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Abstract

Bacteria require iron for growth, with only a few reported exceptions. In many environments, iron 

is a limiting nutrient for growth and high affinity uptake systems play a central role in iron 

homeostasis. However, iron can also be detrimental to cells when it is present in excess, 

particularly under aerobic conditions where its participation in Fenton chemistry generates highly 

reactive hydroxyl radicals. Recent results have revealed a critical role for iron efflux transporters in 

protecting bacteria from iron intoxication. Systems that efflux iron are widely distributed amongst 

bacteria and fall into several categories: P1B-type ATPases, cation diffusion facilitator (CDF) 

proteins, major facilitator superfamily (MFS) proteins, and membrane bound ferritin-like proteins. 

Here, we review the emerging role of iron export in both iron homeostasis and as part of the 

adaptive response to oxidative stress.

Graphical abstract

Introduction

Iron is critical for cell growth and survival. However, when present in excess, it is also 

detrimental to cells. Under aerobic conditions, iron toxicity is closely related to oxidative 

stress through Fenton chemistry1. Hydrogen peroxide (H2O2) reacts with ferrous iron (Fe2+) 

to generate highly reactive hydroxyl radicals that damage macromolecules such as DNA, 

proteins and fatty acids, resulting in disruption of cell metabolism and ultimately cell death2. 

Therefore, the toxicity of reactive oxygen species (ROS) is generally thought to be 

exacerbated by conditions that elevate the intracellular iron pool. Conversely, high levels of 

intracellular iron may also be toxic independent of ROS, presumably due to the ability of 
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iron to compete with other transition metals, such as manganese, for binding to metal-

dependent enzymes or regulators, resulting in mismetallation and inactivation of these 

proteins3, 4. ROS such as H2O2 and superoxide radical can disrupt iron-sulfur clusters and 

mononuclear iron centers of iron-enzymes, thereby leading to iron release5, 6. Therefore, 

iron intoxication may also be exacerbated by an elevation in ROS. Clearly, the toxicity of 

iron and ROS are closely intertwined, with each potentially increasing the toxicity of the 

other.

Bacteria adapt to environmental stresses by activation of specific transcriptional programs. 

In the case of iron homeostasis, bacteria monitor intracellular iron levels using metal-sensing 

(metalloregulatory) proteins7, 8. The ferric uptake regulator (Fur) protein is the most 

widespread bacterial iron sensor9, but it can be replaced by functionally analogous proteins 

such as IdeR (in actinomycetes)10, 11 and Irr (in alpha-proteobacteria)12–14. Fur helps to 

maintain iron homeostasis by regulating genes implicated in iron uptake, storage, and 

efflux15. Typically, Fur is considered to function as an Fe2+-activated transcriptional 

repressor for most of its targets, but there are increasing examples where Fur functions as a 

transcriptional activator or where it binds DNA in the absence of bound iron16–18.

Iron-sensing regulators such as Fur play a central role in the control of iron homeostasis19. 

The Escherichia coli Fur regulon illustrates the diverse roles that Fur may play. E. coli Fur 

(FurEC) binds to DNA when associated with Fe2+ and serves to repress the expression of 

target operons20. This repression is relieved under iron-limited conditions, and this results in 

the derepression of iron uptake systems, including the synthesis of the high-affinity iron-

chelating compound siderophore known as enterobactin and its cognate import system21. 

Fur also helps bacteria to remodel their proteomes to prioritize the utilization of iron, in a 

process known as "iron-sparing" (Fig. 1)22–24. In E. coli, the loss of FurEC DNA-binding 

activity (under low iron conditions) results in expression of the RyhB small RNA (sRNA) 

that represses translation of non-essential iron-enzymes22–24. Fur also participates in the 

regulation of gene expression under conditions of iron excess. For example, FurEC positively 

regulates expression of the iron storage protein ferritin by occluding the binding of the H-NS 

transcriptional repressor25. In general, adaptation to iron excess often involves expression of 

iron storage functions (including heme-containing bacterioferritins, ferritins, and Dps-family 

mini-ferritins) but may additionally require iron efflux systems (Fig. 1). In light of the 

central role of Fur in coordinating iron homeostasis, it is not surprising that some iron efflux 

systems are induced by Fur in response to iron excess26, 27.

