 15 (11) 46K

HOMA-IR34 HOMA-IR MAGIC 21 (12) 21 (12) 46K

High-density lipoprotein36 HDL GLGC 23 (12) 21 (11) 96K

Low-density lipoprotein36 LDL GLGC 19 (6) 17 (4) 91K

Total cholesterol36 TC GLGC 18 (3) 15 (1) 96K

Triglycerides36 TG GLGC 26 (14) 23 (11) 92K

Forearm BMD37 FA GEFOS 4 (1) 2 (0) 53K

Femoral neck BMD37 FN GEFOS 4 (2) 2 (0) 53K

Lumbar spine BMD37 LS GEFOS 7 (1) 5 (0) 53K

Education years38 EY SSGAC 26 (5) 24 (4) 294K

Neuroticism39 NEURO SSGAC 5 (2) 3 (0) 171K

Subjective well-being39 SWB SSGAC 4 (1) 2 (0) 298K

Age first birth40 AFB BIOS 23 (5) 23 (5) 251K

Birth weight41 BW EGG 13 (1) 13 (1) 68K

Urinary albumin-to-creatinine ratio42 UACR DCCT-EDIC 11 (1) 11 (1) 53K

Rest heart rate43 HR EPPINGA 14 (0) 14 (0) 265K

Serum urate concentrations44 URATE GUGC 25 (14) 25 (14) 107K

Body fat45 BF Lu et al. 26 (17) 26 (17) 58K

Extra-glomerular filtration rate of creatinin46 CRN CKDGEN 10 (1) 10 (1) 133K

Age at menopause47 MP BCAC 6 (0) 6 (0) 70K

We list the total number of traits with significant non-zero genome-wide genetic correlation (two-tailed p < 0.05/630) and the total number of traits outside the
consortium with significant non-zero genome-wide genetic correlation in the fourth and fifth column, respectively. Number of traits for which the magnitude of
genetic correlation is both significantly non-zero and greater than 0.2 is shown in parentheses.
Indeed, the region chr11: 116M–117M harbors APOA1

(MIM: 107680), which is known to be associated with

multiple lipid traits.36 Interestingly, 4 out of the 25 re-
The American
gions do not contain GWAS-significant SNPs (p < 5 3

10�8) for either one or both traits and can be viewed as

new risk regions for these traits.
Journal of Human Genetics 101, 737–751, November 2, 2017 743



A B

C D

Figure 3. Performance of r-HESS and Cross-trait LDSC using External Reference LD across 100 LD-Independent Regions, with Each
Region Having 1,000 Simulations
Here, each dot represents the mean (more than 100 regions) of the average performance (more than 1,000 simulations per region), with
error bars representing 1.96 times the standard error on both sides. Overall, r-HESS provides approximately unbiased estimates of local
genetic covariance (A) and correlation (B) and is not sensitive to the underlying genetic architectures (covariance in C and correlation in
D). We also observe that r-HESS is less biased, is more consistent, and has smaller standard error than cross-trait LDSC.
Since genetic correlation is an aggregation of local

genetic covariance, for pairs of traits with highly

positive or negative genetic correlation, we expect the

distribution of local genetic covariances to be shifted

toward the positive or negative side (see Figure S17),

whereas for pairs of traits with low genetic correlation,

we expect the distribution of local genetic covariances

to be centered around zero (see Figures 5 and6). Indeed,

pairs of traits with higher genome-wide genetic correla-

tion tend to harbor more loci with significant local

genetic covariance (see Figure S14). For instance,

only one region exhibits significant local genetic

covariance for the pair of traits age at menarche (AM)

and height (rg ¼ 0.13, 95% CI [0.10, 0.13]), whereas

four loci show significant local genetic covariance for

the pair of traits LDL and TG (rg ¼ 0.45, 95% CI

[0.42, 0.49]).
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Local Correlations for Pairs of Traits with Negligible

Genome-wide Correlation

Several pairs of traits show negligible genome-wide genetic

correlation although they share GWAS risk regions. For

example HDL and LDL share several GWAS risk loci36 but

the genome-wide genetic correlation is negligible (�0.05,

95% CI [�0.09, �0.01]).16 The absence of significant

genome-wide genetic correlation between these pairs of

traits can be attributed to either symmetric distribution

of local genetic covariance (positive local genetic covari-

ance cancels out negative local genetic covariance, see

Figure 1) and/or lack of power to declare significance for

genome-wide genetic correlation. Thus, we hypothesize

that at the region-specific level, many loci may manifest

significant local genetic covariance even if the genome-

wide genetic correlation between a pair of traits is not sig-

nificant. Indeed, 11 genomic regions show significant local
ber 2, 2017



Figure 4. Genetic Correlation across the
36 Complex Traits Obtained by r-HESS
and Cross-trait LDSC17

