Short Paper

Molecular detection of virulence genes and multi-drug resistance patterns in *Escherichia coli* (STEC) in clinical bovine mastitis: Alborz province, Iran

Tavakoli, M. and Pourtaghi, H.*

Department of Microbiology, College of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran

*Correspondence: H. Pourtaghi, Department of Microbiology, College of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran. E-mail: hadi.pourtaghi1@gmail.com

(Received 21 Aug 2016; revised version 7 Jan 2017; accepted 21 Feb 2017)

Summary

The aim of this study was to identify virulence genes and antimicrobial resistance of *Escherichia coli* isolated from bovine clinical mastitis in dairy herds in Iran. Sampling was done from 86 inflamed quarters of dairy cows in 8 commercial farms of Alborz province, Iran in summer 2015. Shiga toxin-producing *E. coli* (STEC) virulence genes were detected by multiplex PCR and multidrug resistance profiles were confirmed using disk diffusion method. Among 60 *E. coli* isolated from examined samples, 13 (21.6%) of them were STEC. The results of PCR assay showed that *eaeA* gene was carried by 4 (30.8%) of STEC isolates. Although *stx1* in combination with *eaeA* gene was detected from 7 (53.8%) of STEC isolates, *stx1* and *stx2* genes were detected from only 1 (7.7%) of the examined samples. The result of the disk diffusion method showed that all *E. coli* isolates were resistant to penicillin, tylosin, oxytetracycline, erythromycin, ampicillin, streptomycin and neomycin. However all isolates were susceptible to enrofloxacin. Therefore, according to the results establishing a regular monitoring system for identification of cases with clinical mastitis and conducting antibiotic sensitivity tests are recommended.

Key words: Antimicrobial resistance, Clinical mastitis, E. coli, STEC, Virulence factors

Introduction

There are several reports related to the incidence of bovine mastitis caused by Escherichia coli around the world (Bradley and Green, 2001). According to the previous studies Shiga toxin-producing E. coli (STEC) strains are an important group for mastitis (Kobori et al., 2004; Guler and Gündüz, 2007). Identification of virulence factors of E. coli isolated from bovine clinical mastitis has been conducted in numerous previous investigations (Wenz et al., 2006). These studies demonstrated that Shiga toxins (Stx1, Stx2) and eae (intimin) are the most significant virulence genes in E. coli strains isolated from bovine clinical mastitis (Momtaz et al., 2012). Antibiotic therapy is the common treatment for bovine clinical mastitis. Widespread use of antimicrobials in farm animals has resulted in a considerable rise of antimicrobial-resistant strains of bacteria which can increase treatment cost and period (Sawant et al., 2007).

Therefore, the aim of this study was to identify virulence genes and antimicrobial resistance of *E. coli* isolated from bovine clinical mastitis in dairy herds in Iran.

Materials and Methods

Sample collection

Sampling was performed from 86 inflamed quarters of dairy cows in eight commercial farms of Alborz province, Iran in summer 2015.

DNA extraction

Overnight cultures of the bacteria in 2 ml nutrient broth were centrifuged for 5 min at 5,000 rpm. The bacterial pellet was re-suspended in 200 μ L of distilled water and boiled for 10 min. Tubes were centrifuged again, and the supernatant was used as template DNA (Pourtaghi *et al.*, 2013; Pourtaghi and Sodagari, 2016).

STEC detection

PCR was performed on the samples to detect the presence of the stx1, stx2 and eaeA genes. The primer sets and related genes that encode virulence genes and PCR condition to amplification are described in Table 1. Amplification reactions were performed in a total volume of 25 μ L containing 2.5 μ L of 10 × PCR buffer, 0.5 mM Mgcl₂, 250 μ M dNTP, 1 μ M of each primer and 0.5 U Taq DNA polymerase. To determine molecular weight, 100 bp DNA ladder (Fermentas) was used.