Bacteria also adapt to oxidative stress by the induction of specific defensive genes. For 

example, H2O2 induces a specific peroxide-stress response that is regulated by the OxyR 

repressor in E. coli28 and by the PerR repressor in Bacillus subtilis29. In both model 

organisms, a rise in intracellular H2O2 triggers the induction of defensive enzymes such as 

catalase and alkyl hydroperoxide reductase, which can directly detoxify H2O2. In addition, 

cells scavenge excess iron from the cytosol by sequestration into mini-ferritin proteins, 

including Dps in E. coli30 and the Dps ortholog MrgA in B. subtilis31. The co-regulation of 

H2O2 degradation enzymes and iron-sequestering proteins further highlights the central role 

of iron in peroxide intoxication. In addition to scavenging iron, peroxide stress also 

frequently modulates metal uptake and efflux systems32. In E. coli, H2O2 induces an OxyR-
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activated Mn2+ uptake system (MntH)33, 34, and in B. subtilis H2O2 induces a PerR-

regulated iron efflux system, PfeT35, 36. PfeT is a member of the P1B4-type ATPases, and 

recent results indicate that several close homologs also function as Fe2+ efflux 

pumps27, 37–39. Fe2+ efflux pumps have now been documented in a wide variety of bacteria, 

and include P1B-type ATPases, cation diffusion facilitator (CDF) proteins, major facilitator 

superfamily (MFS) proteins, and membrane bound ferritin-like proteins (Table 1 & Fig. 2). 

Here, we summarize the emerging role of these ferrous iron efflux pumps in helping 

ameliorate the deleterious effects of excess iron and peroxide.

P-type ATPases

The P-type ATPases are a large group of transmembrane proteins that transport ions and 

lipids across cellular membranes, energetically driven by ATP hydrolysis40. Five subgroups 

of P-type ATPases have been defined based on sequence homology and substrate 

specificity41. These are the P1-type (K+ and transition metal transporters), P2-type (Ca2+, 

Na+/K+, and H+/K+ pumps), P3-type (H+ pumps), P4-type (phospholipid transporters), and 

P5-type ATPases (unknown substrate). The P2-type ATPases have been well studied and are 

more prevalent in eukaryotes than in prokaryotes. The majority of P3-type ATPases are H+ 

pumps found in plants and fungi. Some of the P4-type ATPases have been revealed to be 

phospholipid transporters42, 43. No specific substrate has yet been identified for the P5-type 

ATPases that are only found in eukaryotes.

The P1-type ATPases exist predominately in prokaryotes but are omnipresent across all 

domains of life44: P1A-ATPases are involved in K+ transport whereas P1B-ATPases are 

important for maintaining transition metal homeostasis. P1B-ATPases are known to transport 

Cu+ 45, 46, Ag+ 47, Zn2+ 48, Cd2+ 49, Cu2+ 50, Co2+ 51 and Fe2+ 27, 36, 37. The structure of a 

typical P1B-ATPase includes a transmembrane domain with 6–8 helices, a soluble actuator 

domain, and an ATP-binding domain52 (Fig. 2). The P1B-ATPases can be further divided 

into seven subclasses based on sequence similarity and metal substrate specificity52. The 

P1B4-type ATPases were originally assigned a role in Co2+ export, based on the properties of 

some of the first characterized members53. However, P1B4-type ATPases have recently been 

found to function instead, or in addition, as Fe2+ efflux transporters including Bacillus 
subtilis PfeT36, Listeria monocytogenes FrvA27, Mycobacterium tuberculosis CtpD37, and 

group A Streptococcus PmtA38, 39.

PfeT in Bacillus subtilis

B. subtilis is a Gram-positive soil microorganism and encodes two transcriptional regulators 

critical for iron homeostasis, FurBs and PerR. FurBs is a global transcriptional regulator of 

iron homeostasis analogous to FurEC
54 and PerR mediates the adaptive response to peroxide 

stress by regulating genes involved in iron storage and peroxide detoxification29. The 

regulons for both FurBs and PerR have been well defined55, 56. FurBs senses intracellular 

iron sufficiency and represses genes that are involved in siderophore synthesis and 

uptake54, 57. FurBs also regulates an iron sparing response mediated by the small non-coding 

RNA FsrA (Fig. 1) and its coregulators FbpA, FbpB and FbpC58–60. This system, analogous 

to RyhB in E. coli, blocks the translation of non-essential iron-containing enzymes such as 
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aconitase and succinate dehydrogenase58–60. PerR regulates peroxide detoxification 

enzymes (catalase, alkyl hydroperoxide reductase), iron sequestration (MrgA) and the P1B4-

type ATPase (PfeT). Although the Fur and PerR regulons are largely non-overlapping, pfeT 
is the exception and is regulated by both proteins26. The result is that pfeT is induced by 

either peroxide stress or by iron excess (unpublished data, Pinochet-Barros A & Helmann 

JD).

