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tsRNAs: new players in mammalian retrotransposon control
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A recent study led by Professor 
Rob Martienssen in Cell showed that 
3′-tRNA-derived small RNAs can 
suppress long terminal repeat ret-
rotransposon activity in mammalian 
cells by mechanisms independent of 
DNA-associated epigenetic marks, 
suggesting how the genome may 
defend itself from retrotransposon 
invasion during epigenetic repro-
gramming.

Transposon elements (TEs), known 
as the ‘genomic parasites’, are mobile 
genomic DNAs capable of autonomous 
or non-autonomous transposition. The 
transposition activities of TEs are po-
tentially harmful to the host genome, 
and the transcription of TEs is normally 
suppressed by epigenetic marks such as 
DNA methylation and histone modifica-
tions [1]. However, it remains an open 
question how the genome defends itself 
during the window of epigenetic repro-
gramming, such as pre-implantation 
embryo development, when most of the 
epigenetic marks are wiped off and then 
reestablished [2]. In mammals such as 
mice, small RNA-mediated pathways 
centered by PIWI-interacting RNAs 
(piRNAs) are effective in controlling 
TE activities via post-transcriptional 
silencing or/and de novo methylation 
of TE loci [3]. However, piRNAs 
in mice are mostly expressed in the 
developing germ cells, but gradually 
depleted during sperm maturation and 
pre-implantation embryo development 
[4], leaving the question whether other 
small RNA pathways can silence TEs 
during this period of vulnerability. In a 
recent study published in Cell, Andrea 
et al. [5] discovered that 3′-tRNA-
derived small RNAs (tsRNAs or tRFs) 

with different lengths (18 nt and 22 nt) 
can silence at least one class of mam-
malian TEs, the long terminal repeat 
(LTR)-retrotransposon, by blocking 
reverse transcription (RT; 18 nt) and 
post-transcriptional silencing (22 nt), 
respectively.

Retrotransposons, a major class 
of TEs, use RNA as an intermediate, 
which is reverse-transcribed into DNA 
and then inserted into host genome 
[1]. Retrotransposons have two ma-
jor subclasses, LTR (also known as 
endogenous retrovirues (ERVs)) and 
non-LTR retrotransposons (e.g., LINEs, 
SINEs) [1]. Usually, Dnmt1-mediated 
DNA methylation inhibits most of the 
non-LTR LINEs, whereas a majority of 
the LTR-retrotransposons are silenced 
by Setdb1-mediated histone H3K9 
trimethylation (H3K9me3). Andrea et 
al. [5] set out the experiments by dis-
covering two types of 3′-tsRNAs with 
different lengths, namely 18-nt-3′-tRF 
and 22-nt-3′-tRF, that were elevated in 
Setdb1−/−, but not in Dnmt1−/− mouse 
ESCs (mESCs). Both types of tsR-
NAs contain the 3′-CCA end of their 
tRNA precursor, indicating that they 
are cleaved from the mature tRNAs. 
They further found that these elevated 
3′-tsRNAs from Setdb1−/− mESCs show 
sequence matches to ERVs (particularly 
young and active ones), thus suggesting 
a potential link between 3′-tsRNAs and 
ERV activity. They next examined the 
function of 3′-tsRNAs in TE control 
by using a well-defined retrotransposi-
tion assay in Hela cells, and found that 
transfection of synthesized 18-nt-3′-tRF 
or 22-nt-3′-tRF (tRF-Lys-AAA) with 
complementary sequence to ERVs can 
inhibit their transposition activity. 

The authors next explored the mecha-
nisms by which 18-nt-3′-tRFs inhibit 
ERV transposition. They first found 
that 3′-tsRNA-targeted ERV loci were 
not strongly associated with H3K9me3 
elevation, suggesting an effect indepen-
dent of H3K9me3-induced transcrip-
tional suppression. They also excluded 
the possibility of post-transcriptional 
silencing because transfection of 18-nt-
3′-tRFs did not induce RNAi-like 
mRNA degradation or translational 
inhibition. Crucially, the authors de-
tected strong RT inhibition by 18-nt-
3′-tRFs, the mechanism of which lays 
in the fact that many ERVs duplicate 
themselves by using 3′ terminus of in-
tact mature tRNA as a primer for their 
RT, anchoring to the highly conserved 
primer binding sequence (PBS; Figure 
1). 18-nt-3′-tRFs compete with mature 
tRNAs for the PBS of ERVs, leading to 
RT block and impeded retroviral cDNA 
synthesis (Figure 1). This RT blocking 
effect works efficiently when 18-nt-3′-
tRF is completely complementary to the 
PBS, whereas 2-bp mismatch decreases 
the efficiency. On the other hand, the 
authors found that the 22-nt-3′-tRF has 
a different role in ERV inhibition, which 
is through inducing post-transcriptional 
silencing of protein-coding mRNA of 
autonomous ERV. The effect of 22-nt-
3′-tRF also depends on the presence of 
PBS target site, but with a miRNA-like 
tolerance of 2-bp mismatch (Figure 1). 
Together, both 18-nt- and 22-nt-3′-tRFs 
contribute to the suppression of mam-
malian LTR-retrotransposon activity 
with distinct mechanisms.