Table 1: Primers used for PCR and DNA sequencing

Virulence factor	Primer sequence 5'-3'	Position in open reading frame	Size of product	References
Stx1	TTCGCTCTGCAATAGGTA TTCCCCAGTTCAATGTAAGAT	125-142 of A subunit 659-679 of A subunit	555*	Frank <i>et al</i> . 1998
Stx2	GTGCCTGTTACTGGTTTTTCTTC AGGGGTCGATATCTCTGTCC	30-53 of A subunit 128-147 of A subunit	118	Frank et al. 1998
eaeA	ATATCCGTTTTAATGGCTATCT AATCTTCTGCGTACTGTGTTCA	992-1013 of eaeA 1395-1416 of eaeA	425	Frank et al. 1998

* PCR condition: $35 \times (94^{\circ}\text{C for } 60 \text{ s}, 50^{\circ}\text{C for } 60 \text{ s}, 72^{\circ}\text{C for } 90 \text{ s})$

Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed by using the disk diffusion method and interpreted according to the standards recommended by CLSI, for the following antimicrobial agents including ampicillin (10 µg), ceftifor (30 µg), colistin (10 µg), erythromycin (15 µg), florfenicol (30 µg), gentamicin (10 µg), lincospectin (15/200 µg), neomycin (30 µg), tetracyclin (30 µg), penicillin (10 IU), sulfamethoxazole/trimethoprim (1.25/23.75 µg), streptomycin (10 µg), tylosin (30 µg), and enrofloxacin (5 µg). The results were interpreted in accordance with interpretive criteria provided by CLSI (2008). *Escherichia coli* ATCC 25922 was used as a quality control strain.

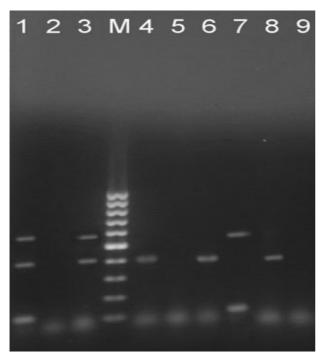
Results

As shown in Table 2 of the 60 *E. coli* isolated from examined samples, 13 (21.6%) of them were STEC. The results of PCR assay showed that *eaeA* gene was carried by 4 (30.8%) of the STEC isolates. Although *stx1* in combination with *eaeA* gene were detected from 7 (53.8%) of STEC isolates, *stx1* and *stx2* genes were detected from only 1 (7.7%) of the examined samples. Furthermore, the present study revealed that there was only 1 (7.7%) STEC isolate that possessed all three identified virulence genes (Table 2). Figure 1 shows the

virulence genes of some STEC isolates. The result of the disk diffusion method showed that all *E. coli* isolates were resistant to penicillin, tylosin, oxytetracyclin, erythromycin, ampicillin, streptomycin and neomycin. However, all isolates indicated susceptibility to enrofloxacin (Table 3). Additionally, multi-drug resistance was found among *E. coli* isolates (Table 3). Sixteen and eight multi-drug resistance patterns were observed for *E. coli* and STEC isolates respectively. According to the results, the pattern number 15 in Table 3 demonstrated the highest rate of multi-drug resistance.

Table 2: Frequency of STEC virulence genes

Virulence gene(s)	Number (%)	
stx1	0 (0)	
stx2	0 (0)	
eaeA	4 (30.8)	
stx1 and stx2	1 (7.7)	
stx1 and eaeA	7 (53.8)	
stx2 and eaeA	0 (0)	
stx1, stx2 and eaeA	1 (7.7)	


Discussion

In the present study, 13 (21.6%) of the *E. coli* isolates were STEC which was higher than the previous report in Iran (Mansouri-Najand and Khalili, 2007) but lower than

Table 3: Multi-drug resistance patterns in 60 E. coli isolated from clinical mastitis

Number	Antibiotics resistance patterns	Number (%) of multi-resistant isolates		
		All E. coli isolates	STEC isolates	
1	P, Ty, Ot, E, Am, S, N, Sxt	2 (3.3%)	0 (0%)	
2	P, Ty, Ot, E, Am, S, N, Sxt, Ls	1 (1.7%)	0 (0%)	
3	P, Ty, Ot, E, Am, S, N, FF, Ls	3 (5%)	2 (15.4%)	
4	P, Ty, Ot, E, Am, S, N, Gm, Ls	2 (3.4%)	0 (0%)	
5	P, Ty, Ot, E, Am, S, N, Sxt, Cf, Cl	4 (6.7%)	1 (7.7%)	
6	P, Ty, Ot, E, Am, S, N, FF, Ls, Cl	2 (3.3%)	1 (7.7%)	
7	P, Ty, Ot, E, Am, S, N, FF, Ls, Cf	5 (8.3%)	0 (0%)	
8	P, Ty, Ot, E, Am, S, N, Gm, FF, Cf	2 (3.3%)	0 (0%)	
9	P, Ty, Ot, E, Am, S, N, Sxt, FF, Ls, Cf	3 (5%)	1 (7.7%)	
10	P, Ty, Ot, E, Am, S, N, Sxt, Gm, FF, Cf	5 (8.3%)	1 (7.7%)	
11	P, Ty, Ot, E, Am, S, N, Sxt, Gm, FF, Ls	3 (5%)	0 (0%)	
12	P, Ty, Ot, E, Am, S, N, Sxt, Gm, Cf, Cl	4 (6.7%)	1 (7.7%)	
13	P, Ty, Ot, E, Am, S, N, Gm, FF, Ls, Cl	2 (3.3%)	0 (0%)	
14	P, Ty, Ot, E, Am, S, N, Sxt, Gm, FF, Ls, Cf	4 (6.7%)	0 (0%)	
15	P, Ty, Ot, E, Am, S, N, Sxt, Gm, FF, Cf, Cl	16 (26.7%)	5 (38.4%)	
16	P, Ty, Ot, E, Am, S, N, Gm, FF, Ls, Cf, Cl	2 (3.3%)	1 (7.7%)	