PfeT is one of three P1B ATPases encoded by B. subtilis. CopA is a P1B1-ATPase that 

functions as a Cu+ efflux transporter and, appropriate to its function, is regulated by the 

CsoR Cu+ sensor61. CadA is a P1B2-ATPase that confers resistance to Cd2+, Zn2+, and Co2+ 

and is regulated by the divalent cation sensor CzrA62. PfeT (formerly named as ZosA) is a 

P1B4-type ATPase and was discovered as a transporter induced by H2O2 that plays a role in 

protecting cells against oxidative stress35. Initial results indicated that deletion of pfeT 
enhanced Zn2+ tolerance, as monitored in cells lacking the CadA efflux system35. This led to 

the proposal that PfeT might function as a Zn2+ importer under oxidative stress conditions, 

consistent with the idea that Zn2+ has a role in protecting cells against oxidative damage35. 

As a result, PfeT was originally named for this proposed role as ZosA (Zn2+ uptake under 

oxidative stress)35.

Contrary to this model, most P1B-type ATPases function in metal export rather than import, 

which motivated a reinvestigation of the role of PfeT. Further study revealed that a pfeT null 

mutant is sensitive to Fe2+ and Fe3+, particularly under acidic media conditions, but not to 

Zn2+ or Co2+. Moreover, a pfeT null mutant accumulates elevated levels of intracellular 

Fe2+, as judged by sensitivity to the Fe2+-activated antibiotic streptonigrin and by direct 

chemical measurement36. Biochemical studies confirmed that the ATPase activity of PfeT is 

induced the most by Fe2+, with modest induction by Co2+ but not with other metals, 

including Zn2+. In addition to H2O2, pfeT is strongly and specifically induced by iron, but 

not by other metals. Together, these findings indicate that PfeT function as a peroxide- and 

iron induced ferrous efflux transporter36. The ability of PfeT to protect against H2O2 is 

secondary to that of the detoxification enzymes catalase and alkyl hydroperoxide reductase. 

However, PfeT plays a dominant role in protecting cells from iron overload with the MrgA 

miniferritin playing a secondary role36. The revelation that PfeT functions in Fe2+ efflux, in 

turn, prompted a re-evaluation of the roles of several other P1B4-type ATPases in bacterial 

iron homeostasis.

FrvA in Listeria monocytogenes

L. monocytogenes is the causative agent of the foodborne disease listeriosis, which is 

associated with central nervous system infections and bacteraemia. FrvA (Lmo0641) is a 

P1B4-ATPase originally described as a Fur-regulated virulence factor63. FrvA was proposed 

to function as a heme exporter that was suggested to be induced by iron deficiency and to be 

under negative regulation of both Fur and PerR63, 64. However, a different transcriptome 

study showed a downregulation of frvA in a fur null mutant65, indicating a positive 

regulatory role of Fur in frvA expression.

To resolve these contradictory reports of iron regulation, and to test if FrvA might function 

in Fe2+ efflux, the mutant phenotype was reinvestigated and the FrvA protein was purified 
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for biochemical studies27. As predicted based on studies of pfeT, a frvA null mutant was 

sensitive to iron intoxication, but not to other metals or heme. Like B. subtilis pfeT, frvA is 

positively regulated by Fur in response to high Fe2+ levels and is repressed by PerR27, 64. 

Biochemical studies indicate the FrvA ATPase activity is stimulated most strongly by Fe2+ 

with weaker stimulation in the presence of Co2+ or Zn2+. Based on the Fe2+ concentration 

dependence of ATPase activity, FrvA seems to have a higher affinity for Fe2+ than B. subtilis 
PfeT. Consistent with this, not only does FrvA complement the iron-sensitive phenotype of a 

B. subtilis pfeT null mutant, its expression depletes the cytosol of iron (even under iron-rich 

conditions) thereby leading to derepression of the Fur regulon27. These results support the 

hypothesis that FrvA functions as a Fe2+ efflux transporter that protects cells from Fe2+ 

intoxication27.

FrvA is required for virulence in murine and insect (Galleria mellonella) infection models63. 

The frvA null mutant strain shows strong attenuation in virulence, but is still able to invade 

and propagate inside antigen-presenting cells66, suggesting an important link between iron 

homeostasis and virulence, but it is not clear at which stage(s) of the L. monocytogenes life 

cycle FrvA is important. The phagocytic vacuole is generally considered to be an iron-

limited environment. One possibility is that the expression of high affinity iron uptake 

systems by iron limitation during infection or in the phagocytic vacuole can contribute to 

iron overload upon escape of cells into the relatively iron-rich cytosol. Alternatively, the 

imposition of oxidative damage from host immune cells may trigger iron release from 

listerial iron enzymes and this may lead to iron overload. The points in the infection cycle 

where FrvA plays a critical role are not yet clearly defined and provide an interesting avenue 

for future research.

