Skip to main content
. 2017 Oct 31;5:84. doi: 10.3389/fchem.2017.00084

Table 1.

Preparation methods and applications of carbon materials based semiconductor composites.

Photocatalyst Synthetic method Photocatalytic applications Light source Reaction system (catalyst amount/solution) Photocatalytic activity References
CdS−1D ZnO−2D GR Two-step refluxing Anaerobic reduction of 4-nitroaniline 300 W Xe lamp (λ ≥ 420 nm) 10 mg/40 ml (10 mg·L−1) with 40 mg HCOONH4 Conversion of 95% with high selectivity for PPD (> 98%) in 16 min Han et al., 2015
TiO2/AC Sol-gel Oxidation of propene UV lamp (radiation peaks at 257.7 nm or 365 nm) –/100 ppmv [flow rates of 30 and 60 ml min−1 (STP)] Conversion of nearly 60% for flow rate of 30 ml min−1 Ouzzine et al., 2014
Graphene–CNTs–CdS Hydrothermal Degradation of MB Visible light irradiation 20 mg/50 ml (10 mg·L−1) MB solution DP of ca. 40% in 30 min Wang et al., 2013
CNT@TiO2 Solvothermal Degradation of MO 300 W Xe lamp 50 mg/100 ml (15 mg·L−1) MO solution 8 times increment of the reaction rate compared to bare TiO2 Di et al., 2015
CNT–confined TiO2 Restrained hydrolysis Degradation of MB Xe lamp (λ ≥ 420 nm) 20 mg/50 ml (20 mg·L−1) organic pollutant solution DP of 97.8% in 90 min Chen et al., 2011
NCNT/TiO2 core/shell nanowires Biomineralization followed by calcination Degradation of MB or p-nitrophenol (PNP) 450 W Xe lamp (λ ≥ 420 nm) Volume of 0.64 cm2/3.5 ml (10 ppm) MB or PNP solution DP of ca. 100% in 4 h for MB Lee W. J. et al., 2012
Graphene–wrapped TiO2 NPs One-step hydrothermal treatment followed by calcination Degradation of MB 450 W Xe lamp (λ ≥ 420 nm) 8 mg/8 ml (2.7 × 10−2 mM) MB solution DP of ca. 90% in 1 h; rate constant k = 3.41 × 10−2 min−1 Lee J. S. et al., 2012
CQDs/hydrogenated TiO2 nanobelts Oil bath reflux Degradation of MO; hydrogen evolution UV source: 350 W mercury lamp (254 nm); visible light source: 300 W Xe lamp; NIR light source: 250 W infrared lamp (λ < 760 nm) 20 mg/20 ml (20 mg·L−1) MO solution; 50 mg (with 1wt% Pt)/100 ml aqueous solution containing methanol (20% v/v) DP of > 86%, 50% in 25 min under UV light, visible light irradiation, respectively; DP of 32% in 120 min under NIR light irradiation; 7.42 mmol h−1g−1 Tian et al., 2015
Graphene/ZnO Hydrothermal Degradation of deoxynivalenol UV light (254 nm, 365 nm) 25 mg/50 ml (15 ppm) DON DP of 99% in 30 min Bai et al., 2017
Carbon nanotube–SiC In situ growth H2 evolution 300 W Xe lamp (λ ≥ 420 nm) 50 mg/100 ml of 0.1 M Na2S solution RH2: 108 μmol h−1 g−1; 3.1 times higher than SiC Zhou et al., 2015
BiVO4/CDs/CdS Precipitation Water splitting into H2 and O2 300 W Xe lamp (λ > 420 nm) 80 mg/100 ml ultrapure water 1.24 mol h−1 Wu et al., 2017
Graphite-like carbon spheres@TiO2−x Two-step hydrothermal H2 evolution; degradation of RhB, MB, CIP and 4-CP UV-LEDs; 350 W Xe lamp (λ > 420 nm) 50 mg/80 ml (0.5 M) Na2S/Na2SO3 solution; 80 mg/80 ml (10 mg·L−1) pollutants solution 255.2 μmol h−1 g−1, 5.4 times higher than TiO2−x; 3.6/6.3 (RhB/MB) times higher than TiO2 Jiang et al., 2017
CdS NWs–CNT Electrostatic self-assembly Reduction of aromatic nitro organics 300 W Xe lamp (λ > 420 nm) 10 mg/40 ml (20 mg·L−1) Nearly complete reduction of 4-NA in 5min Weng et al., 2014
RGO–CdS Microwave-assisted hydrothermal Reduction of CO2 300 W Xe lamp (λ ≥ 420 nm) 100 mg/0.25 ml (4 M HCl And 0.12 g NaHCO3) 2.51 μmol h−1 g−1 QE: 0.8% at 420 nm Yu J. et al., 2014