P: Penicillin, Ty: Tylosin, Ot: Oxytetracyclin, E: Erythromycin, Am: Ampicillin, S: Streptomycin, N: Neomycin, Sxt: Sulfamethoxazole-trimethoprim, Gm: Gentamicin, FF: Florfenicol, Ls: Lincospectin, Cf: Ceftifor, and Cl: Colistin

Fig. 1: Agarose (1%) gel electrophoresis of STEC PCR products of virulence factors genes. Lane M: 100 bp DNA marker. Lane 1: Positive isolate for stx1, eaeA and stx2 (555, 425 and 118 bp), Lanes 2, 5 and 9: Negative control and negative isolates, Lane 3: Positive isolate for stx1 and eaeA, Lanes 4, 6 and 8: Positive isolates for eaeA, and Lane 7: Positive isolate for eaeA and stx2

those found in Belgium (Vivegnis et al., 1999) and another investigation in Iran (Momtaz et al., 2012). According to the PCR assay the eaeA gene was carried by 4 (30.8%) of the STEC isolates. Higher result (33.3%) was reported in previous study in Iran (Momtaz et al., 2010). Numerous previous investigations have proved that there is a direct relationship between the presence of eaeA gene and the capacity of STEC to cause severe human disease, especially HUS (Beutin et al., 2004). Furthermore, the results indicated that stx1 and stx2 genes were detected from only 1 (7.7%) of the examined samples which was much lower than that found in the study conducted by Momtaz (2010). investigation on mastitis milk samples demonstrated that stx1 gene was the predominant virulence factor with a prevalence of 31% and 35%, respectively (Seyda et al., 2014), while according to our results this virulence gene was carried by none of the STEC isolates. The significant difference between the reports was associated with the origin of the strains (Seyda et al., 2014). Moreover, the result of the disk diffusion method showed that all E. coli isolates were resistant to penicillin, oxytetracyclin, erythromycin, tylosin, ampicillin, streptomycin and neomycin. However in contrast with Seyda et al.'s study (2014), all isolates indicated susceptibility to enrofloxacin. It reveals that enrofloxacin is less applied in farm animal medicine in Iran and can be more effective for treatment of clinical mastitis caused by E. coli. Similar to our study, resistance to some of the above antibiotics has also been frequently

reported in several previous investigations. However, the results of these studies showed lower resistance rate than our findings (Stephan et al., 2008; Momtaz et al., 2012; Dubravka et al., 2015). Multi-drug resistance was found among all E. coli isolates (Table 3). In addition to the present study, multiple antibiotic resistances have been indicated in numerous previous researches around the world (Rangel and Marin, 2009; Spnu et al., 2012). The high rate of antimicrobial resistance identified in this study can be explained by the widespread use of common antimicrobials in dairy farms for treatment of clinical mastitis. Our findings, similar to previous investigations indicated that cattle with clinical mastitis are recognized as the main reservoir of STEC. Therefore, establishing a regular monitoring system identification of cases with clinical mastitis, restriction of widespread use of common antibiotics as well as conducting antibiotic sensitivity tests is recommended for reducing the prevalence of resistant strains of STEC in industrial dairy herds.

Conflict of interest

No conflict of interests is declared.

References

Beutin, L; Krause, G; Zimmermann, S; Kaulfuss, S and Gleier, K (2004). Characterization of Shiga toxin-producing *Escherichia coli* strains isolated from human patients in Germany over a 3-year period. J. Clin. Microbiol., 42: 1099-1108.