CtpD in Mycobacterium tuberculosis

M. tuberculosis is an obligate pathogen and the causative agent of human tuberculosis. 

Nearly one-third of the world's population is infected with M. tuberculosis, which can persist 

in a latent state for decades and then later emerge (in ~10% of cases) as an active lung 

infection. M. tuberculosis encodes a total of 11 P-type ATPases, which have been suggested 

to be possible targets for therapeutic intervention67. Of these, two encode P1B4-ATPases: 

CtpD (Rv1469) and CtpJ (Rv3743)37. CtpD, but not CtpJ, was found to be important for 

survival in macrophages and the mouse lung37. Biochemical studies had previously 

highlighted the activity of these two P1B4-ATPases with Co2+, but it was not clear why M. 
tuberculosis would encode two such proteins, nor was it understood why Co2+ efflux would 

be important for survival in the host.

In light of the finding that PfeT functions as an Fe2+ efflux transporter, the roles of CtpD and 

CtpJ were reinvestigated. Biochemical studies indicated that the ATPase activity of CtpD is 

most strongly activated by Fe2+. Although Co2+ also activates ATPase activity, the maximal 

activity (Vmax) is 10-fold lower than with ferrous iron37. CtpD also binds Fe2+ with 3-fold 

higher affinity than Co2+. In contrast, the CtpJ ATPase activity is activated by both Fe2+ and 

Co2+, and has a slightly higher affinity for Co2+ than Fe2+. To better understand their roles 

in vivo, metal accumulation and sensitivity was monitored for strains lacking either ctpD or 

ctpJ. The ctpD mutant strain did not accumulate Co2+ and was impaired in growth in iron-
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amended medium, consistent with a primary role in resistance to iron intoxication37. 

Mutation of ctpJ led to a significant increase in Co2+ accumulation and expression was 

induced by Co2+, consistent with a primary role in Co2+ resistance37. However, the ctpJ 
mutant was also growth impaired in the presence of excess iron. Thus, these two paralogous 

transporters seem to have overlapping metal selectivity, but largely distinct physiological 

roles. Further studies are needed to understand the molecular mechanism of substrate 

specificity, but based on X-ray absorption spectroscopy (XAS) analysis, it is likely that 

distinct metal coordination geometry plays an important role37.

During infection, M. tuberculosis propagates in the host macrophages, which are considered 

iron-poor environments. Just as noted for L. monocytogenes, it is not yet clear where in the 

infection process cells experience iron intoxication. Further studies are needed to better 

understand the conditions that lead to induction of ctpD. In prior work ctpD was not induced 

by metals such as Co2+, Zn2+, and Ni2+, but its cognate substrate Fe2+ was not tested68. It 

might be induced by Fe2+ and, by analogy with its orthologs, this might involve an iron-

sensing transcription factor. IdeR, a member of DtxR family, is the major iron-dependent 

transcriptional regulator in M. tuberculosis10, 11. IdeR represses transcription of genes 

involved in iron uptake and siderophore biosynthesis and activates expression of genes 

encoding iron-storage proteins such as bacterioferritin and a ferritin-like protein10, 11. Since 

M. tuberculosis is primarily a pathogen of the mammalian respiratory system it might 

frequently encounter oxidative stress. Thus, it is also possible that ctpD might be induced in 

response to H2O2 stress. Future work to monitor the expression of ctpD in vitro in response 

to specific stresses and in vivo during the course of infection will be needed to elucidate the 

physiological role of CtpD during the infection process.

PmtA in group A Streptococcus

Group A Streptococcus (GAS), a human pathogen, is the causative agent of a wide range of 

diseases, from mild skin infection to life-threatening diseases such as necrotizing fasciitis69. 

GAS encodes a P1B4-type ATPase under regulation of PerR, and was therefore named a 

PerR-regulated metal transporter (PmtA). In a perR null mutant, high level expression of 

pmtA is associated with derepression of genes normally responsive to cellular zinc status 

due to repression by AdcR70, a Zn2+-dependent repressor. This simplest interpretation of 

this result is that PmtA may function as a Zn2+ efflux transporter. Consistent with this 

notion, a perR null mutant has an increased resistance to Zn2+, and this depends on PmtA70. 

However, it is unclear why cells would efflux Zn2+ in response to H2O2 stress, nor is there 

any evidence that PmtA is important for Zn2+ resistance in wild-type cells, which 

presumably relies on the Zn2+-inducible CzcD efflux pump to ameliorate Zn2+-toxicity.

