Table 1.
Preparation methods and applications of carbon materials based semiconductor composites.
Photocatalyst | Synthetic method | Photocatalytic applications | Light source | Reaction system (catalyst amount/solution) | Photocatalytic activity | References |
---|---|---|---|---|---|---|
CdS−1D ZnO−2D GR | Two-step refluxing | Anaerobic reduction of 4-nitroaniline | 300 W Xe lamp (λ ≥ 420 nm) | 10 mg/40 ml (10 mg·L−1) with 40 mg HCOONH4 | Conversion of 95% with high selectivity for PPD (> 98%) in 16 min | Han et al., 2015 |
TiO2/AC | Sol-gel | Oxidation of propene | UV lamp (radiation peaks at 257.7 nm or 365 nm) | –/100 ppmv [flow rates of 30 and 60 ml min−1 (STP)] | Conversion of nearly 60% for flow rate of 30 ml min−1 | Ouzzine et al., 2014 |
Graphene–CNTs–CdS | Hydrothermal | Degradation of MB | Visible light irradiation | 20 mg/50 ml (10 mg·L−1) MB solution | DP of ca. 40% in 30 min | Wang et al., 2013 |
CNT@TiO2 | Solvothermal | Degradation of MO | 300 W Xe lamp | 50 mg/100 ml (15 mg·L−1) MO solution | 8 times increment of the reaction rate compared to bare TiO2 | Di et al., 2015 |
CNT–confined TiO2 | Restrained hydrolysis | Degradation of MB | Xe lamp (λ ≥ 420 nm) | 20 mg/50 ml (20 mg·L−1) organic pollutant solution | DP of 97.8% in 90 min | Chen et al., 2011 |
NCNT/TiO2 core/shell nanowires | Biomineralization followed by calcination | Degradation of MB or p-nitrophenol (PNP) | 450 W Xe lamp (λ ≥ 420 nm) | Volume of 0.64 cm2/3.5 ml (10 ppm) MB or PNP solution | DP of ca. 100% in 4 h for MB | Lee W. J. et al., 2012 |
Graphene–wrapped TiO2 NPs | One-step hydrothermal treatment followed by calcination | Degradation of MB | 450 W Xe lamp (λ ≥ 420 nm) | 8 mg/8 ml (2.7 × 10−2 mM) MB solution | DP of ca. 90% in 1 h; rate constant k = 3.41 × 10−2 min−1 | Lee J. S. et al., 2012 |
CQDs/hydrogenated TiO2 nanobelts | Oil bath reflux | Degradation of MO; hydrogen evolution | UV source: 350 W mercury lamp (254 nm); visible light source: 300 W Xe lamp; NIR light source: 250 W infrared lamp (λ < 760 nm) | 20 mg/20 ml (20 mg·L−1) MO solution; 50 mg (with 1wt% Pt)/100 ml aqueous solution containing methanol (20% v/v) | DP of > 86%, 50% in 25 min under UV light, visible light irradiation, respectively; DP of 32% in 120 min under NIR light irradiation; 7.42 mmol h−1g−1 | Tian et al., 2015 |
Graphene/ZnO | Hydrothermal | Degradation of deoxynivalenol | UV light (254 nm, 365 nm) | 25 mg/50 ml (15 ppm) DON | DP of 99% in 30 min | Bai et al., 2017 |
Carbon nanotube–SiC | In situ growth | H2 evolution | 300 W Xe lamp (λ ≥ 420 nm) | 50 mg/100 ml of 0.1 M Na2S solution | RH2: 108 μmol h−1 g−1; 3.1 times higher than SiC | Zhou et al., 2015 |