GR–CdS Solvothermal Selective reduction of aromatic nitro compounds 300 W Xe lamp (λ ≥ 420 nm) 10 mg/30 ml (20 mg·L−1) with 20mg ammonium oxalate Conversion of almost 80% for 4-NA Liu et al., 2014
A-Fe2O3/graphene Hydrothermal Degradation of RhB 350 W Xe lamp 30 mg/30 ml (10 mg·L−1) RhB solution with 0.7 ml H2O2 (≥ 30 wt%) DP of 98% in 20 min Han et al., 2014
MWCNT–TiO2 sphere Hydrothermal Degradation of gaseous styrene 365 nm UV-LED spot lamp 100 mg/25 ± 1.5 ppmv gaseous styrene DP of 55.4% in 180 min An et al., 2012
AC/Bi2WO6 Hydrothermal Degradation of RhB 300 W Ultra-Vitalux lamp 250 mg/250 ml (10ppm) RhB Totally degraded in 30 min Murcia-Lopez et al., 2013
Carbon dots/g-C3N4/ZnO Impregnation-thermal Degradation of tetracycline (TC) Xe lamp (λ ≥ 420 nm) 50 mg/100 ml (10 mg·L−1) RhB solution DP of almost 100% in 30 min Guo et al., 2017
CNT/Ag3PO4 Ultrasound followed by stir Degradation of RhB 300 W Xe lamp (λ > 400 nm) 75 mg/75 ml (10 mg·L−1) TC solution DP of ca. 10% in 12 min Xu et al., 2014
TiO2/C60 Sonication followed by light irradiation Degradation of MB and 4-CP 84W light sources (λ > 420 nm) 17 mg/25 ml (144 μM) MB; 15 mg/15 ml (10 mg·L−1) 4-CP DP of 47% for MB and 82% for 4-CP in 40 min; 2 and 5 times of rate constant values of the bare TiO2 Mukthar Ali and Sandhya, 2014
GO–CdS Two-phase mixing degradation of various water pollutants and disinfection Solar light simulator (λ ≥ 420 nm) 20 mg/50 ml (20 mg·L−1) water pollutants solution DP of over 80% for AO7; nearly 100% of both E. coli and B. subtilis were killed in 25 min Gao et al., 2013
CdS/GO Solvothermal H2 evolution 300 W Xe lamp (λ > 420 nm) 50 mg/100 ml of 1.25 M (NH4)2SO3 solution 1470 μmol h−1 Hong et al., 2015
TiO2/MWCNTs and TiO2/AC Sol-gel Degradation of Acid Blue 92 125 W high-pressure mercury lamp 60 ppm/20 ppm AB92 2 times of TiO2/MWCNTs faster than TiO2/AC in 120 min Zarezade et al., 2011
CNTs/TiO2 Sol-gel Degradation of MB three UV-A lamps 20 mg/200 ml (10 mg·L−1) DP of ca. 45% in 180 min Li Z. et al., 2011
GO–TiO2 NFs Sol-gel Photocatalytic H2 evolution; dye-sensitized H2 evolution 300 W Xe lamp (λ > 320 nm); (420 nm) 0.5 g·L−1/ 10 vol% methanol aqueous solution; [RuL3] = 10μM, [EDTA]0 = 10 mM The photocatalytic hydrogen production and photocurrent generation increased by 1.7 and 8.5 times Kim et al., 2014
LaFeO3-rGO High temperature sol-gel Oxidation of MB or RhB 300 W Xe lamp (λ > 400 nm) 10 mg/100 ml (0.5 mg·L−1) MB solution or (1.25 mg·L−1) RhB solution DP of ca. 98% in 70 min for MB Ren et al., 2016
ZnS–rGO Microwave irradiation Degradation of MB and RhB 250 W tungsten halogen lamp 50 mg·L−1/ 0.1 mM dye solution DP of 55.23% for MB and 90.37% for RhB in 120 min Thangavel et al., 2016
Graphene/Cu2O CVD method Degradation of MO 300 W Xe lamp 20 mg/80 ml (30 mg·L−1) MO solution DP of ca. 80% in 30 min Zhang et al., 2016a
CdS–GR (RGO, SEG) Solvothermal Selective oxidation of benzyl alcohol in water 300 W Xe lamp (760 > λ > 420 nm) 8 mg/1.5 ml alcohol oxygen-saturated ultrapure water with 0.1 mmol alcohol Conversion of ca. 35% for benzyl alcohol; the selectivity of ca. 72% for benzaldehyde Zhang et al., 2013a
Ag@AgBr/CNT Deposition-precipitation CO2 reduction 150 W Xe lamp (λ > 420 nm) 500 mg/100 ml (0.2 M) KHCO3 solution 30 μmol h−1 g−1 for methane Abou Asi et al., 2013