By analogy with PfeT and its orthologs, an alternative interpretation is that the primary role 

of PmtA is as a H2O2-inducible Fe2+-efflux pump and that activity with Zn2+ may only be 

revealed when it is constitutively overexpressed in a perR null mutant. Two recent studies 

have confirmed the primary role of PmtA as an Fe2+-efflux pump38, 39. PmtA is important 

for resistance to iron intoxication, and a pmtA null mutant accumulates elevated levels of 

intracellular iron. As expected, expression of pmtA is strongly induced by Fe2+. Although a 

pmtA null mutant shows similar sensitivity to peroxide stress as a wild type strain in the 
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absence of excess Fe2+, it exhibits significantly increased susceptibility to peroxide stress 

when treated with Fe2+. Since GAS is catalase negative, PmtA might be a frontline defense 

against peroxide stress. PmtA is also a critical virulence factor and is required for survival 

during infection in both intramuscular and subcutaneous mouse models38, which again links 

iron efflux and peroxide resistance to pathogen virulence.

Nia in Sinorhizobium meliloti

In addition to the P1B4-ATPases featured above, it is possible that P1B-ATPases of other 

groups may also have physiologically relevant activity with iron. One example is Nia, a 

P1B5-ATPase with a C-terminal hemerythrin domain. Since hemerythrin domains bind O2 

via a diiron active site, this suggests a possible role in O2-sensing71, 72. Nia is encoded by 

the symbiotic plasmid A of Sinorhizobium meliloti, a nitrogen fixing microbe in the 

Rhizobiales lineage that has a symbiotic relationship with legumes in which it establishes 

nodules associated with roots.

Consistent with a possible role in Fe2+ efflux, a nia null mutant accumulates Fe2+ under 

excess metal conditions73. However, Nia also functions with Ni2+ and a nia null mutant 

accumulates Ni2+ when in excess. The precise physiological role of Nia is not yet resolved. 

Biochemical assays suggest that Nia interacts with both Fe2+ and Ni2+ (but not Co2+). 

However, a nia null mutant showed moderate sensitivity to Ni2+, but not to Fe2+, under the 

conditions tested73. Expression of nia was moderately induced by Fe2+ (3-fold), Ni2+ (3-

fold), and Co2+ (2-fold), but not by other metals. Interestingly, nia was most strongly 

induced (20-fold) in root nodules, thought to be a microaerobic, iron-rich environment74. 

These results lead to a model in which Nia is expressed in nitrogen-fixing root nodules, in 

response to either iron excess or microaerobic conditions. The C-terminal hemerythrin 

domain may also participate in or regulate transport activity, perhaps in response to O2
73. 

More work needs to be done to characterize the details of nia gene regulation and to more 

clearly define the physiological role of Nia during the S. meliloti -plant symbiosis.

Cation diffusion facilitator (CDF) proteins

Cation diffusion facilitators (CDFs) are a family of membrane-bound proteins that export 

and thereby confer tolerance to heavy metal ions75, 76. CDF proteins are ubiquitous in 

bacteria, archaea, and eukaryotes77. Collectively, bacterial CDF proteins have been 

implicated in transport of a wide range of metal ions (Zn2+, Cd2+, Co2+, Ni2+, Fe2+ and 

Mn2+) with some transporters able to transport multiple metals78–82. Phylogenetic analysis 

of the CDF transporters defines three major groups corresponding to substrate specificity: 1) 

manganese efflux, 2) iron/zinc efflux, 3) zinc and other metals (but not manganese or iron) 

efflux83.

A typical bacterial CDF contains an N-terminal domain (NTD), 6 transmembrane helices 

(TM), a histidine-rich interconnecting loop (IL) between TM4 and TM5, and a C-terminal 

cytoplasmic domain (CTD)75 (Fig 2). However, the detailed mechanisms of metal selectivity 

are unknown. Some studies suggest the cytoplasmic domain or the IL loop is important for 

metal specificity84–86, but other studies highlight the role of residues in the TM3 helix on 

metal selectivity87. For the E. coli FieF transporter, evidence supports a role for a tetrahedral 
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metal-binding site formed between TM2 and TM5 in metal selectivity88. So far, there is no 

unifying model that can account for metal selectivity of CDF proteins.

FieF in E. coli: Zn2+ vs. Fe2+ efflux

There are two CDF transporters in E. coli: ZitB and FieF (also named as YiiP). ZitB is the 

secondary zinc efflux system that is critical for maintaining zinc homeostasis only when the 

zinc efflux ATPase ZntA is absent89. FieF has been studied for more than a decade, but its 

physiological function has been controversial. In 2004, the first two reports of its structural 

analysis were built on the assumption that FieF acts as a zinc efflux protein90, 91. In fact, 

prior studies had demonstrated that fieF is induced by either zinc or iron89. However, ectopic 

expression of FieF does not restore zinc tolerance in a zinc-sensitive strain, suggesting it 

might not play a role in zinc homeostasis89.