The magnitude of the correlation is repre-
sented by the color and the size of the
square. Among the 630 pairs of traits,
r-HESS (top half) (cross-trait LDSC [bottom
half]) identified 298 (115) pairs showing
significant genetic correlation (marked
with dots).
genetic correlation (two-tailed p < 0.05/1,703) for HDL

and LDL (see Figure 5). Some of these loci, e.g., chr2:

21M–23M, chr11: 116M–117M, and chr19: 44M–46M,

harbor APOB, APOA1, and APOE (MIM: 107741), respec-

tively, which are known to be involved in lipid ge-

netics.36,49,50 Across all pairs of traits with non-significant

genome-wide correlation, we identify 6 regions across

10 pairs of traits with significant local genetic correlation

(two-tailed p < 0.05/1,703) and local SNP heritability

(one-tailed p < 0.05/1,703) (see Table 2, Figure S16). For

example, the region chr6: 134M–136M harbors the

HBS1L (MIM: 612450)32,51 and contributes to local genetic

covariance across many blood traits (MCH, MCV, RBC,

and PLT).

Genetic Correlation Ascertained for GWAS Risk Loci

Assessing the correlation in the effects at genomic regions

ascertained for trait-specific GWAS regions can be used to

prioritize putative causal models between complex traits.

We utilized a recently proposed approach2 to assign

putative causal relation to 55 pairs of traits. Restricting

to 40 of the 55 pairs of traits that contain at least 10 re-

gions with trait-specific GWAS signals (see Material and

Methods), we quantified the local genetic correlation at

genomic regions containing GWAS loci specific to each

trait (see Table S2, Figure 7). Overall, the local genetic cor-

relation is highly consistent with the putative causal rela-

tionships inferred by correlating the top signals at these

loci.2 For example, when considering body mass index

(BMI) and triglyceride levels (TG), the correlation at

BMI-specific regions is significantly greater than TG-spe-
The American Journal of Human Gene
cific loci (br g;local;BM ¼ 0:47 95% CI

[0.37, 0.57] versus brg;local;TG ¼ �0:02

95% [�0.14, 0.10]), indicating that

loci that increase BMI tend to consis-

tently increase TG, whereas loci that

increase TG do not consistently

affect BMI, consistent with the puta-

tive model that BMI causally in-

creases TG (see Figure 6).2,3 We also

observe correlations consistent with

a model in which years of education

(EY) consistently decreases hemoglo-

bin level (HB), LDL, and TG (see

Table S2), in line with previous

conclusions on the effect of educa-
tion on health.52,53 However, we note that education

attainment (or other studied traits) may be confounded

by other factors such as social status and that one

should exercise caution when inferring causality from

genetic data. Finally, we also report pairs of traits in

which the genetic correlation approach attains different

results from bi-directional regression on the top sig-

nals.2 For example, when considering body mass

index (BMI) and age at menarche (AM), the local cor-

relation approach do not yield different estimates

(rg;local;BMI ¼ �0:49 95% CI [�0.63, �0.35] versus

rg;local;AM ¼ �0:47 95% CI [�0.59, �0.35]), whereas the

approach of Joseph et al.2 suggests a putative causal rela-

tion. This discrepancy can be due to different model

assumptions, e.g., single causal variant versus allelic het-

erogeneity, with further investigations needed to assign

causality from these data.
Discussion

We have described r-HESS, a method to estimate local ge-

netic correlation from GWAS summary association data.

Through extensive simulations, we demonstrated that

our method is approximately unbiased and provides

consistent results irrespective of causal architecture. We

analyzed large-scale GWAS summary association data of

36 quantitative traits. Compared with cross-trait LDSC,

our methods identified considerably more pairs of traits

displaying significant genome-wide genetic correlation

likely because of the truncated-SVD regularization of the
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Table 2. Loci that Show Significant Local Genetic Covariance (Two-Tailed p< 0.05/1,703) and Local SNP Heritability (One-Tailed p< 0.05/
1,703) for Both Traits

Trait1 Trait2 Locus h2
g;local;trait1 h2

g;local;trait2 rg;local

AM HEIGHT chr9: 107M–109M 0.15 (0.02) 0.05 (0.01) 0.61 ([0.34,0.87])

BMI HIP chr16: 53M–55M 0.22 (0.02) 0.19 (0.03) 0.99 ([0.76,1.00])

BMI HIP chr18: 57M–59M 0.14 (0.02) 0.13 (0.02) 0.99 ([0.71,1.00])

BMI WC chr16: 53M–55M 0.22 (0.02) 0.21 (0.03) 1.00 ([0.78,1.00])