BiVO4/CDs/CdS | Precipitation | Water splitting into H2 and O2 | 300 W Xe lamp (λ > 420 nm) | 80 mg/100 ml ultrapure water | 1.24 mol h−1 | Wu et al., 2017 |
Graphite-like carbon spheres@TiO2−x | Two-step hydrothermal | H2 evolution; degradation of RhB, MB, CIP and 4-CP | UV-LEDs; 350 W Xe lamp (λ > 420 nm) | 50 mg/80 ml (0.5 M) Na2S/Na2SO3 solution; 80 mg/80 ml (10 mg·L−1) pollutants solution | 255.2 μmol h−1 g−1, 5.4 times higher than TiO2−x; 3.6/6.3 (RhB/MB) times higher than TiO2 | Jiang et al., 2017 |
CdS NWs–CNT | Electrostatic self-assembly | Reduction of aromatic nitro organics | 300 W Xe lamp (λ > 420 nm) | 10 mg/40 ml (20 mg·L−1) | Nearly complete reduction of 4-NA in 5min | Weng et al., 2014 |
RGO–CdS | Microwave-assisted hydrothermal | Reduction of CO2 | 300 W Xe lamp (λ ≥ 420 nm) | 100 mg/0.25 ml (4 M HCl And 0.12 g NaHCO3) | 2.51 μmol h−1 g−1 QE: 0.8% at 420 nm | Yu J. et al., 2014 |
GR–CdS | Solvothermal | Selective reduction of aromatic nitro compounds | 300 W Xe lamp (λ ≥ 420 nm) | 10 mg/30 ml (20 mg·L−1) with 20mg ammonium oxalate | Conversion of almost 80% for 4-NA | Liu et al., 2014 |
A-Fe2O3/graphene | Hydrothermal | Degradation of RhB | 350 W Xe lamp | 30 mg/30 ml (10 mg·L−1) RhB solution with 0.7 ml H2O2 (≥ 30 wt%) | DP of 98% in 20 min | Han et al., 2014 |
MWCNT–TiO2 sphere | Hydrothermal | Degradation of gaseous styrene | 365 nm UV-LED spot lamp | 100 mg/25 ± 1.5 ppmv gaseous styrene | DP of 55.4% in 180 min | An et al., 2012 |
AC/Bi2WO6 | Hydrothermal | Degradation of RhB | 300 W Ultra-Vitalux lamp | 250 mg/250 ml (10ppm) RhB | Totally degraded in 30 min | Murcia-Lopez et al., 2013 |
Carbon dots/g-C3N4/ZnO | Impregnation-thermal | Degradation of tetracycline (TC) | Xe lamp (λ ≥ 420 nm) | 50 mg/100 ml (10 mg·L−1) RhB solution | DP of almost 100% in 30 min | Guo et al., 2017 |
CNT/Ag3PO4 | Ultrasound followed by stir | Degradation of RhB | 300 W Xe lamp (λ > 400 nm) | 75 mg/75 ml (10 mg·L−1) TC solution | DP of ca. 10% in 12 min | Xu et al., 2014 |
TiO2/C60 | Sonication followed by light irradiation | Degradation of MB and 4-CP | 84W light sources (λ > 420 nm) | 17 mg/25 ml (144 μM) MB; 15 mg/15 ml (10 mg·L−1) 4-CP | DP of 47% for MB and 82% for 4-CP in 40 min; 2 and 5 times of rate constant values of the bare TiO2 | Mukthar Ali and Sandhya, 2014 |
GO–CdS | Two-phase mixing | degradation of various water pollutants and disinfection | Solar light simulator (λ ≥ 420 nm) | 20 mg/50 ml (20 mg·L−1) water pollutants solution | DP of over 80% for AO7; nearly 100% of both E. coli and B. subtilis were killed in 25 min | Gao et al., 2013 |
CdS/GO | Solvothermal | H2 evolution | 300 W Xe lamp (λ > 420 nm) | 50 mg/100 ml of 1.25 M (NH4)2SO3 solution | 1470 μmol h−1 | Hong et al., 2015 |