Physiological studies suggest that the major physiological role of FieF may be in iron 

tolerance. Indeed, FieF is important for full resistance to iron intoxication in a fur null 

mutant, where iron homeostasis is disrupted and iron uptake systems are constitutively 

expressed92. Ectopic expression of FieF leads to reduced accumulation of iron in a fieF null 

mutant. Moreover, reconstitution of FieF in proteoliposomes showed that it mediates iron 

transport in vitro92. These results all support the assignment of FieF (ferrous iron efflux) as 

an iron efflux transporter. However, this notion has been challenged by others. For example, 

FieF was shown to selectively bind zinc and cadmium with high affinity, but not iron or 

other metals tested93. Based on the site-directed fluorescence resonance energy transfer 

(FRET) measurements, Lu et al. proposed an autoregulation model of transport activity in 

response to intracellular zinc levels94. Currently, FieF (YiiP) is referred to as a Zn2+ 

transporter in most published papers.

Ever since its structure was solved in 200779, FieF has been considered as a prototype for 

bacterial CDF proteins, which makes it more frustrating that its physiological role has 

remained controversial. The regulation of fieF expression has not been well defined, but it 

does not appear to be regulated by Fur92. The physiological studies of FieF are certainly 

supportive of a role in Fe(II) efflux. This inference is further supported by the observation 

that the FieF homologs MamM and MamB form a heterodimeric CDF protein required for 

Fe(II) import into vesicles in support of magnetosome formation in the magnetotatic 

bacterium Magnetospirillum gryphiswaldense95, 96.

AitP in Pseudomonas aeruginosa

Pseudomonas aeruginosa is Gram-negative, opportunistic pathogen that is highly antibiotic 

resistant. P. aeruginosa encodes three paralogous CDF efflux systems: CzcD (PA0397), AitP 

(PA1297), and YiiP (PA3963). Of these, the alternative iron transport protein (AitP) most 

likely functions physiologically in Fe2+ efflux. Deletion of aitP leads to an increased 

sensitivity to both Fe2+ and Co2+, increased intracellular accumulation of both ions, and 

decreased survival in presence of H2O2
97. The observed sensitivity to H2O2 is most 

consistent with a role in Fe2+ efflux, as noted above for P-type ATPases. In contrast with 

AitP, the CzcD and YiiP proteins were inferred to function physiologically in Zn2+ 

resistance, although this role is largely masked in wild-type cells by the activity of the Zn2+ 
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efflux P-type ATPase, ZntA98. All the three transporters are critical for virulence in a plant 

infection model97. However, it remains unclear why this organism requires multiple classes 

of Zn2+ efflux proteins or under what conditions the three proteins are physiologically 

important during the infection process.

FeoE in Shewanella oneidensis MR-1

Shewanella oneidensis MR-1 is a facultative anaerobe in the γ-proteobacterium family that 

is capable of respiration using metals (e.g. manganese, lead, uranium and ferric iron) as 

electron acceptors99. S. oneidensis cells are usually pink or red, reflective of a high iron 

content in hemoproteins and cytochromes100. When Fe3+ is used as a terminal electron 

acceptor, cells generate a large amount of soluble Fe2+ which could potentially lead to iron 

intoxication. FeoE, a CDF protein, is required for cell growth during anaerobic iron 

respiration, and deletion of feoE increased susceptibility to Fe2+ intoxication, consistent 

with a physiological role in Fe2+ efflux101. Further work is required to understand how feoE 
expression is regulated. It is unclear, for example, whether feoE is induced in response to 

excess iron. Fur is the primary regulator that modulates iron acquisition in S. oneidenis102, 

and is a candidate for an iron-responsive transcription factor that could be involved.

Major facilitator superfamily (MFS)

The major facilitator superfamily (MFS) of membrane transporters function with a wide 

scope of small molecules such as ions, nucleosides, amino acids, small peptides, and 

lipids103. They can be categorized into three groups: uniporters that transport a single 

substrate, symporters that transport a substrate coupled with another ion (generally a 

proton), and antiporters that transport two substrates in opposite directions104, 105. All the 

MFS transporters share a canonical structural fold composed of two distinct domains [Fig. 

2], each consisting of six transmembrane helices. The substrate binding site is located at the 

interface between these two domains103.

The mechanism of transport by MFS proteins is not clear, but several related models have 

been proposed. The first, an alternate-access model, was proposed more than five decades 

ago106. This model speculates that the transporters undergo a conformational change that 

alternates between a form where substrate can bind from one side of the membrane to one 

where it can only bind from the other side. This has been validated by many structural 

studies such as the xylose/H+ symporter XylE and for LacY107–109. The second, a rocker-

switch model, postulates that conformational changes are accomplished through rocker-

switch-type rotation between the N and C domain. This model is supported by some open-

conformation structures110 but not by the structures in occluded states111–114. A third, 

clamp-and-switch model, provides a two-step transport mechanism: a clamping step that 

mediates occlusion of the binding site and a switching step that mediates the exposure of the 

binding site. This model postulates four conformational states: inward open, outward open, 

inward-facing occlusion, and outward-facing occlusion105. This model is in a good 

agreement with studies of some MFS transporters115, 116, but more structural analyses 

combined with biochemical and computational analyses are needed to further understand the 

transport mechanism of MFS transporters.
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IceT (iron and citrate efflux transporter) in Salmonella Typhimurium

Salmonella Typhimurium is a Gram-negative pathogen commonly found in the 

gastrointestinal tract. IceT (MdtD) is a member of the MFS superfamily in S. Typhimurium. 