BMI WC chr18: 57M–59M 0.14 (0.02) 0.13 (0.02) 1.00 ([0.72,1.00])

BW HEIGHT chr12: 65M–67M 0.14 (0.02) 0.23 (0.02) 0.93 ([0.70,1.00])

HDL TG chr2: 21M–23M 0.16 (0.03) 0.22 (0.03) �0.94 ([�1.00, �0.65])

HDL TG chr8: 19M–20M 0.65 (0.04) 0.82 (0.04) �1.00 ([�1.00, �0.91])

HDL TG chr11: 116M–117M 0.40 (0.04) 1.27 (0.06) �0.82 ([�0.95,-0.69])

HDL TG chr15: 58M–59M 1.18 (0.06) 0.18 (0.03) 0.89 ([0.68,1.00])

HEIGHT HIP chr16: 4M–5M 0.06 (0.01) 0.10 (0.02) 0.73 ([0.41,1.00])

HIP WC chr16: 53M–55M 0.19 (0.03) 0.21 (0.03) 0.99 ([0.73,1.00])

HIP WC chr18: 57M–59M 0.13 (0.02) 0.13 (0.02) 1.00 ([0.69,1.00])

LDL TG chr1: 61M–63M 0.14 (0.03) 0.28 (0.03) 0.98 ([0.67,1.00])

LDL TG chr2: 21M–23M 0.84 (0.05) 0.22 (0.03) 0.62 ([0.46,0.78])

LDL TG chr8: 126M–128M 0.16 (0.03) 0.32 (0.04) 0.94 ([0.63,1.00])

LDL TG chr19: 18M–19M 0.18 (0.03) 0.21 (0.03) 0.99 ([0.72,1.00])

PLT RBC chr6: 134M–136M 0.26 (0.05) 0.66 (0.09) �0.99 ([�1.00, �0.69])

HDL HEIGHT chr11: 47M–49M 0.17 (0.02) 0.07 (0.01) 0.61 ([0.42,0.80])

HDL LDL chr2: 21M–23M 0.16 (0.03) 0.84 (0.05) �0.56 ([�0.74, �0.39])

HDL LDL chr8: 9M–9M 0.14 (0.02) 0.12 (0.02) 0.99 ([0.70,1.00])

MCH MCV chr6: 24M–25M 0.49 (0.07) 0.37 (0.06) 0.97 ([0.67,1.00])

MCH MCV chr6: 134M–136M 0.86 (0.09) 0.70 (0.08) 0.98 ([0.76,1.00])

MCH PLT chr6: 134M–136M 0.86 (0.09) 0.26 (0.05) 1.00 ([0.72,1.00])

MCH RBC chr6: 134M–136M 0.86 (0.09) 0.66 (0.09) �0.98 ([�1.00, �0.75])

MCV PLT chr6: 134M–136M 0.70 (0.08) 0.26 (0.05) 1.00 ([0.72,1.00])

MCV RBC chr6: 134M–136M 0.70 (0.08) 0.66 (0.09) �0.98 ([�1.00, �0.74])

MP HEIGHT chr5: 175M–177M 0.31 (0.04) 0.10 (0.01) �0.63 ([�0.82, �0.45])

URATE MCH chr6: 24M–25M 0.13 (0.02) 0.53 (0.07) 0.56 ([0.33,0.79])

URATE MCV chr6: 24M–25M 0.13 (0.02) 0.41 (0.06) 0.66 ([0.39,0.92])

We list pairs of traits for which the genome-wide genetic correlation is significant (two-tailed p < 0.05/630) and negligible in top and bottom half of this table,
respectively. Here, we focus only on the pairs of traits excluding TC (see Table S1 for pairs of traits involving TC). Numbers in parentheses represent standard errors
for local SNP heritability estimates and 95% confidence intervals for local genetic correlation estimates.
LD matrix, which decreases the standard error of the esti-

mates. We identify genomic regions that are significantly

correlated across pairs of traits regardless of the significance

of genome-wide correlation. Finally, we performed bi-

directional analyses over the local genetic correlations to

identify putative causal relationships, and report local ge-

netic correlations at loci harboring GWAS signal specific

to each trait.