Bradley, AJ and Green, MJ (2001). Etiology of clinical mastitis in six somerset dairy herds. Vet. Rec., 148: 683-686

CLSI (2008). Performance and standards for antimicrobial disk diffusion and dilution susceptibility tests for bacteria isolated from animals; approved standards. 3rd Ed., Vol. 28, M31-A3. Clinical and Laboratory Standard Institute, Wayne, Pennsylvania, USA.

Dubravka, M; Bojana, P; Maja, V; Dalibor, T and Vladimir, P (2015). Investigation of biofilm formation and phylogenetic typing of *Escherichia coli* stains isolated from milk of cows with mastitis. Acta Vet. Beograd., 65: 202-216.

Frank, SM; Bosworth, BT and Moon, HW (1998). Multiplex PCR for enterotoxigenic, attaching and effacing, and Shiga toxin-producing *Escherichia coli* strains from calves. J. Clin. Microbiol., 36: 1795-1797.

Guler, L and Gündüz, K (2007). Virulence properties of Escherichia coli isolated from clinical bovine mastitis. Turk. J. Vet. Anim. Sci., 31: 361-365.

Kobori, D; Rigobelo, EC; Macedo, C; Marin, JM and Avila, FA (2004). Virulence properties of Shiga toxin-producing *Escherichia coli* isolated from cases of bovine mastitis in Brazil. Rev. Elev. Med. Vet. Pays. Trop., 57: 15-20.

Mansouri-Najand, L and Khalili, M (2007). Detection of Shiga-like toxigenic *Escherichia coli* from raw milk cheeses produced in Kerman-Iran. Veterinarski. Arhiv., 77: 515-522.

Momtaz, H (2010). Investigation of virulence factors in Escherichia coli isolated from clinical and subclinical

- bovine mastitis. Bulg. J. Vet. Med., 13: 122-126.
- Momtaz, H; Dehkordi, SF; Taktaz, T; Rezvani, A and Yarali, S (2012). Shiga toxin-producing *Escherichia coli* isolated from bovine mastitic milk: serogroups, virulence factors, and antibiotic resistance properties. Sci. World J., 2012: 618709.
- **Pourtaghi, H; Dahpahlavan, V and Momtaz, H** (2013). Virulence genes in *Escherichia coli* isolated from calves with diarrhoea in Iran. Com. Clin. Pathol., 12: 513-515.
- Pourtaghi, H and Sodagari, HR (2016). Antimicrobial resistance of entrotoxigenic and non-entrotoxigenic *Escherichia coli* isolated from diarrheic calves in Iran. Int. J. Enteric. Pathog., 4: e34557.
- Rangel, P and Marin, JM (2009). Analysis of *Escherichia coli* isolated from bovine mastitic milk. Pesq. Vet. Bras., 29: 363-368.
- Sawant, AA; Hegde, NV; Straley, BA; Donaldson, SC; Love, BC; Knabel, SJ and Jayarao, BM (2007). Antimicrobial-resistant enteric bacteria from dairy cattle. Appl. Environ. Microbiol., 73: 156-163.
- Seyda, C; Gökçen, D and Ünlü, SM (2014). Detection of several virulence properties, antibiotic resistance and

- phylogenetic relationship in *E. coli* isolated from cow mastitis. Acta Vet. Beograd., 64: 413-425.
- Spnu, M; Kobolkuti, L; Cadar, D; Niculae, M; Bianu, G; Popescu, S and Lukacs, L (2012). Changes in antibiotic resistance indices of animal *Escherichia coli* strains with number of isolates. Ann. Rom. Soc. Cell. Biol., 17: 361-366.
- Stephan, R; Schumacher, S; Corti, S; Krause, G; Danuser, J and Beutin, L (2008). Prevalence and characteristics of Shiga toxin producing *Escherichia coli* in Swiss raw milk cheeses collected at producer level. J. Dairy. Sci., 91: 2561-2565.
- Vivegnis, J; Lioui, EM; Leclercq, A; Lambert, B and Decallonne, J (1993). Detection of Shiga-like toxin producing *Escherichia coli* from raw milk cheeses produced in Wallonia. Biotechnol. Agron. Soc. Environ., 3: 159-164.
- Wenz, JR; Barrington, GM; Garry, FB; Ellis, RP and Magnuson, RJ (2006). Escherichia coli isolates' serotypes, genotypes, and virulence genes and clinical coliform mastitis severity. J. Dairy. Sci., 89: 3408-3412.