The mdtABCD baeSR operon encodes IceT and two other systems: a RND (resistance-

nodulation-division) drug efflux system MdtABC and a two-component regulatory system 

BaeSR that regulates antibiotic resistance and efflux117–119. IceT is proposed to be an iron-

citrate efflux transporter and it can export either iron citrate or citrate alone120. The iceT null 

mutant shows increased susceptibility to the antibiotic streptonigrin (SN), the activity of 

which is modulated by the level of intracellular free iron121. This result suggests that the 

mutation of iceT leads to an increase in intracellular labile iron pools. Consistent with this 

result, induction of IceT expression leads to reduced levels of intracellular iron120.

Although the mdtABCD baeSR operon is not induced directly by high Fe2+ 122, it is induced 

by disruption of iron homeostasis in a fur null mutant where iron uptake systems are 

constitutively expressed, supportive of a physiological role for IceT in iron efflux. Although 

IceT confers resistance to peroxide stress in a fur null mutant, the mdtABCD baeSR operon 

is not induced by H2O2 or superoxide-generating reagents such as paraquat120. However, it 

is induced by nitric oxide, which is also known to interact with the labile iron pool120. The 

significance of the regulation of IceT, together with its co-transcribed ABC transporter, by 

the BaeSR two-component system is not understood, nor is it yet clear whether or not IceT 

is important for pathogenesis.

Membrane bound ferritin A (MbfA) in Agrobacterium tumefaciens and 

Bradyrhizobium japonicum

Agrobacterium tumefaciens belongs to the Rhizobiales lineage and is the causative agent of 

the economically important plant disease, crown gall. MbfA was originally described as 

membrane-bound ferritin A, and is a member of the erythrin-vacuolar iron transport (Er-

VIT1) ferritin-like superfamily. MbfA has two major domains: an N-terminal ferritin-like or 

Er domain (Er) and a C-terminal membrane-embedded vacuolar iron transporter domain 

(VIT1) (Fig. 2). The Er domain has a di-iron binding site and the VIT1 domain shows 

sequence homology to Arabidopsis VIT1, which is responsible for transferring iron into 

vacuoles123. Ferritin is a cytosolic iron storage protein ubiquitous in prokaryotes and 

eukaryotes124, however, MbfA is not a bona fide ferritin and its physiological function was 

not immediately apparent.

Plant hosts often produce reactive oxygen species as a defense mechanism in response to 

microbial infection. Initial studies revealed that MbfA confers resistance to H2O2 stress, 

suggesting that it may play an important role in plant-pathogen interaction125. Moreover, 

mbfA expression was induced in response to high iron conditions as sensed by the iron 

response regulator protein, Irr125. However, these results could not distinguish between a 

role for MbfA in sequestration of iron (through its ferritin domain) or iron efflux. A follow 

up study revealed that MbfA is important for resistance to iron intoxication under acidic 

conditions (pH 5.5), which enhances iron solubility thereby promoting toxicity126. 

Compared to wild-type, an mbfA null mutant had a modest increase in intracellular total iron 
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as well as labile iron125. Since its expression is induced by high iron under acidic 

conditions125, and leads to reduced intracellular iron levels, MbfA was postulated to 

function as an iron efflux transporter125.

Bradyrhizobium japonicum also encodes an MbfA protein implicated in iron efflux127. B. 
japonicum is a nitrogen-fixing endosymbiotic microbe that, like A. tumefaciens, belongs to 

the Rhizobiales lineage. As in A. tumefaciens, iron homeostasis in B. japonicum is also 

under control of Irr128, which regulates iron uptake, storage, and utilization129. MbfA in B. 
japonicum is specifically induced by high iron and confers resistance to iron intoxication 

and H2O2 stress. Moreover, an mbfA null mutant accumulates significantly high levels of 

iron.

Collectively, these data support the idea that MbfA functions physiologically as an iron 

efflux transporter127. Interestingly, the N-terminal ferritin-like domain located on the 

cytoplasmic side of inner membrane is required for iron transport activity and stress 

resistance. The purified ferritin domain forms a dimer in solution, which suggests that MbfA 

may dimerize to form a functional channel127. By mediating the efflux of Fe2+, MbfA 

functions cooperatively with bacterioferritin (Bfr), which functions in iron sequestration, to 

prevent iron intoxication130. Mutation of either mbfA or bfr increases Fe2+ sensitivity, but a 

double mbfA bfr mutant is extremely sensitive to iron130.