We conclude with several limitations highlighting

areas for future work. First, our estimator requires pheno-
746 The American Journal of Human Genetics 101, 737–751, Novem
type correlation between two traits, as well as the number

of shared individuals between the two GWASs. We esti-

mate the phenotype correlation through cross-trait

LDSC assuming full sample overlap between GWAS

within the same consortium and no sample overlap be-

tween GWAS across two consortia. Second, we note that

our bi-directional analyses over local genetic correlation

can be further extrapolated to infer putative causal

models between complex traits. We refrain from making

conclusive causal inferences from the bi-directional
ber 2, 2017



Figure 5. Manhattan-Style Plots Showing the Estimates of Local Genetic Covariance for the Pairs of Traits HDL and LDL
Although the genome-wide genetic correlation between HDL and LDL does not reach the significance level (p < 0.05/630), 11 loci
exhibit significant local genetic covariance.
analyses because exact inference of causal relations is

largely complicated by unobserved confounders such as

socioeconomic status, population stratification, and/or

biological pathways. Furthermore, most of the GWAS

summary association data are adjusted for covariates

such as age and gender to increase statistical power,54

and previous works have shown that adjusting for covari-

ates can potentially lead to false positives.55 Third, in our

real data analyses, we made the assumption that the loci

are independent of each other. In reality, however, corre-

lations may exist across adjacent loci due to long-range

LD and can lead to biased estimates. Nevertheless, we

note that previous works have indicated the effect of

LD leakage to be minimal,19,56 and we conjecture that

this statement still holds in estimating local genetic cor-

relation. Lastly, we use truncated-SVD to regularize LD

matrix and to reduce standard error in the estimates of

local genetic correlation, at the cost of introducing bias.

Currently, we use a fixed number of eigenvectors in the

truncated-SVD regularization, across all the loci. How-

ever, this approach may not be optimal for genomic re-

gions with different LD structure and leave a principled

approach of estimating the number of eigenvectors as

future work.
Figure 6. Manhattan-Style Plots Showing the Estimates of Local G
That the local genetic covariance between BMI and TG is mostly one

The American
Appendix A

Quantifying Shared Genetics via Covariance of the

Causal Effects

An alternative measure of shared genetics is the covariance

of the causal effects (b and g) of the two traits. Under the

fixed-effect model, we define covariance of the causal ef-

fects, rg;causal, as the dot product between the causal effect

size vectors of the two traits,

rg;causal ¼ bug: (Equation A1)

Here, we make the assumption that the average effect

size of each SNP is 0.

The definition of covariance of the causal effects in Equa-

tion A1 coincides with genetic covariance under the

random-effect model. As shown in the supplementary

data of Bulik-Sullivan et al.,16 if one assumes that b and g

have zero mean and

Var½ðb;gÞ� ¼ 1

p

"
h2
gf rg

rg h2
gj

#
; (Equation A2)

then it can be shown that the genetic covariance between

two traits is
enetic Covariance for the Pairs of Traits BMI and TG
-sided implies plausible causal relationship between the two traits.
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Figure 7. Estimates of Local Genetic Correlation at Loci Ascertained for GWAS Risk Variants for Eight Example Pairs of Traits that
Show Plausible Causal Relationship
We obtained standard error using a jackknife approach. Error bars represent 1.96 times the standard error on each side.
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(Equation A3)

The random-effect model makes the implicit assumption

that many SNPs are causal, which is appropriate for

genome-wide analysis but not for local analysis, where

few SNPs are likely to be causal.

Estimating Covariance of the Causal Effects from GWAS

Summary Data

For completeness, we derive an estimator for rg;causal.

We assume a linear model for the two traits (see Material

and Methods). The effect size estimates from GWAS,

bbgwas and bggwas, follow bbgwas � N

 
Vb;

1� h2
f

n1
V

!
and

bggwas � N

 
Vg;

1� h2
j

n2
V

!
, with Cov½bbgwas; bggwas� ¼

rens

n1n2
V,

where n1 and n2 are the sample size for the two GWASs

and ns is the number of shared samples (see Material and

Methods).

As the sample size, n1 and n2, of the two GWASs go

to infinity, we have bgwas ¼ limn/N
bbgwas ¼ Vb and
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ggwas ¼ limn/Nbggwas ¼ Vg, which implies b ¼ V�1bgwas

and g ¼ V�1ggwas, suggesting the following estimator for

covariance of the causal effects,

rg;causal ¼ bug ¼ bu
gwasV

�2ggwas: (Equation A4)

In reality, however, finite sample sizes of GWAS results in

noise in the estimates of b and g, creating bias in the esti-

mate of rg;causal. From bilinear form theory, it can be shown

that

E
hbbu

gwasV
�2bggwas

i
¼ bugþ re

n
tr
�
V�2V

�
¼ bugþ re

n
tr
�
V�1

�
; (Equation A5)

suggesting the unbiased estimator of rg;causal,

brg;causal ¼ bbu

gwasV
�2bggwas �

nsre

n1n2

tr
�
V�1

�
; (Equation A6)

where the environmental covariance can be estimated

through cross-trait LD Score regression.16
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