TiO2/MWCNTs and TiO2/AC | Sol-gel | Degradation of Acid Blue 92 | 125 W high-pressure mercury lamp | 60 ppm/20 ppm AB92 | 2 times of TiO2/MWCNTs faster than TiO2/AC in 120 min | Zarezade et al., 2011 |
CNTs/TiO2 | Sol-gel | Degradation of MB | three UV-A lamps | 20 mg/200 ml (10 mg·L−1) | DP of ca. 45% in 180 min | Li Z. et al., 2011 |
GO–TiO2 NFs | Sol-gel | Photocatalytic H2 evolution; dye-sensitized H2 evolution | 300 W Xe lamp (λ > 320 nm); (420 nm) | 0.5 g·L−1/ 10 vol% methanol aqueous solution; [RuL3] = 10μM, [EDTA]0 = 10 mM | The photocatalytic hydrogen production and photocurrent generation increased by 1.7 and 8.5 times | Kim et al., 2014 |
LaFeO3-rGO | High temperature sol-gel | Oxidation of MB or RhB | 300 W Xe lamp (λ > 400 nm) | 10 mg/100 ml (0.5 mg·L−1) MB solution or (1.25 mg·L−1) RhB solution | DP of ca. 98% in 70 min for MB | Ren et al., 2016 |
ZnS–rGO | Microwave irradiation | Degradation of MB and RhB | 250 W tungsten halogen lamp | 50 mg·L−1/ 0.1 mM dye solution | DP of 55.23% for MB and 90.37% for RhB in 120 min | Thangavel et al., 2016 |
Graphene/Cu2O | CVD method | Degradation of MO | 300 W Xe lamp | 20 mg/80 ml (30 mg·L−1) MO solution | DP of ca. 80% in 30 min | Zhang et al., 2016a |
CdS–GR (RGO, SEG) | Solvothermal | Selective oxidation of benzyl alcohol in water | 300 W Xe lamp (760 > λ > 420 nm) | 8 mg/1.5 ml alcohol oxygen-saturated ultrapure water with 0.1 mmol alcohol | Conversion of ca. 35% for benzyl alcohol; the selectivity of ca. 72% for benzaldehyde | Zhang et al., 2013a |
Ag@AgBr/CNT | Deposition-precipitation | CO2 reduction | 150 W Xe lamp (λ > 420 nm) | 500 mg/100 ml (0.2 M) KHCO3 solution | 30 μmol h−1 g−1 for methane | Abou Asi et al., 2013 |
PSGM/rGO/CdS | Hydrothermal | H2 evolution | 300 W Xe lamp (λ > 400 nm) | 100 mg/100 ml (0.5 M) Na2S/Na2SO3 solution | 175 μmol h−1; QE: 3.99% at 420 nm | Xu et al., 2016 |
RGO/InGaZn | Hydrothermal | H2 evolution | 125 W Hg visible lamp (λ > 400 nm) | 50 mg/50 ml (10 vol% CH3OH) | 435.4 μmol h−1 | Martha et al., 2014 |
(CNT–TiO2) ox | One-pot oxidation | H2 evolution | 150 W mercury vapor lamp | 170 mg/170 ml (10 vol% methanol or 0.02 M saccharide) | 292.5 μmol h−1 | Silva et al., 2015 |
CQDs/P25 | Hydrothermal | H2 evolution | 500 W halogen lamp (λ > 450 nm) | 50 mg/25 ml (6.25 ml methanol) | 9.1 μmol h−1 under UV-Vis light irradiation; 0.5 μmol h−1 under visible light irradiation | Yu H. et al., 2014 |
SWCNTs/TiO2 | Hydrolysis | Degradation of organic pollutants | 17 W mercury arc lamp (λ = 254 nm); 1500 W Xe lamp (700 > λ > 320 nm) | 50 mg/500 ml of organic pollutants solution | Comparable degradation rates regarding Degussa P25 under UV irradiation | Murgolo et al., 2015 |