Conclusions

Efflux systems play a central role in the resistance of bacteria to heavy metals, but their role 

in iron homeostasis has been relatively slow to emerge. This is perhaps a reflection of the 

fact that iron limitation is a far more prevalent challenge for bacteria than iron 

intoxication131, due in part to the very low solubility of iron under aerobic conditions of near 

neutral pH. Recent results, however, have greatly expanded our appreciation of the central 

importance of iron efflux systems and their contribution to virulence in human 

pathogens27, 37, 38. This implies that iron intoxication imposes a selective pressure during 

infection, although how this arises is not yet clear. For example, iron intoxication may arise 

from an uncontrolled influx of iron into the cell from the outside. Indeed, it is thought that 

macrophages impose Zn2+ and Cu+ toxicity on engulfed bacteria by import of metals into 

the phagolysosome132. However, iron is not known to be imported into the phagocytic 

vacuole. Iron overload may also result when bacteria exposed to an iron limited 

environment, and therefore expressing high affinity uptake systems, transition to an iron-rich 

environment. The sudden influx of iron may then be best accommodated by storage or 

efflux. Alternatively, or in addition, iron intoxication may arise from within the cell. For 

example, oxidative stress may lead to the release of iron from abundant iron-sulfur and 

mononuclear iron enzymes, thereby leading to an increase in cytosolic iron levels.

Iron intoxication may also be present in specific environments. For example, acidophilic 

bacteria grow in low pH environments where iron concentrations may be 1018 times higher 

than that found in pH neutral environments133. In the case of iron-respiring bacteria, high 

local concentrations of Fe2+ may be produced by reduction of Fe3+-containing minerals101. 
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Further work is needed to better define the prevalence of iron intoxication in natural 

environment settings and the role of iron efflux in these environments.

With the identification of the several families of iron efflux systems noted here, the stage is 

now set for further structural, biochemical and genetic studies to address their mechanisms 

of metal selectivity. It is presently unclear how these efflux transporters discriminate Fe2+ 

from competing substrates and how, at a structural level, efflux is coupled to substrate 

binding and energy consumption. It is also unclear why some cells rely on ATP-dependent 

P-type transporters and others utilize CDF proteins, which are coupled to the proton motive 

force. It is notable that in several cases efflux pumps were initially assigned a role for 

substrates others than Fe2+ (PfeT, FrvA, CtpD), and in other cases (FieF, Nia) the most 

relevant physiological substrate is still unclear. This highlights the fact that metal selectivity 

cannot be easily predicted from protein sequence alone, and biochemical assays need to be 

interpreted in context of the physiology of the organisms. In several of the cases described, 

the most compelling evidence to assign function has emerged from a careful analysis of 

mutant phenotypes combined with detailed analysis of regulation to infer those conditions 

that specifically induce expression.
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fig. 1. Iron homeostasis in bacteria
Under iron deficient conditions (left), high affinity iron uptake systems are induced to 

scavenge iron from the surroundings to maintain the cell's labile iron pool. when iron is 

limiting, it is selectively partitioned to the most essential functions and incorporation into 

lower priority iron enzymes is translationally inhibited as part of an iron sparing response. in 

many cases, iron-independent enzymes may be derepressed to replace functions that would 

otherwise depend on iron. under iron excess conditions, the cell will have a full complement 

of iron-requiring enzymes, and iron in excess of immediate needs will be either stored for 

future use or exported by fe2+ efflux transporters to prevent iron overload.
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fig. 2. Ferrous iron efflux systems in bacteria
Four different groups of transporters can function as fe2+ efflux pumps. i. p1b-atpase; ii. 

cation diffusion facilitator (cdf); iii. major facilitator superfamily (mfs); iv. membrane-bound 

ferritin. a typical p1b-atpase consists of a transmembrane domain (tmd) that has 6–8 helices, 

a soluble actuator domain (not shown), and an atp-binding domain (atp-bd)52. a cdf 

transporter contains a n-terminal domain (ntd), a transmembrane domain (tmd) that has 6 

helices, a histine-rich interconnecting loop (il) between tm4 and tm5 (not shown), and a c-

terminal cytoplasmic domain (ctd)75. the common structural fold (mfs fold) of a mfs 

transporter is composed of two distinct domains, n domain and c domain. each domain has 

six consecutive transmembrane helices103. a membrane-bound ferritin transporter has two 

major domains, n-terminal ferritin-like or er domain (er) and c-terminal membrane-

embedded vacuolar iron transporter domain (vit1).
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