This work advanced our understand-
ing of RNA-mediated retrotransposon 
control in mammals, although most 
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evidence was obtained in vitro. It also 
inspires interesting questions, for ex-
ample, with merely 4 extra nucleotides 
at the 5′ tail, why 22-nt-3′-tRF showed 
totally different working mechanisms 
compared to 18-nt-3′-tRF? Could the 
reasons go beyond simply their se-
quences but extend to the specific RNA 
modifications harbored by each? It is 
known that modifications in tRNAs can 
dramatically change their secondary 
structures [6], and this may similarly 
apply to tsRNAs [4]. Indeed, the extra 4 
nucleotides in 22-nt-3′-tRF harbor RNA 
modifications (Figure 1), which may 
contribute to altered RNA structure and 
interacting potential, possibly related to 
the recognition of ERV PBS and silenc-
ing complexes. Due to the concern of 
RNA modifications, one caveat of the 
findings is that the tsRNAs studied in vi-
tro are modified with 2′-O-methylation 
in each nucleotide and might have dif-
ferent properties compared to the tsR-
NAs in vivo. The precise contribution 
of tsRNAs in retrotransposon control 
in vivo might be more complicated and 
deserves case-by-case study.

Nevertheless, the study is important 
and shows clear implications for many 
fundamental biological processes. For 

example, tsRNAs are the most abun-
dant small RNA species in the mature 
sperm of mice [4, 7]. The sperm tsRNAs 
delivered at fertilization can change the 
transcriptome of pre-implantation em-
bryo [8], including LTR-associated gene 
expression [9], and can generate long-
standing effect that affect the phenotype 
of the offspring [8]. This is thought-in-
spiring, as the pre-implantation embryo 
undergoes genome-wide epigenetic 
reprogramming, leaving the genome 
unprotected by epigenetic marks when 
facing various TEs. Could the tsRNAs 
delivered by sperm interplay with ge-
nome protection/modulation during this 
period? Interestingly, recent small-RNA 
sequencing of different stages of mouse 
pre-implantation embryos has revealed 
a surge of tsRNAs at 8-cell stage [10], 
with signatures similar to the sperm 
tsRNAs. This may suggest a self-loop 
induction of the initial sperm tsRNA 
input during early embryo development. 
However, one confounding fact is that 
the tsRNA signatures revealed by RNA-
seq in both sperm and early embryos are 
mostly composed of 5′-tsRNAs (Figure 
1), but not 3′-tsRNAs. This could be 
due to RNA-seq bias caused by RNA 
modifications in the sperm 3′-tsRNAs 

that interfered with RNA-seq library 
preparation [11]; or it may suggest that 
5′-tsRNAs can also affect TE activity 
with unidentified mechanisms. Very in-
triguingly, 5′-tsRNAs are indeed abun-
dantly upregulated in the Dnmt1−/−, but 
not in Setdb1−/− mESCs, as shown by 
Andrea et al. (Figure 1); their function 
under these circumstances apparently 
deserves future in-depth investigations.

Finally, since LTR-retrotransposons 
resemble the behavior of retroviruses 
from which they are derived, the func-
tion of tsRNAs in repressing TEs prob-
ably bears even wider implications 
in host-virus interplay. Interestingly, 
tsRNAs are highly enriched in the mam-
malian serum and elevated upon active 
infection [12]. The possibility of tsR-
NAs as an ancient part of innate im-
mune system against virus infection is 
intriguing and awaits further evidence. 
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Figure 1 Illustration of 3′-tsRNAs in suppressing LTR-retrotransposon (ERV), and 
the potential functions of 5′-tsRNAs. Right panel: 3′-tsRNAs with 18 nt in length 
block ERV reverse transcription by competing with intact tRNAs for PBS; 3′-tsRNAs 
with 22 nt in length exert post-transcriptional silencing of retroviral protein produc-
tion by targeting its mRNA. Left panel: cell-specific distribution and potential func-
tions of 5′-tsRNAs.