PSGM/rGO/CdS Hydrothermal H2 evolution 300 W Xe lamp (λ > 400 nm) 100 mg/100 ml (0.5 M) Na2S/Na2SO3 solution 175 μmol h−1; QE: 3.99% at 420 nm Xu et al., 2016
RGO/InGaZn Hydrothermal H2 evolution 125 W Hg visible lamp (λ > 400 nm) 50 mg/50 ml (10 vol% CH3OH) 435.4 μmol h−1 Martha et al., 2014
(CNT–TiO2) ox One-pot oxidation H2 evolution 150 W mercury vapor lamp 170 mg/170 ml (10 vol% methanol or 0.02 M saccharide) 292.5 μmol h−1 Silva et al., 2015
CQDs/P25 Hydrothermal H2 evolution 500 W halogen lamp (λ > 450 nm) 50 mg/25 ml (6.25 ml methanol) 9.1 μmol h−1 under UV-Vis light irradiation; 0.5 μmol h−1 under visible light irradiation Yu H. et al., 2014
SWCNTs/TiO2 Hydrolysis Degradation of organic pollutants 17 W mercury arc lamp (λ = 254 nm); 1500 W Xe lamp (700 > λ > 320 nm) 50 mg/500 ml of organic pollutants solution Comparable degradation rates regarding Degussa P25 under UV irradiation Murgolo et al., 2015
Ag3PO4-MoS2/graphene Two-step hydrothermal Degradation of phenols 500 W Xe lamp (λ > 420 nm) 20 mg/50 ml (20 mg·L−1) DCP solution Nearly completed in 20 min, 60 min under simulated solar light, visible light irradiation Peng et al., 2014
CQDs/ZnS Hydrothermal and bath reflux Degradation of MB, RhB, CIP 300 W Xe lamp (λ > 380 nm) 30 mg/50 ml (20 mg·L−1) for MB, RhB; 50 ml (10 mg·L−1) for CIP Degradation rate is 1.67 and 2.11 times higher than ZnS for MB and RhB; DP is more than ZnS for CIP Ming et al., 2016
C60@a–TiO2 Solution phase method degradation of MB 8 W medium-pressure mercury lamp 100 mg/250 ml (5 mg·L−1) MB solution Nearly completed in 60 min Qi et al., 2016
GO–TiO2 CNT–TiO2 Liquid phase deposition Degradation of Microcystin-LA 300 W Xe lamp; two 15 W fluorescent lamps (λ > 420 nm) 5 mg/10 ml (0.2 μM) MC-LA solution DP of 100% in 5 min under solar light irradiation; DP of 88% in 2 h under visible light irradiation Sampaio et al., 2015
CdS–cluster-decorated graphene Solvothermal H2 evolution 350 W Xe lamp (λ ≥ 420 nm) 20 mg/80 ml (8 ml lactic acid) mixed solution 1.12 mmol h−1 QE: 22.5% at 420 nm Ye et al., 2012
GO–Ta2O5 CNT–Ta2O5 Hydrothermally assisted sol-gel H2 evolution High pressure Hg lamp 50 mg/no mentioned 1,600 μmol h−1 for CNT–Ta2O5; 140 μmol h−1 for GO–Ta2O5 Cherevan et al., 2014
TiO2-GR Hydrothermal Gas-phase degradation of benzene Four 4W UV Lamps (254 nm) 300 mg/20 ml min−1 (250 ppm) benzene Conversion of 6.4%; average mineralization ratio of 76.2% Zhang et al., 2010
AgSiOx@CNT AgSiOx@RGO In suit one-step Degradation of MB 300 W Xe lamp (780 > λ > 400 nm) 50 mg/50 ml (50 ppm) of MB solution Completed in 10 min by AgSiOx@CNT; completed in 7 min by AgSiOx@RGO Jing et al., 2017
CDs/ZnIn2S4 Hydrothermal Degradation of MO 300 W Xe lamp (λ ≥ 420 nm) 50 mg/100 ml (10 mg·L−1) dye solutions DP of 100% in 40 min, 2.34 times higher than ZnIn2S4 Shi et al., 2017
CdS–carbon (C60, CNT, and GR) Solvothermal Selective oxidation of alcohols 300 W Xe lamp (λ ≥ 420 nm) 8 mg/1.5 ml oxygen-saturated BTF (0.1 mmol alcohol) Conversion of 40%, 61% and 42% along with 100% selectivity over CdS–RGO, CdS–C60 and CdS–CNT in 3 h Zhang et al., 2013b
CNT/Cd0.1Zn0.9S Hydrothermal H2 evolution 300 W Xe lamp (λ ≥ 420 nm) 50 mg/80 ml (0.35 M Na2S and 0.25 M Na2SO3) aqueous solution 1,563.2 μmol h−1 g−1; QE: 7.9% Yu et al., 2012
TiO2/graphene aerogels (GAs) Hydrothermal Degradation of MO 300 W Xe lamp no mentioned/70 ml (10 mg·L−1) MO solutions DP of 90% in 5 h Qiu et al., 2014