Ag3PO4-MoS2/graphene | Two-step hydrothermal | Degradation of phenols | 500 W Xe lamp (λ > 420 nm) | 20 mg/50 ml (20 mg·L−1) DCP solution | Nearly completed in 20 min, 60 min under simulated solar light, visible light irradiation | Peng et al., 2014 |
CQDs/ZnS | Hydrothermal and bath reflux | Degradation of MB, RhB, CIP | 300 W Xe lamp (λ > 380 nm) | 30 mg/50 ml (20 mg·L−1) for MB, RhB; 50 ml (10 mg·L−1) for CIP | Degradation rate is 1.67 and 2.11 times higher than ZnS for MB and RhB; DP is more than ZnS for CIP | Ming et al., 2016 |
C60@a–TiO2 | Solution phase method | degradation of MB | 8 W medium-pressure mercury lamp | 100 mg/250 ml (5 mg·L−1) MB solution | Nearly completed in 60 min | Qi et al., 2016 |
GO–TiO2 CNT–TiO2 | Liquid phase deposition | Degradation of Microcystin-LA | 300 W Xe lamp; two 15 W fluorescent lamps (λ > 420 nm) | 5 mg/10 ml (0.2 μM) MC-LA solution | DP of 100% in 5 min under solar light irradiation; DP of 88% in 2 h under visible light irradiation | Sampaio et al., 2015 |
CdS–cluster-decorated graphene | Solvothermal | H2 evolution | 350 W Xe lamp (λ ≥ 420 nm) | 20 mg/80 ml (8 ml lactic acid) mixed solution | 1.12 mmol h−1 QE: 22.5% at 420 nm | Ye et al., 2012 |
GO–Ta2O5 CNT–Ta2O5 | Hydrothermally assisted sol-gel | H2 evolution | High pressure Hg lamp | 50 mg/no mentioned | 1,600 μmol h−1 for CNT–Ta2O5; 140 μmol h−1 for GO–Ta2O5 | Cherevan et al., 2014 |
TiO2-GR | Hydrothermal | Gas-phase degradation of benzene | Four 4W UV Lamps (254 nm) | 300 mg/20 ml min−1 (250 ppm) benzene | Conversion of 6.4%; average mineralization ratio of 76.2% | Zhang et al., 2010 |
AgSiOx@CNT AgSiOx@RGO | In suit one-step | Degradation of MB | 300 W Xe lamp (780 > λ > 400 nm) | 50 mg/50 ml (50 ppm) of MB solution | Completed in 10 min by AgSiOx@CNT; completed in 7 min by AgSiOx@RGO | Jing et al., 2017 |
CDs/ZnIn2S4 | Hydrothermal | Degradation of MO | 300 W Xe lamp (λ ≥ 420 nm) | 50 mg/100 ml (10 mg·L−1) dye solutions | DP of 100% in 40 min, 2.34 times higher than ZnIn2S4 | Shi et al., 2017 |
CdS–carbon (C60, CNT, and GR) | Solvothermal | Selective oxidation of alcohols | 300 W Xe lamp (λ ≥ 420 nm) | 8 mg/1.5 ml oxygen-saturated BTF (0.1 mmol alcohol) | Conversion of 40%, 61% and 42% along with 100% selectivity over CdS–RGO, CdS–C60 and CdS–CNT in 3 h | Zhang et al., 2013b |
CNT/Cd0.1Zn0.9S | Hydrothermal | H2 evolution | 300 W Xe lamp (λ ≥ 420 nm) | 50 mg/80 ml (0.35 M Na2S and 0.25 M Na2SO3) aqueous solution | 1,563.2 μmol h−1 g−1; QE: 7.9% | Yu et al., 2012 |
TiO2/graphene aerogels (GAs) | Hydrothermal | Degradation of MO | 300 W Xe lamp | no mentioned/70 ml (10 mg·L−1) MO solutions | DP of 90% in 5 h | Qiu et al., 2014 |